За счет чего совершается подъем самолета
ПОДЪЕМ САМОЛЕТА
Подъем является одним из видов установившегося движения самолета, при котором самолет набирает высоту по траектории, составляющей с линией горизонта некоторый угол.
СХЕМА СИЛ, ДЕЙСТВУЮЩИХ НА САМОЛЕТ НА ПОДЪЕМЕ
Рассмотрим прямолинейный установившийся подъем самолета, траектория которого наклонена к горизонту под некоторым углом , называемым углом подъема.
При подъеме на самолет действуют следующие силы (Рис. 1):
— составляющая сила веса G2 в направлении, обратном направлению движения;
— в направлении, перпендикулярном к траектории полета, действуют подъемная сила Y и составляющая силы веса G1.
Так как подъем является плоским поступательным установившимся движением, то все силы, действующие на самолет, приложены в его центре тяжести.
Для выполнения условия равномерности и прямолинейности подъема самолета все действующие на него силы должны быть взаимно уравновешены. Следовательно, условием прямолинейности движения при подъеме является равенство сил Y и G1.
(5.1)
Условием равномерности движения самолета будет равенство сил, действующих вдоль траектории:
. (5.2)
При нарушении одного из этих равенств движение не будет прямолинейным и равномерным, так как появившиеся неуравновешенные силы будут искривлять траекторию в первом случае и ускорять или замедлять движение самолета во втором.
Рис. 1 Схема сил на подъеме
У=Gcos — условие прямолинейности
P= Q =G sin — условие равномерности
Из анализа уравнений сил при подъеме можно сделать следующие выводы:
— подъемная сила при подъеме меньше, чем в горизонтальном полете на том же угле атаки, так как она уравновешивает только часть веса самолета;
— потребная сила тяги при подъеме больше, чем в горизонтальном полете на том же угле атаки, потому что кроме лобового сопротивления она уравновешивает составляющую веса самолета G2. Таким образом, подъем совершается не за счет увеличения подъемной силы крыла, а за счет увеличения силы тяги. С увеличением угла подъема составляющая веса G, направленная перпендикулярно к траектории подъема, уменьшается, следовательно, должна быть меньше и уравновешивающая ее подъемная сила Y, При этом составляющая веса G2 увеличивается, что требует увеличения тяги силовой установки. Увеличение же силы тяги при подъеме возможно только при наличии ее избытка.
(5.3)
У современных самолетов с ТРД тяговооруженность достаточно высокая и может достигать единицы и более:
— у самолета МИГ-17 j = 0,52,
— у самолета Л-29 j = 0,34.
Если бы силовая установка обладала тягой, превышающей сумму веса самолета и его лобового сопротивления, то самолет мог бы выполнять установившийся вертикальный подъем ( = 90°).
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Подъем самолета
ПОДЪЕМ САМОЛЕТА
Подъем является одним из видов установившегося движения самолета, при котором самолет набирает высоту по траектории, составляющей с линией горизонта некоторый угол.
СХЕМА СИЛ, ДЕЙСТВУЮЩИХ НА САМОЛЕТ НА ПОДЪЕМЕ
Рассмотрим прямолинейный установившийся подъем самолета, траектория которого наклонена к горизонту под некоторым углом , называемым углом подъема.
При подъеме на самолет действуют следующие силы (Рис. 1):
— составляющая сила веса G2 в направлении, обратном направлению движения;
— в направлении, перпендикулярном к траектории полета, действуют подъемная сила Y и составляющая силы веса G1.
Так как подъем является плоским поступательным установившимся движением, то все силы, действующие на самолет, приложены в его центре тяжести.
Для выполнения условия равномерности и прямолинейности подъема самолета все действующие на него силы должны быть взаимно уравновешены. Следовательно, условием прямолинейности движения при подъеме является равенство сил Y и G1.
(5.1)
Условием равномерности движения самолета будет равенство сил, действующих вдоль траектории:
. (5.2)
При нарушении одного из этих равенств движение не будет прямолинейным и равномерным, так как появившиеся неуравновешенные силы будут искривлять траекторию в первом случае и ускорять или замедлять движение самолета во втором.
Рис. 1 Схема сил на подъеме
У=Gcos— условие прямолинейности
P= Q =G sin— условие равномерности
Из анализа уравнений сил при подъеме можно сделать следующие выводы:
— подъемная сила при подъеме меньше, чем в горизонтальном полете на том же угле атаки, так как она уравновешивает только часть веса самолета;
— потребная сила тяги при подъеме больше, чем в горизонтальном полете на том же угле атаки, потому что кроме лобового сопротивления она уравновешивает составляющую веса самолета G2. Таким образом, подъем совершается не за счет увеличения подъемной силы крыла, а за счет увеличения силы тяги. С увеличением угла подъема составляющая веса G, направленная перпендикулярно к траектории подъема, уменьшается, следовательно, должна быть меньше и уравновешивающая ее подъемная сила Y, При этом составляющая веса G2 увеличивается, что требует увеличения тяги силовой установки. Увеличение же силы тяги при подъеме возможно только при наличии ее избытка.
(5.3)
У современных самолетов с ТРД тяговооруженность достаточно высокая и может достигать единицы и более:
— у самолета МИГ-17 j = 0,52,
— у самолета Л-29 j = 0,34.
Если бы силовая установка обладала тягой, превышающей сумму веса самолета и его лобового сопротивления, то самолет мог бы выполнять установившийся вертикальный подъем ( = 90°).
СКОРОСТЬ, ПОТРЕБНАЯ ДЛЯ ПОДЪЕМА
Скоростью, потребной для подъема самолета uпод, называется скорость, необходимая для создания подъемной силы, уравновешивающей составляющую веса, перпендикулярную траектории подъема на данном угле атаки.
Из условия прямолинейности движения можно определить величину потребной для подъема скорости.
Y =G cos .
Подставив в это уравнение значение подъемной силы, получим
(5.4)
Из уравнения (5.4) находим
(5.5)
Так как выражение — есть численная величина потребной скорости горизонтального полета uГП то формула (5.5) примет вид
(5.6)
Величина всегда меньше единицы, поэтому можно сделать вывод, что для выполнения подъема самолета требуется меньшая скорость, чем при горизонтальном полете на том же угле атаки. Для небольших углов подъема (до
= 20°) потребная скорость для подъема самолета незначительно отличается от потребной скорости горизонтального полета на том же угле атаки. Поэтому при подъеме с углом
, не превышающим°, можно принимать, что скорость, потребная для подъема, равна скорости, потребной для горизонтального полета.
ТЯГА И МОЩНОСТЬ, ПОТРЕБНЫЕ ПРИ ПОДЪЕМЕ
Тяга, необходимая для того, чтобы уравновесить силу лобового сопротивления и составляющую веса Gg при подъеме самолета на данном угле атаки, называется потребной тягой для подъема.
Из условия равномерности движения можно определить величину тяги, потребной для подъема.
(5.7)
Если совершать подъем самолета на тех же углах атаки, что и горизонтальный полет, то лобовое сопротивление при подъеме будет численно равно потребной тяге горизонтального полета. Уравнение (5.7) в этом случае можно записать так:
. (5.8)
Из формулы следует, что для совершения подъема требуется большая тяга, чем для горизонтального полета на том же угле атаки, так как она нужна не только для преодоления лобового сопротивления, но и для уравновешивания составляющей силы веса по траектории.
На всех скоростях горизонтального полета, кроме максимальной, имеется избыток тяги DР. Этот избыток при подъеме используется для уравновешивания составляющей силы веса G2. Поэтому тяга при подъеме с небольшими (до 30°) углами подъема равна
(5.9)
Если избыток тяги равен нулю (например, на максимальной скорости), то установившийся подъем самолета невозможен.
Для самолетов с поршневыми двигателями и ТВД характеристики подъема связаны с потребной и располагаемой мощностями.
Мощность, необходимая для обеспечения подъема самолета на данном угле атаки, называется потребной мощностью подъема.
(5.10)
Избыток мощности DN, представляющий собой разность между располагаемой и потребной мощностями, для различных скоростей и высот полета определяется на графике потребных и располагаемых мощностей.
ПОЛЯРА СКОРОСТЕЙ ПОДЪЕМА САМОЛЕТА. ПЕРВЫЕ И ВТОРЫЕ РЕЖИМЫ ПОДЪЕМА
Из кривых потребных и располагаемых мощностей видно, что при полете на максимальной скорости избыток мощности равен нулю и, следовательно, вертикальная скорость также равна нулю. С уменьшением скорости от максимальной избыток мощности возрастает и при скорости полета, равной V=162 км/ч (для самолета Як 52) и V=137 км/ч (для самолета Як-55) (при оборотах двигателя n=100%, на высоте полета Н=500 м, достигает максимального значения). Вертикальная скорость подъема при этом также увеличивается до максимального значения. С дальнейшим уменьшением скорости от VПР =162 km/ч (для самолета Як-52) и Vnp=137 км/ч (для самолета Як-55) до минимальной скорости VМИН избыток мощности DN и вертикальная скорость набора VУ уменьшаются.
Зависимость между скоростью по траектории, вертикальной скоростью подъема и углом подъема можно представить в виде одного графика, который носит название поляры скоростей подъема или указательницы траектории подъема.
Рис. 2 Поляры скоростей подъема самолетов Як-52 и Як-55
Поляра скоростей подъема самолетов Як-52 и Як-55 на высоте 500 м и максимальном режиме работы силовой установки показана на Рис. 2.
Опускаясь из любой точки кривой на горизонтальную ось по дуге окружности с центром в начале координат, можно отсчитать скорость полета по траектории подъема.
Поляра скоростей подъема позволяет определить характерные режимы установившегося подъема и соответствующие максимальный угол подъема и максимальную вертикальную скорость подъема.
РЕЖИМ НАИБОЛЕЕ БЫСТРОГО ПОДЪЕМА (НАБОРА ВЫСОТЫ).
Определяется проведением касательной к поляре скоростей подъема параллельно оси скорости.
Для самолета Як-52 при оборотах двигателя n= 100%, на высоте полета Н=500 м приборная скорость Vnp=162 км/ч, VyМАКС =10 м/с, a =8°.
Для самолета Як-55 при частоте вращения коленчатого вала двигателя, равной п=100%, на высоте полета Н=500 м Vnp-= 137 км/ч, VyМАКС=15 м/с, a=90.
Этот режим подъема применяется в случае необходимости быстро набрать заданную высоту.
РЕЖИМ НАИБОЛЕЕ КРУТОГО ПОДЪЕМА.
Определяется проведением касательной к поляре скоростей из начала координат. Для самолета Як-52 при оборотах двигателя п=100%, на высоте полета Н=500 м и Vnp=140 км/ч-макс=12°. Для самолета Як-55 при оборотах двигателя п=100%, на высоте полета Н=500 м и Vnp=115 км/ч-
макс=22°.
Этот режим подъема применяется, когда необходимо «перетянуть» самолет через близко расположенное препятствие.
На поляре скоростей подъема также можно найти режим максимальной теоретической скорости подъема (определяется проведением касательной дуги к поляре скоростей подъема с центром в начале координат).
Границей первых и вторых режимов подъема, как и в горизонтальном полете, для самолетов Як-52 и Як-55 является экономическая скорость.
Режимы подъема в диапазоне скоростей от , для которых
>0, называются вторыми.
Первые режимы подъема имеют место в диапазоне скоростей от VЭК до VМАКС, для которых
Как взлетает и летает самолет
Человечество издавна интересовал вопрос, как же так получается, что многотонный летательный аппарат легко поднимается к небесам. Как же происходит взлет и как летают самолеты? Когда авиалайнер движется на большой скорости по взлетной полосе, у крыльев появляется подъемная сила и работает снизу вверх.
Что влияет на взлет лайнера
При движении воздушного судна вырабатывается разница давлений на нижнюю и верхнюю стороны крыла, благодаря чему получается подъемная сила, удерживающая воздушное судно в воздухе. Т.е. высокое давление воздуха снизу толкает крыло вверх, при этом низкое давление сверху затягивает крыло на себя. В результате крыло поднимается.
Для взлета авиалайнера, ему необходим достаточный разбег. Подъемная сила крыльев увеличивается в процессе набора скорости, которая должна превысить предельный взлетный режим. Затем пилот увеличивает угол взлета, отводя штурвал к себе. Носовая часть лайнера поднимается вверх, и машина поднимается в воздух.
Затем убираются шасси и выпускные фары. С целью уменьшения подъемной силы крыла, пилот постепенно выполняет уборку механизации. Когда авиалайнер достигнет необходимого уровня, летчик устанавливает стандартное давление, а двигателям – номинальный режим. Чтобы посмотреть, как взлетает самолет, видео предлагаем просмотреть в конце статьи.
Взлет судна выполняется под углом. С практической точки зрения этому можно дать следующее объяснение. Руль высоты – это подвижная поверхность, управляя которой можно вызвать отклонение самолета по тангажу.
Рулем высоты можно управлять углом тангажа, т.е. изменять скорость набора или потери высоты. Это происходит вследствие изменения угла атаки и силы подъема. Увеличивая скорость двигателя, пропеллер начинает крутиться быстрее и поднимает авиалайнер вверх. И наоборот, направляя рули высоты вниз, нос самолета опускается вниз, при этом скорость двигателя следует уменьшать.
Хвостовая часть авиалайнера укомплектована рулем направления и тормозами на обе стороны колес.
Как летают авиалайнеры
Отвечая на вопрос, почему летают самолеты, следует вспомнить закон физики. Разница давлений воздействует на подъемную силу крыла.
Скорость потока будет больше, если давление воздуха будет низким и с точностью, наоборот.
Поэтому, если скорость авиалайнера большая, то его крылья приобретают подъемную силу, которая толкает воздушное судно.
Еще на подъемную силу крыла авиалайнера влияют некоторые обстоятельства: угол атаки, скорость и плотность потока воздуха, площадь, профиль и форма крыла.
Современные лайнеры имеют минимальную скорость от 180 до 250 км/час, при которых осуществляется взлет, планирует в небесах и не падает.
Высота полета
Какая же предельная и безопасная высота полета самолета.
Не все суда имеют одинаковую высоту полета, «воздушный потолок» может колебаться на высоте от 5000 до 12100 метров. На больших высотах плотность воздуха минимальная, при этом лайнер достигает наименьшего сопротивления воздуха.
Двигателю лайнера необходим фиксированный объем воздуха для сжигания, потому как двигатель не создаст нужной тяги. Также, при полетах на большой высоте, самолет экономит топливо до 80% в отличие от высоты до километра.
За счет чего самолет находится в воздухе
Чтобы ответить, почему самолеты летают, необходимо поочередно разобрать принципы его перемещения в воздухе. Реактивный авиалайнер с пассажирами на борту достигает несколько тонн, но при этом, легко взлетает и осуществляет тысячекилометровый перелет.
На движение в воздухе влияют и динамические свойства аппарата, конструкции агрегатов, формирующие полетную конфигурацию.
Силы, влияющие на движение самолета в воздухе
Работа авиалайнера начинается с запуска двигателя. Небольшие суда работают на поршневых двигателях, вращающих воздушные винты, при этом создается тяга, помогающая воздушному судну перемещаться в воздушном пространстве.
Большие авиалайнеры работают на реактивных двигателях, которые в процессе работы выбрасывают много воздуха, при этом реактивная сила приводит летательный аппарат к движению вперед.
Почему же самолет взлетает и находится долгое время в воздухе? Так как форма крыльев имеет разную конфигурацию: сверху округлая, а снизу плоская, то поток воздуха с обеих сторон не одинаковый. Сверху крыльев воздух скользит и становится разреженным, а давление его меньше, чем воздух снизу крыла. Потому, посредством неравномерного давления воздуха и форме крыльев, возникает сила, приводящая к взлету самолета вверх.
Но чтобы авиалайнер мог легко оторваться от земли, ему необходимо на высокой скорости совершить разбег по взлетной полосе.
Из этого следует вывод, чтобы авиалайнер беспрепятственно находился в полете, ему необходим движущийся воздух, который рассекают крылья и создает подъемную силу.
Взлет самолета и его скорость
Многих пассажиров интересует вопрос, какую скорость развивает самолет при взлете? Существует ошибочное представление, что скорость взлета для каждого самолета одинакова. Чтобы ответить на вопрос, какая скорость самолета при взлете, следует обратить внимание на немаловажные факторы.
Взлет пассажирского реактивного самолета Boeing 737
Поэтому, если вы хотите подробнее узнать, как взлетает самолет, на какую высоту и с какой скоростью, мы предлагаем вам эту информацию в нашей статье. Надеемся, что от воздушного путешествия вы получите огромное удовольствие.
Тема №1
ПОДЪЕМ САМОЛЕТА
Подъем является одним из видов установившегося движения самолета, при котором самолет набирает высоту по траектории, составляющей с линией горизонта некоторый угол.
СХЕМА СИЛ, ДЕЙСТВУЮЩИХ НА САМОЛЕТ НА ПОДЪЕМЕ
Рассмотрим прямолинейный установившийся подъем самолета, траектория которого наклонена к горизонту под некоторым углом , называемым углом подъема.
При подъеме на самолет действуют следующие силы (Рис. 89):
— составляющая сила веса G2 в направлении, обратном направлению движения;
— в направлении, перпендикулярном к траектории полета, действуют подъемная сила Y и составляющая силы веса G1.
Так как подъем является плоским поступательным установившимся движением, то все силы, действующие на самолет, приложены в его центре тяжести.
Для выполнения условия равномерности и прямолинейности подъема самолета все действующие на него силы должны быть взаимно уравновешены. Следовательно, условием прямолинейности движения при подъеме является равенство сил Y и G1.
(5.1)
Условием равномерности движения самолета будет равенство сил, действующих вдоль траектории:
. (5.2)
При нарушении одного из этих равенств движение не будет прямолинейным и равномерным, так как появившиеся неуравновешенные силы будут искривлять траекторию в первом случае и ускорять или замедлять движение самолета во втором.
Рис. 89 Схема сил на подъеме
У=Gcos— условие прямолинейности
P= Q =G sin— условие равномерности
Из анализа уравнений сил при подъеме можно сделать следующие выводы:
— подъемная сила при подъеме меньше, чем в горизонтальном полете на том же угле атаки, так как она уравновешивает только часть веса самолета;
— потребная сила тяги при подъеме больше, чем в горизонтальном полете на том же угле атаки, потому что кроме лобового сопротивления она уравновешивает составляющую веса самолета G2. Таким образом, подъем совершается не за счет увеличения подъемной силы крыла, а за счет увеличения силы тяги. С увеличением угла подъема составляющая веса G, направленная перпендикулярно к траектории подъема, уменьшается, следовательно, должна быть меньше и уравновешивающая ее подъемная сила Y, При этом составляющая веса G2 увеличивается, что требует увеличения тяги силовой установки. Увеличение же силы тяги при подъеме возможно только при наличии ее избытка.
(5.3)
У современных самолетов с ТРД тяговооруженность достаточно высокая и может достигать единицы и более:
— у самолета МИГ-17 = 0,52,
— у самолета Л-29 = 0,34.
Если бы силовая установка обладала тягой, превышающей сумму веса самолета и его лобового сопротивления, то самолет мог бы выполнять установившийся вертикальный подъем ( = 90°).
СКОРОСТЬ, ПОТРЕБНАЯ ДЛЯ ПОДЪЕМА
Скоростью, потребной для подъема самолета под, называется скорость, необходимая для создания подъемной силы, уравновешивающей составляющую веса, перпендикулярную траектории подъема на данном угле атаки.
Из условия прямолинейности движения можно определить величину потребной для подъема скорости.
Y =G cos .
Подставив в это уравнение значение подъемной силы, получим
(5.4)
Из уравнения (5.4) находим
(5.5)
Так как выражение — есть численная величина потребной скорости горизонтального полета ГП то формула (5.5) примет вид
(5.6)
ТЯГА И МОЩНОСТЬ, ПОТРЕБНЫЕ ПРИ ПОДЪЕМЕ
Тяга, необходимая для того, чтобы уравновесить силу лобового сопротивления и составляющую веса Gg при подъеме самолета на данном угле атаки, называется потребной тягой для подъема.
Из условия равномерности движения можно определить величину тяги, потребной для подъема.
(5.7)
Если совершать подъем самолета на тех же углах атаки, что и горизонтальный полет, то лобовое сопротивление при подъеме будет численно равно потребной тяге горизонтального полета. Уравнение (5.7) в этом случае можно записать так:
. (5.8)
Из формулы следует, что для совершения подъема требуется большая тяга, чем для горизонтального полета на том же угле атаки, так как она нужна не только для преодоления лобового сопротивления, но и для уравновешивания составляющей силы веса по траектории.
На всех скоростях горизонтального полета, кроме максимальной, имеется избыток тяги Р. Этот избыток при подъеме используется для уравновешивания составляющей силы веса G2. Поэтому тяга при подъеме с небольшими (до 30°) углами подъема равна
(5.9)
Если избыток тяги равен нулю (например, на максимальной скорости), то установившийся подъем самолета невозможен.
Для самолетов с поршневыми двигателями и ТВД характеристики подъема связаны с потребной и располагаемой мощностями.
Мощность, необходимая для обеспечения подъема самолета на данном угле атаки, называется потребной мощностью подъема.
(5.10)
Избыток мощности N, представляющий собой разность между располагаемой и потребной мощностями, для различных скоростей и высот полета определяется на графике потребных и располагаемых мощностей.
ПОЛЯРА СКОРОСТЕЙ ПОДЪЕМА САМОЛЕТА. ПЕРВЫЕ И ВТОРЫЕ РЕЖИМЫ ПОДЪЕМА
Из кривых потребных и располагаемых мощностей видно, что при полете на максимальной скорости избыток мощности равен нулю и, следовательно, вертикальная скорость также равна нулю. С уменьшением скорости от максимальной избыток мощности возрастает и при скорости полета, равной V=162 км/ч (для самолета Як 52) и V=137 км/ч (для самолета Як-55) (при оборотах двигателя n=100%, на высоте полета Н=500 м, достигает максимального значения). Вертикальная скорость подъема при этом также увеличивается до максимального значения. С дальнейшим уменьшением скорости от VПР =162 km /ч (для самолета Як-52) и Vnp=137 км/ч (для самолета Як-55) до минимальной скорости VМИН избыток мощности N и вертикальная скорость набора VУ уменьшаются.
Зависимость между скоростью по траектории, вертикальной скоростью подъема и углом подъема можно представить в виде одного графика, который носит название поляры скоростей подъема или указательницы траектории подъема.
Рис. 90 Поляры скоростей подъема самолетов Як-52 и Як-55
Поляра скоростей подъема самолетов Як-52 и Як-55 на высоте 500 м и максимальном режиме работы силовой установки показана на Рис. 90.
Опускаясь из любой точки кривой на горизонтальную ось по дуге окружности с центром в начале координат, можно отсчитать скорость полета по траектории подъема.
Поляра скоростей подъема позволяет определить характерные режимы установившегося подъема и соответствующие максимальный угол подъема и максимальную вертикальную скорость подъема.
РЕЖИМ НАИБОЛЕЕ БЫСТРОГО ПОДЪЕМА (НАБОРА ВЫСОТЫ).
Определяется проведением касательной к поляре скоростей подъема параллельно оси скорости.
Для самолета Як-52 при оборотах двигателя n= 100%, на высоте полета Н=500 м приборная скорость Vnp=162 км/ч, VyМАКС =10 м/с, =8°.
Этот режим подъема применяется в случае необходимости быстро набрать заданную высоту.
РЕЖИМ НАИБОЛЕЕ КРУТОГО ПОДЪЕМА.
Определяется проведением касательной к поляре скоростей из начала координат. Для самолета Як-52 при оборотах двигателя п=100%, на высоте полета Н=500 м и Vnp=140 км/ч-макс=12°. Для самолета Як-55 при оборотах двигателя п=100%, на высоте полета Н=500 м и Vnp=115 км/ч-
макс=22°.
Этот режим подъема применяется, когда необходимо «перетянуть» самолет через близко расположенное препятствие.
На поляре скоростей подъема также можно найти режим максимальной теоретической скорости подъема (определяется проведением касательной дуги к поляре скоростей подъема с центром в начале координат).
Границей первых и вторых режимов подъема, как и в горизонтальном полете, для самолетов Як-52 и Як-55 является экономическая скорость.
Режимы подъема в диапазоне скоростей от , для которых
>0, называются вторыми.