За счет чего корабль держится на воде и не тонет
Почему корабли не тонут
Почему не тонет корабль
Способность держаться на поверхности воды свойственна не только кораблям, но и некоторым животным. Взять хотя бы водомерку. Это насекомое из семейства полужесткокрылых уверенно чувствует себя на водной глади, перемещаясь по ней скользящими движениями. Такая плавучесть достигается благодаря тому, что кончики лапок водомерки покрывают жесткие волоски, которые не смачиваются водой.
Ученые и изобретатели надеются, что в будущем человек сможет создать транспортное средство, которое будет передвигаться по воде по принципу водомерки.
Но в отношении традиционных судов принципы бионики не действуют. Объяснить плавучесть корабля, сделанного из металлических деталей, сможет любой ребенок, знакомый с основами физики. Как гласит закон Архимеда, на тело, которое погружается в жидкость, начинает действовать выталкивающая сила. Ее величина равна весу воды, вытесняемой телом при погружении. Тело не сможет утонуть, если сила Архимеда превышает вес тела или равна ему. По этой причине корабль остается на плаву.
Чем больше объем тела, тем больше воды он вытесняет. Железный шар, опущенный в воду, тут же утонет. Но если его раскатать до состояния тонкого листа и сделать из него полый внутри шар, то такая объемная конструкция будет держаться на воде, лишь слегка в нее погрузившись.
Суда с металлической обшивкой строят таким образом, чтобы в момент погружения корпус вытеснял очень большое количество воды. Внутри корабельного корпуса имеется множество пустых областей, заполненных воздухом. Поэтому средняя плотность судна оказывается значительно меньше, чем плотность жидкости.
Как сохранить плавучесть судна?
Корабль держится на плаву, пока его обшивка исправна и не имеет повреждений. Но судьба судна окажется под угрозой, стоит ему получить пробоину. Сквозь прореху в обшивке внутрь судна начинает поступать вода, заполняя его внутренние полости. И тогда корабль вполне может затонуть.
Чтобы сохранить плавучесть судна при получении пробоины, его внутреннее пространство стали разделять перегородками. Тогда небольшая пробоина в одном из отсеков не угрожала общей живучести судна. Из отсека, который подвергался затоплению, с помощью насосов откачивали воду, а пробоину старались заделывать.
Хуже, если повреждалось сразу несколько отсеков. В этом случае судно могло утонуть из-за потери равновесия.
В начале XX века профессор Крылов предложил умышленно затапливать отсеки, расположенные в части судна, которая противоположна тем полостям, что подверглись затоплению. Корабль при этом несколько осаживался в воду, но оставался в горизонтальном положении и не мог утонуть в результате переворачивания.
Предложение морского инженера было столь необычным, что на него долгое время не обращали внимания. Только после поражения российского флота в войне с Японией его идею взяли на вооружение.
Почему самолет не падает, а корабль не тонет
Если запустить в воздух бумажный самолетик, он немного покружится и упадет. Упадёт и любой тяжелый предмет, который мы подбросим. А если положить камень или кусочек металла на воду, то он просто опустится на дно. Почему же тогда тяжелые самолеты не падают, а огромные корабли не тонут? У них есть свои секреты.
Как самолеты держатся в воздухе
Люди создали летательные аппараты, наблюдая за птицами: не падать самолетам помогают те же самые законы физики и те же приспособления, что и пернатым.
Большую роль играют крылья: снизу их делают ровными, а сверху – выпуклыми. Благодаря такой форме воздух, проходящий под крылом, давит на на него больше, чем воздух над крылом. Возникает так называемая подъемная сила, которая буквально выталкивает самолет вверх. Когда эта сила становится больше веса самолета, он взмывает в воздух. Представьте, насколько она большая, если большой самолет весит от 50 тонн – это вес десяти слонов. Пока действует подъемная сила, самолет не упадет.
Но эта сила будет держать летающий транспорт в воздухе, пока он движется. Попробуйте подбросить мяч: он будет лететь, пока есть скорость, и чем она выше, тем дольше он будет лететь. То же самое с самолетом: чтобы держаться в воздухе, ему нужно набрать нужную скорость и продолжать движение. Самолет не взлетит, пока не наберет скорость, которая требуется для взлета. Здесь задействуется другая сила: сила тяги, которую создает двигатель внутри самолета, – именно это и направляет его вперед. И чем большую скорость набирает самолет, тем сильнее воздух его выталкивает.
Получается, что самолет не падает благодаря особой форме, которая помогает ему парить в воздухе, и скорости полета, которую обеспечивает двигатель.
Как корабли держатся на воде
Секрет плавательных средств не только в воде, но и в воздухе, который в сотни раз легче воды. Корабли строят так, чтобы внутри было много пространств, заполненных воздухом, который будет держать корабль на воде, не давая ему пойти ко дну.
Это можно проиллюстрировать на простом опыте: положите на воду металлическую пластину – она сразу же утонет. Но если вы опустите на воду миску из того же металла, она будет оставаться на плаву, даже если вы положите в нее что-то еще. Причина все та же: в ней есть воздух.
Физика объясняет такой эффект тем, что в воде тонут предметы, плотность которых выше воды. И наоборот: не тонут предметы, плотность которых ниже. Металл плотнее воды, но если из него сделать предмет и наполнить его воздухом, его плотность будет ниже, и он будет держаться на поверхности.
Кроме того, на любой предмет в воде действует выталкивающая сила – сила Архимеда. Чем больший объем воды корабль вытесняет своим объемом, погруженным в воду, тем больше сила, которая давит на него снизу, выталкивая на поверхность. Эта сила равна весу вытесненной воды.
Получается, что корабль не тонет благодаря объему воздуха, который в нем находится.
Но попробуйте заполнить миску из нашего примера предметами – и она затонет. Точно так же с кораблем, именно поэтому есть строгие нормативы по весу груза, которое можно взять на борт.
На самолетах тоже действуют правила провоза багажа: есть определенная взлетная масса, превышать которую нельзя. Так что еще один секрет того, почему самолет не падает, а корабль не тонет, в его правильном весе и послушных пассажирах.
Почему корабли не тонут
Как известно, корабли строят из металла и они очень тяжёлые. Железные гвозди тоже производят из металла, по сравнению с кораблями они лёгкие, но, тем не менее, уходят ко дну. А почему корабли не тонут?
Закон Архимеда в действии. Парадокс Архимеда
Чтобы объяснить это явление, необходимо иметь представление о Законе Архимеда: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме тела. Чтобы убедиться в действии выталкивающей силы, достаточно погрузиться в ванну, наполненную до краёв. Тело вытолкнет часть воды вверх, и она прольётся на пол. Другими словами, когда какое-либо физическое тело погружается в воду, оно освобождает себе пространство, выталкивая часть воды. А вода, в свою очередь, выталкивает тело наверх.
Корабли очень тяжёлые, но в их корпусе есть большие равномерно расположенные пустоты, заполненные воздухом, который легче воды. В результате вес той воды, которую выталкивает корабль, больше его собственного веса. Так что судно не утонет до тех пор, пока оно не перегружено и не стало тяжелее вытолкнутой им воды. Между прочим, пустые помещения помогают кораблю не потонуть даже с пробоиной в корпусе, находящейся ниже уровня воды. Это возможно благодаря тому, что эти пустоты отгорожены друг от друга толстыми перегородками. Если даже вода полностью заполнит одну полость, то остальные останутся в прежнем состоянии.
Таким образом, в случае корабля выталкивающая сила равна весу воды в объёме той части судна, которая погружена в воду. Если эта сила больше, чем вес судна, то оно будет плавать. Кстати, парадокс Архимеда утверждает, что тело может плавать в объёме воды меньшем, чем объём самого тела, если его средняя плотность меньше, чем плотность воды. Проявление этого парадокса состоит в том, что массивное тело (то есть плавательное средство) может плавать в объёме воды намного меньшем, чем объём самого тела.
Понятия водоизмещения и ватерлинии
Корабль не тонет потому, что, в отличие от гвоздя, обладает водоизмещением. Водоизмещение — это количество (вес или объём) воды, вытесненной подводной частью корпуса судна. Масса этого количества воды равна весу всего судна, независимо от его размера, материала и формы.
Как известно, корабли предназначены для перевозки людей и грузов. Если он пустой, то его вес минимальный, а следовательно, он меньше всего «осаживается» в море. Гружёное судно погружается в воду глубже. При повышенной нагрузке чрезмерное погружение в воду чревато затоплением — судно уйдёт под воду и утонет. Поэтому на корпусе имеется ватерлиния — специальная горизонтальная линия на внешней стороне борта, до которой крупное плавательное средство погружается в воду при нормальной осадке. Обычно выше неё корабль открашен одним цветом, а ниже — другим. Если уровень ватерлинии начал погружаться под воду, это свидетельствует о перегрузке судна либо наличии пробоины. С другой стороны, пустой корабль не должен быть слишком лёгким, так как в этом случае его подводная часть будет слишком маленькой по отношению к надводной. Такое положение также опасно: ветер и волны могут опрокинуть плавательное средство.
В наше время для определения глубины погружения существует множество датчиков. А ватерлиния — лишь вспомогательное средство определения исправности и правильной эксплуатации судов.
Таким образом, железные суда проектируют и строят с таким расчётом, чтобы при погружении они вытесняли количество воды, вес которой равен их весу в загруженном состоянии.
Аналогия с железным шариком
Можно представить объяснение и с точки зрения физической зависимости между массой, объёмом и плотностью. Тела, плотность которых меньше плотности воды, свободно плавают по её поверхности. Как известно, плотность обратно пропорциональна объёму и прямо пропорциональна массе, что отражает формула ρ=m/v. То есть при неизменной массе тела, чтобы уменьшить плотность, требуется пропорционально увеличить его объём. Последнее утверждение можно представить следующим примером.
Железный шарик тонет в воде, потому что у него большой вес, но маленький объём. Если этот шарик расплющить в тонкий лист, а из листа сделать большой, внутри пустой шар, то вес не увеличится, а объём значительно вырастет, из-за чего железный шар будет плавать.
Корабль внутри имеет множество пустых, наполненных воздухом помещений, и его средняя плотность значительно меньше плотности воды. Поэтому для судна очень опасно, если пробоины в нём будут наполняться водой. Вода тяжелее воздуха, что приведёт к нарушению баланса между весом судна и объёмом, и он пойдёт ко дну.
Интересно, что в танкерах, перевозящих нефть, пустых помещений с воздухом почти нет, так как сама нефть имеет плотность, меньшую плотности воды. Аналогично и с лесовозами. Поэтому танкеры и лесовозы нагружают под завязку — чтобы не требовался воздух. А такие судна, как балкеры, перевозящие металл и железную руду, нуждаются в большом количестве пустых помещений.
На схеме: 1 — Силы поддержания корабля на плаву; 2 — Давление воды на борт судна.
Таким образом, действие выталкивающей силы зависит, во-первых, от объёма плавательного средства, а во-вторых — от плотности воды, в которой судно плавает.
Эта сила тем больше, чем больше объём погружённого тела.
Могут ли корабли летать?
Суда на воздушной подушке передвигаются по воде, однако они не погружаются в воду, как обычные корабли. Они парят на прослойке воздуха, которая приподнимает судно над поверхностью воды. Такой корабль может передвигаться не только по воде, но и по земле.
Как погружаются и всплывают подводные лодки?
У подводной лодки есть специальные резервуары, которые при погружении заполняются водой. Вес лодки увеличивается, она становится тяжелее воды и погружается вниз. При всплытии резервуар наполняют воздухом, который вытесняет воду. Схематически это указано на рисунке выше.
Первая подводная лодка
Одна из первых подводных лодок была сконструирована и испытана голландцем Корнелиусом ван Дреббелем ещё в 20-х годах XVII века. Двенадцать гребцов погружали деревянную лодку под воды реки Темза в Великобритании.
Первый водолазный костюм
Этот неуклюжий водолазный костюм изобрели более 200 лет назад. Воздух для водолаза поступал с поверхности по длинному шлангу.
Таким образом, благодаря воздуху, который легче воды, можно контролировать погружение тел в воду. На этом принципе основано перемещение подводных лодок и по этой причине корабли не тонут.