За счет чего вырабатывается электричество
О природе электрического тока и основах электротехники
В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.
1. Что такое электрический ток.
«Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам» (с)
Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.
1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.
рис 1. Генератор напряжения величиной U
рис 2. Генератор тока величиной I
рис 3. Генератор напряжения величиной U с нагрузкой R1
Рассмотрим теперь цепь с генератором тока.
рис 4. Генератор тока величиной I с нагрузкой R2
2. Закон Ома.
Сначала c точки зрения генератора напряжения
Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R Теперь с точки зрения генератора тока
Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R
рис 5. Последовательное включение резисторов
Хотя пару важных практических случаев все таки рассмотрим.
3. Делитель напряжения
Схема имеет вид.
рис 6. Делитель напряжения
Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.
Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).
Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.
рис 7. Выходное сопротивление источника и входное сопротивление приемника.
Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.
Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.
Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!
В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.
Основные способы генерации электроэнергии в России
Чтобы более точно прогнозировать производственные показатели, выручку и себестоимость генерирующих компаний для их последующего фундаментального анализа, необходимо понимать как производится электроэнергия и какие факторы влияют на ее выработку.
Производство электроэнергии
Невозобновляемые источники энергии:
Возобновляемые источники энергии:
Электрическая энергия, по большей части, образуется за счет механической энергии от вращения турбины. Отличия лишь в том, за счет чего приводится в движение эта турбина.
Производство электроэнергии можно разделить по способам получения на 2 основных типа: из невозобновляемых источников энергии (использование в качестве топлива такого сырья как природный газ, уголь, мазут или дизельное топливо) и из возобновляемых источников энергии, где в качестве ресурсов используется энергия воды, ветра, солнца и пр.
Тепловая генерация
К производству электроэнергии из невозобновляемых источников относится тепловая генерация. Электричество производится на тепловых электростанциях (ТЭС), которые бывают двух типов: конденсационные (КЭС) и теплофикационные (ТЭЦ). Принцип работы одинаковый, а отличие лишь в том, что КЭС производят в основном электроэнергию, а ТЭЦ еще и тепловую энергию, используемую для отопления и горячего водоснабжения. КЭС называют ГРЭС — государственная районная электростанция, которые часто можно спутать с ГЭС — гидроэлектростанция, о них будет рассказано другой части статьи.
На данный момент тепловая генерация — это самый популярный способ производства энергии основными генерирующими компаниями, которые торгуются на Московской бирже («Интер РАО», «РусГидро», «Юнипро», «Мосэнерго», «ОГК-2», «ТГК-1», «Энел Россия»).
На картинке представлена схема работы компании «Мосэнерго»:
https://mosenergo.gazprom.ru/about/business-model/
В тепловой генерации, как следует из названия, приводит в движение турбину тепловая энергия в виде пара, которая образуется в результате сжигания органического топлива.
Более детальная схема работы ТЭЦ «Мосэнерго» представлена на картинке:
https://mosenergo.gazprom.ru/about/business-model/tpp-operation-sheme/
Еще более наглядно узнать про принцип работы ТЭЦ можно в коротком познавательном видео:
Все больше компаний, акции которых торгуются на Московской бирже, на своих ТЭС переходят на газ, как более экологически чистое топливо, постепенно отказываясь от угля и прочих видов топлива. Это важно, т.к. львиную долю в себестоимости генерирующих компаний составляет топливообеспечение, которое формируется в зависимости от цен, в основном, на газ.
Если ТЭЦ производят электроэнергию и тепло, то котельные производят только тепловую энергию, которая направляется потребителям для отопления помещений и обеспечения горячего водоснабжения.
Принцип работы котельной «Мосэнерго» представлен на рисунке:
https://mosenergo.gazprom.ru/about/business-model/boiler-operation-sheme/
Котельные существенно уступают в энергоэффективности ТЭЦ, которые вырабатывают еще и электроэнергию. Поэтому компании, у которых еще есть котельные постепенно от них отказываются, перенаправляя нагрузку на ТЭЦ, что позволяет повысить эффективность работы и экономит топливо.
Перейдем к рассмотрению производства электроэнергии благодаря возобновляемым источникам энергии. Так называемая «зеленая» энергия образуется за счет постоянно восстанавливающихся или неиссякаемым по человеческим меркам ресурсов. Это может быть поток воды, ветер, солнечный свет или тепловая энергия недр Земли.
Гидрогенерация
На гидроэлектростанциях (ГЭС) вращает турбину поток воды. Обычно строится плотина, которая перекрывает реку. В месте перекрытия образуется водохранилище. В плотине есть специальные водозаборные отверстия, через которые вода по трубам поступает к турбине, вращает ее и продолжает свой путь обратно в русло реки, расположенное ниже уровня водохранилища. Вращающаяся турбина приводит в движение генератор, который, непосредственно, и вырабатывает электроэнергию. Таким образом энергия водного потока преобразуется в электрическую.
Схема работы гидроэлектростанции (ГЭС):
https://www.kp.ru/best/krsk/metalenergy/
На динамику выработки электроэнергии ГЭС влияет уровень воды в водохранилищах. Чем он выше, тем больше выработка.
Из достоинств стоит отметить дешевизну электроэнергии по сравнению с тепловой генерацией.
В России явным лидером в гидрогенерации является «РусГидро».
Ветряная генерация
На ветряных электростанциях (ВЭС) в движение турбину приводит ветер. Ветряная электростанция представляет собой ветропарк, который состоит из нескольких ветрогенераторов. Принцип работы простой: ветер вращает лопасти, которые соединены с генератором, производящим электроэнергию. Необходимая скорость ветра для размещения ветряной электростанции составляет от 4,5 м/с. Так как скорость ветра возрастает с повышением высоты, то ВЭС стараются строить на возвышенности, а сами ветрогенераторы высотой 30-60 метров.
Схема работы ветрогенератора:
http://tdap.ru/press/news/podshipniki-dlya-vetrogeneratorov/
На российском рынке на ветряную генерацию делает ставку и активно развивает данное направление «Энел Россия».
Следующие виды генерации электроэнергии не используются в российской энергетике широко.
Солнечная генерация
Солнечные электростанции (СЭС) состоят из большого количества солнечных батарей, которые чаще всего представляют собой фотоэлемент, являющийся полупроводниковым устройством, преобразующим солнечную энергию в электрическую.
Отличительной особенностью от других видов генераций, является иной принцип преобразования энергии без использования турбин. Из недостатков следует отметить зависимость от погодных условий и времени суток, сезонность в средних и высоких широтах, необходимость использования довольно большой площади.
В России солнечную генерацию использует «РусГидро».
Геотермальная генерация
На геотермальных электростанциях (ГеоТЭС) электрическая энергия вырабатывается за счет тепловой энергии из недр Земли. Принцип работы аналогичен тепловым электростанциям, но нет необходимости в сжигании топлива, т.к. тепло уже имеется в виде пара или горячей воды, благодаря гейзерам.
В России ГеоТЭС расположены в Камчатском крае и принадлежат ПАО «Камчатскэнерго», которое входит в группу «РусГидро».
Ниже представлена сводная таблица с разбивкой установленных мощностей основных генерирующих компаний, представленных на Московской бирже, по видам производства энергии:
За счет чего вырабатывается электричество
КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.
Автор работы награжден дипломом победителя III степени
Электричество имеет большое значение в нашей жизни. Почти все, что нас окружает, работает на электричестве. Например, бытовая техника у нас дома: телевизоры, стиральные машины, холодильники, компьютеры, лампочки для освещения. На улице за счет электрического тока ездят троллейбусы, трамваи, электрички, и, даже машины, используют электричество для управления и освещения дороги фарами. На заводах на электричестве работают станки, печи и другие сложные механизмы.
Так откуда же берется электричество, которое поступает к нам в дом по проводам?
В своей работе я изучу, как вырабатывается электричество на электростанциях: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Как по электрическим проводам, закрепленным на специальных опорах, электричество направляется в город, затем в каждый дом, в каждую квартиру.
В экспериментальной части докажу, как «маленький» генератор вырабатывает ток, которого будет достаточно для освещения домика.
Тема «Как получают электричество» мне особенно интересна, потому что, чтобы изготовить макеты, надо паять настоящие схемы.
Цель исследования: изучение возникновения электричества.
Задачи исследования:
Изучить, как появляется электричество за счет преобразования энергии воды, ветра, солнца и газа.
Понять, как устроен генератор, который вырабатывает электричество.
Рассмотреть, как устроена батарейка (переносной источник энергии).
Провести эксперименты: подключить игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. Затем, таким же образом включить вентилятор.
Изготовить самодельную батарейку из соленой воды и металлических пластинок.
Содержание работы:
Первое, что необходимо сделать: проанализировать учебную литературу. Из нее я узнал следующее: Электричество вырабатывается на электростанциях, затем по электрическим проводам, закрепленным на специальных опорах, направляется в город, затем в каждый дом, в каждую квартиру.
Электростанции
Электричество вырабатывается на электростанциях за счет преобразования энергии воды, ветра, солнца и газа в электрическую энергию (рис.1).
Рис.2. Схема работы ТЭЦ
Атомная электростанция (АЭС) сложнее предыдущей электростанции, см. рис.1б. Их меньше у нас в стране. Все дело в том, что в них не сжигают газ, а используют тепло от ядерной реакции (рис. 3). Получение такой ядерной энергии очень сложный процесс. На АЭС внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия. Вода, циркулируя через активную зону, омывая топливные элементы, нагревается до 320 0 С. Проходя внутри теплообменных трубок парогенератора, вода первого контура отдает тепло воде второго контура, не соприкасаясь с ней, что исключает попадание радиоактивных веществ за пределы реакторного зала. В остальном схема точно такая же, как и предыдущая. Вода второго контура превращается в пар. Пар с бешеной скоростью вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город [1, 4].
Рис. 3 Схема работы АЭС
Рис. 4 Схема работы гидроэлектростанции
Ветроэлектростанции используют энергию ветра (рис.1-г). Такие электростанции не очень мощные. Ветер вращает лопасти вентилятора, похожие на лопасти самолета, только очень большие. А они уже вращают генератор (рис.5) [4].
Рис. 5 Схема работы ветроэлектростанции
Есть и другие электростанции, в которых ничего не вращается, и в них нет генератора. Это солнечные электростанции [4]. Энергия солнечного света преобразуется в электрическую в солнечных панелях, изготовленных из специального материала, который под воздействием солнечной энергии начинает вырабатывать электрический ток (рис.6).
Рис. 6 Схема работы солнечной электростанции
Устройство генератора
Так как же устроен генератор, который вырабатывает электричество?
Все мы знаем, что такое магнит, любой с ним сталкивался и играл. Магнит притягивает к себе металлические предметы. Магниты бывают разные: большие и маленькие, сильные и слабые [1].
Если в магнитное поле поместить рамку, сделанную из электрического провода, закрепить ее так, чтобы можно было вращать за ручку, то получится простейший генератор [1, 3]. Если вращать рамку, в ней возникнет электрический ток. И, если ток будет достаточно мощный, то им можно будет зажечь электрическую лампочку (рис.7). В настоящих генераторах используют вместо рамки очень длинный провод, намотанный на специальные катушки и за счет этого, генераторы получаются очень мощные.
Рис.7 Схема устройства генератора
Но что будет, если к генератору подвести электрический ток?
Если к генератору подвести электрический ток, то рамка начнет сама вращаться, то есть произойдет обратный эффект (рис.8). Такие устройства называются электродвигатели [1, 3]. Они так же бываю большими и маленькими, мощными и слабыми.
Рис.8 Схема устройства двигателя
Что делать, если источник энергии нужен переносной, а не связанный с розеткой проводами? Для этого существуют, всем нам знакомые, батарейки.
Батарейки
Рис.9 Устройство батарейки
В процессе использования батарейки, химическая реакция разрушает ее изнутри и батарейка «садится», то есть разряжается. Чем больше мы нагружаем батарейку, тем сильнее химическая реакция и тем быстрее она разрядится [1, 2].
Рис.10 Самодельная батарейка
Но надо учесть, что такая батарейка будет очень слабая и ее не хватит даже для того, чтобы загорелась лампочка. То, что электричество появилось, мы видим только на приборе, который называется вольтметр.
Рис. 11 Самодельная батарейка
Вот такую батарейку я и продемонстрирую в экспериментальной части моей работы. А также проведу другие эксперименты: подключу игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. И докажу следующее: механическая энергия вращения преобразуется в электрическую энергию, в генераторе.
Экспериментальная часть:
В первом эксперименте я подключу игрушечный домик к маленькой электростанции (рис.12). Буду вращать ручку, и маленький генератор будет вырабатывать ток, которого хватит, чтобы в домике заработало освещение.
Материалы для изготовления макета: картон, деревянные фанерки размером 90х170 мм, 70х165 мм, розетка, механизм от фонарика, провода, вилка, лампочки (5 шт.), клей.
Рис. 12 Первый эксперимент
Во втором эксперименте я подключу к электростанции вентилятор (рис.13). Мы увидим, как механическая энергии вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения.
Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель.
Рис.13 Второй эксперимент
В третьем эксперименте я подключу к батарейкам, по-очереди, все тот же домик и вентилятор (рис.14-а,-б).
Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, 90х170 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель, лампочки (5 шт.), батарейки.
Рис.14 Третий эксперимент
В следующем – четвертом эксперименте я продемонстрирую самодельную батарейку (рис.15-а). Берем баночки заполненные соленой водой. В каждую из них опускаем по два электрода, изготовленные из металлических пластинок. Одна пластинка покрыта медью, а вторая цинком.
Материалы для изготовления макета: картон Ø 20 мм, часовой механизм, лампочка (1 шт.), провода, три баночки с соленой водой, деревянная фанерка 75х330 мм для основания, медные и цинковые пластинки длиной 75 мм, клей.
Рис.15 Четвертый эксперимент
Энергии этих трех батареек хватило, чтобы загорелась лампочка и пошли часы (рис.15-б).
Выводы
В проведенных двух экспериментах, я подтвердил и наглядно продемонстрировал следующее: механическая энергия вращения в генераторе, преобразуется в электрическую. А также изготовил самодельную батарейку, энергии которой хватило, чтобы загорелась лампочка и пошли часы.
Но, у меня остались вопросы, на которые мне предстоит найти ответы:
О, сколько нам открытий чудных
Готовит просвещенья дух,
И опыт – сын ошибок трудных,
И гений, парадоксов друг.
1 Ю.И. Дик, В. А. Ильин, Д.А. Исаев и др. /Физика: Большой справочник для школьников и поступающих в вузы / Издательство «Дрофа», 2000 год.
2 «Энциклопедия для детей от А до Я» / Издательство «Махаон», Москва, 2010.
3 А.А. Бахметьев/ Электронный конструктор «Знаток»/ Практические занятия по физике. 8, 9, 10, 11 классы.// Москва, 2005 год.
Где вырабатывается электрическая энергия?
Электричество производят на электростанциях. Существуют различные виды электростанций, но самыми распространенными в мире являются тепловые, атомные и гидроэлектростанции.
На тепловых электростанциях электричество получают, сжигая уголь или нефть. При горении топлива вода в огромных котлах нагревается и превращается в пар. Пар воздействует на гигантское колесо, называемое турбиной, и заставляет его вращаться; турбина в свою очередь приводит в действие машину под названием генератор. Когда генератор вращается, вырабатывается электричество.
На гидростанциях вода падает с плотины, построенной на реке, тогда как электростанция расположена ниже по течению. Сила падения воды приводит в движение турбину, а та заставляет вращаться генератор. Таким образом движение падающей воды превращается в электроэнергию.
На атомных станциях используется руда, содержащая уран. После обработки он вырабатывает атомную энергию, согревающую воду в котле. Образующийся пар заставляет вращаться турбину, которая в свою очередь приводит в действие генератор, вырабатывающий электричество.
Можно ли использовать солнечную энергию для получения электричества?
Солнце является источником всех видов энергии. Конечно, непосредственно от него трудно получить полезную энергию, помимо света и тепла.
Мечтой многих ученых является прямое использование солнечной энергии и превращение ее в электрическую. В течение многих лет они работают над проектом создания солнечной электростанции. Хотя и удалось успешно завершить один из проектов, но этот тип станций очень дорогостоящий и к тому же на них вырабатывается недостаточное количество электричества, поэтому их использование очень ограничено. Эта технология используется на искусственных спутниках и в зонах, куда трудно проложить электрический кабель, а также в виде экспериментов в домах и автомобилях.
Солнечные станции называются фотогальваническими. Эта система состоит из пластин, которые, будучи направлены на Солнце, получают энергию и вырабатывают электрический ток.
Какие меры предосторожности следует принимать, имея дело с электричеством?
Необходимо строго выполнять правила обращения с электрическими приборами: нельзя трогать электроприборы, когда у тебя мокрые руки или ноги, поскольку вода увеличивает проводимость тока. Ни в коем случае нельзя сверлить телефонные столбы и уличные фонари, а также приближаться к зоне, где имеется указатель «Опасность» или «Высокое напряжение».
Подписаться на «Друг для друга»: