Дата сайентист что за профессия

Кто такой Data Scientist: что это за профессия и каким компаниям нужен такой специалист

Сейчас все вокруг говорят о том, как важно собирать данные, анализировать их и использовать для улучшения клиентского сервиса, оптимизации бизнес-процессов и увеличения прибыли. Всем этим занимаются Data Scientist. По статистике LinkedIn, с 2018 года в мире наняли 831 тысячу таких специалистов.

Мы поговорили с Иваном Пастуховым, Data Scientist из Сбербанка, и другими экспертами — расскажем, кто такие специалисты по Data Science, какие у них обязанности, что они должны уметь и как понять, нужен ли вашей компании такой специалист.

Data Scientist — кто это и что делает

Дословно Data Scientist переводится как «ученый данных». Но деятельность у такого специалиста не научная, а практическая: он работает с данными компании, анализирует их, ищет зависимости, делает выводы на их основе и при необходимости строит визуализации. Для этого Data Scientist использует разные математические алгоритмы, специальное программное обеспечение и инструменты разработки.

Данные, с которыми работает Data Scientist, могут быть любыми: звук, текст, фото, видео, таблицы, документы. Если у вас есть любые данные и нужно их проанализировать — это работа для Data Scientist.

В сфере данных работают и другие специалисты, например, Machine Learning Engineer, Data Engineer или Data Analyst. У них более узкая специализация, например, Machine Learning Engineer меньше занимается анализом данных, в основном разрабатывает модели машинного обучения. Data Scientist — более широкий термин, который обозначает человека с разными компетенциями в области анализа данных.

Обычно компании на старте нанимают одного Data Scientist. В будущем, если разноплановых задач, связанных с данными, станет слишком много, можно нанять несколько таких специалистов, то есть создать целый отдел Data Science.

Чем занимается Data Scientist

Часто в бизнесе есть задачи, которые решаются вручную. Например, менеджер делает простенькие расчеты в Excel или руководитель магазина по своему опыту предсказывает спрос на товары. Такие ручные решения занимают много времени и часто необъективны.

Data Scientist автоматизирует принятие таких решений и делает их более точными, основанными на данных. Он разбирается в задаче, смотрит, какие данные нужны для ее решения. Потом разрабатывает программу, которая будет автоматически считать и анализировать данные. Такая программа может либо принимать простые решения самостоятельно, либо давать более точную и полезную информацию менеджерам.

«В компании SEMrush Data Scientist помогает решать маркетинговые задачи: вычислять вероятность клика, определять популярность поискового запроса, распознавать текст на картинке с объявлением. Именно Data Scientist решает, где нужно применять инструменты машинного обучения, а потом помогает разработчикам их создать и внедрить».

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Кирилл Васин
Data Scientist, сервис для маркетологов SEMrush

Часто Data Scientist решает общие задачи, характерные для любого бизнеса: проанализировать поведение покупателей, привлечь и удержать клиента, предугадать спрос, построить систему рекомендаций, запустить эффективную акцию. Но бывают и специфические задачи: банк хочет предсказать вероятность возврата кредита, колл-центр — автоматизировать ответы на часто задаваемые вопросы. С этим тоже помогает Data Scientist. Бывает и так, что Data Scientist не решает конкретную задачу, а анализирует текущую ситуацию и ищет зоны роста для компании.

В разных компаниях Data Scientist занимаются совсем разными вещами. Но в итоге они делают одно дело: помогают сэкономить деньги, увеличить доход или принять правильное решение.

«В Ozon отдел Data Science появился относительно недавно, но мы уже выделили основные направления работы: прогнозирование спроса на товары, персональные рекомендации для пользователей, ранжирование в поиске, разработка чат-ботов для службы поддержки. Кроме того, наш отдел прислушивается к болям и пожеланиям менеджеров: так рождаются новые направления и новые задачи».

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Александр Северинов, Data Scientist, маркетплейс Ozon

Как понять, что вашей компании нужен Data Scientist

Если компания связана с технологиями, например, разработкой искусственного интеллекта или инструментов автоматизации, Data Scientist ей нужен с самого старта.

Если компания напрямую не связана с IT, Data Scientist обычно становится нужен, когда данных и бизнес-процессов много, ими сложно управлять вручную. Обычно такое происходит в крупных компаниях, которые уже перепробовали разные способы увеличить прибыль и пришли к тому, что нужно извлекать новую информацию из собранных данных, автоматизировать отдельные процессы и искать другие подходы к работе с клиентами.

«Если бизнес уже цифровизован, Data Scientist однозначно нужен хотя бы для наведения порядка в IT-системах и поиска инсайтов для извлечения дополнительной прибыли. Если бизнес не цифровизован, Data Scientist тоже пригодится, чтобы что-нибудь спрогнозировать, проанализировать конкурентов или подсказать, как подойти к вопросу цифровизации. Например, представим агрофирму, которая выращивает продукты. Data Scientist может помочь ей спрогнозировать влажность почвы на полях и сформировать график полива».

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Илья Шутов, руководитель направления Data Science компании «Медиа-Тел», кандидат физико-математических наук

Впрочем, иногда Data Scientist может быть полезен и небольшой компании. Он подскажет, как стоит собирать данные, что можно автоматизировать, где искать проблемы и зоны роста.

«Data Scientist может быть полезен маленькой, но амбициозной компании. Он увидит потенциальные возможности, подскажет, какие данные стоит собирать, и подготовит площадку для развития компании в будущем. На старте для этого можно не брать специалиста в штат, а пригласить на консультацию или нанять на аутсорс».

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Александр Северинов, Data Scientist, маркетплейс Ozon

Что нужно Data Scientist для работы

Главное, с чем работает Data Scientist — это данные. Компания должна уже собирать, обрабатывать и хранить данные, построить для этого соответствующую инфраструктуру.

Data Scientist обрабатывает данные, для чего часто требуются большие вычислительные мощности и специальные инструменты.

Еще для работы Data Scientist нуждается в команде помощников. Чаще всего он работает в связке с Data Engineer и командой разработчиков. Первые обеспечивают его данными, вторые превращают разработанные модели в конкретные программы и сервисы, которыми могут пользоваться другие люди.

«Для работы Data Scientist будет полезен менеджер, знакомый со спецификой Data Science и разработки. Он поможет доносить до Data Scientist бизнес-задачи, контролировать разработку и доводить разработку приложений до финала».

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Иван Пастухов, Data Scientist, Сбербанк

В небольших компаниях Data Scientist часто сам себе и Engineer, и разработчик. В более крупных за Data Science может отвечать целый отдел, состоящий из разных специалистов.

«В идеальном мире Data Scientist — пилот “Формулы 1”, вместе с которым работает огромная команда инженеров и механиков. Ему нужен „болид“ — сервер для вычислений, „топливо” — данные, и „техобслуживание“ — помощь Data-инженеров и DevOps-инженеров. На деле такая картина встречается редко, поэтому Data Scientist должен уметь делать всё понемногу.
В Ozon очень мощная команда инженеров инфраструктуры, Data-инженеров и Data Science-специалистов. Я бы даже назвал это модным словом „комьюнити“ — развитое взаимодействие между командами дает возможность прийти с идеей и получить критику, советы и поддержку вместо сухого: „Согласуйте задачу с моим руководителем, потом поговорим.“».

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Александр Северинов, Data Scientist, маркетплейс Ozon

Что нужно знать Data Scientist

Data Science — дисциплина, которая лежит на стыке математики, статистики и компьютерных наук. Поэтому обычно Data Scientist должен:

В вузах пока редко встречается специальность Data Scientist. Те, кто задаются вопросом «Как стать Data Scientist» обычно учатся на курсах, либо поступают в университеты на прикладную математику или специальности, связанные с математическим моделированием. Хотя кое-где, например в ВШЭ, есть магистерские программы, посвященные анализу данных и машинному обучению.

«Так как наша профессия сравнительно новая, у бизнеса часто нет четкого понимания, зачем нужен Data Scientist. Поэтому важно уметь вести диалог. Иногда задача клиента решается проще и дешевле без нас, а иногда мы находим неожиданные инсайты, о которых клиент не догадывался».

Источник

Data Scientist – кто это такой, достоинства и недостатки профессии и сколько можно заработать

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Приветствую вас, уважаемые посетители блога!

Более 85 % данных, которые существуют на сегодняшний день, образовались только за последние 2–3 года. И ежегодно их количество увеличивается почти в 2 раза.

Важно их собирать, анализировать и использовать для решения бизнес-задач. Что и делают интернет-магазины, банки, страховые компании, медицинские учреждения и множества других предприятий. Они нанимают специалистов, которые работают с большими массивами различных данных.

В статье поговорим о профессии Data Scientist: кто это, что он делает, что должен знать, сколько зарабатывает и как им стать.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Data Scientist: кто это и что он делает

В переводе с английского Data Scientist – это специалист по данным. Он работает с Big Data или большими массивами данных.

Data Scientist – это человек, который собирает, обрабатывает, анализирует и изучает данные.

Источники этих сведений зависят от сферы деятельности. Например, в промышленности ими могут быть датчики или измерительные приборы, которые показывают температуру, давление и т. д. В интернет-среде – запросы пользователей, время, проведенное на определенном сайте, количество кликов на иконку с товаром и т. п.

Данные могут быть любыми: как текстовыми документами и таблицами, так и аудио и видеороликами.

От области деятельности зависят и результаты работы Data Scientist. После извлечения нужной информации специалист устанавливает закономерности, подвергает их анализу, делает прогнозы и принимает бизнес-решения.

Человек этой профессии выполняет следующие задачи: оценивает эффективность и работоспособность предприятия, предлагает стратегию и инструменты для улучшения, показывает пути для развития, автоматизирует нудные задачи, помогает сэкономить на расходах и увеличить доход.

Его труд заканчивается созданием модели кода программы, сформировавшейся на основе работы с данными, которая предсказывает самый вероятный результат.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Профессия появилась относительно недавно. Лишь десятилетие назад она была официально зафиксирована. Но уже за такой короткий промежуток времени стала актуальной и очень перспективной.

Каждый год количество информации и данных увеличивается с геометрической прогрессией. В связи с этим информационные массивы уже не получается обрабатывать старыми стандартными средствами статистики. К тому же сведения быстро обновляются и собираются в неоднородном виде, что затрудняет их обработку и анализ.

Вот тут на сцене и появляется Data Scientist. Он является междисциплинарным специалистом, у которого есть знания статистики, системного и бизнес-анализа, математики, экономики и компьютерных систем.

Знать все на уровне профессора не обязательно, а достаточно лишь немного понимать суть этих дисциплин. К тому же в крупных компаниях работают группы таких специалистов, каждый из которых лучше других разбирается в своей области.

Эти знания помогают ему выполнять свои должностные обязанности:

Четких границ требований к Data Scientist нет, поэтому работодатели часто ищут сказочное создание, которое может все и на превосходном уровне. Да, есть люди, которые отлично понимают статистику, математику, аналитику, машинное обучение, экономику, программирование. Но таких специалистов крайне мало.

Еще часто Data Scientist путают с аналитиком. Но их задачи несколько разные. Поясню, что такое аналитика и как она отличается от деятельности Data Scientist, на примере и простыми словами.

В банк пришел клиент, чтобы оформить кредит. Программа начинает обрабатывать данные этого человека, выясняет его кредитную историю и анализирует платежеспособность заемщика. А алгоритм, который решает выдавать кредит или нет, – продукт работы Data Scientist.

Аналитик же, который работает в этом банке, не интересуется отдельными клиентами и не создает технические коды и программы. Вместо этого он собирает и изучает сведения обо всех кредитах, что выдал банк за определенный период, например, квартал. И на основе этой статистики решает, увеличить ли объемы выдачи кредитов или, наоборот, сократить.

Аналитик предлагает действия для решения задачи, а Data Scientist создает инструменты.

Программы для прогноза повышения и понижения курса валют, выгодности покупки и продажи акций, предугадывания спроса потребителей, сервисы распознавания лиц и голоса, даже алгоритмы подбора рекомендаций друзей и музыки в социальных сетях – это продукт работы специалиста по данным.

Требования к специалисту

Специалист по данным неразрывно связан с Data Science – наукой о данных. Она находится на пересечении нескольких направлений: математики, статистики, информатики и экономики. Следовательно, специалисты должны понимать и интересоваться каждой из этих наук.

Кроме этого, Data Scientist должен знать:

Помимо того, что специалист по данным должен обладать аналитическим и математическим складом ума, он также должен быть:

Хочу отметить, что гуманитариям достичь высот в этой профессии будет крайне тяжело. Только при большом желании можно пробовать осваивать данную стезю.

Достоинства и недостатки профессии

Сколько получает Data Scientist

Эта должность высоко оплачивается. Даже для новичков в этой сфере заработная плата может доходить до 70 000 руб. Data Scientist, который работает на своем месте более 3 лет, вполне реально может зарабатывать от 200 000 руб. и больше.

Уровень дохода зависит от навыков, опыта работы, объема задач и функций, выполняемых специалистом. Если же говорить о средних цифрах по России, то они колеблются в районе 50 000–200 000 руб.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

В Москве зарплаты Data Scientist начинаются от 60 000 руб. Можно найти вакансии с заработной платой 500 000 руб.

В Санкт-Петербурге цифры скромнее: от 50 до 300 тыс. руб.

В регионах заработная плата находится на уровне 50 000–200 000 руб., но иногда попадаются предложения с оплатой в 300 000–400 000 руб.

Как им стать

Учеба обязательна для этой профессии. Причем учиться надо много, долго и основательно. Для начала надо освоить азы математики, статистики и информатики, а дальше изучить языки программирования, лучше начать с Python.

На блоге iklife.ru собраны лучшие курсы по Python для начинающих и опытных программистов, которые будут полезны при освоении должности Data Scientist.

Также рекомендую вам прочитать следующие книги:

Куда пойти учиться

Лучшее обучение – это онлайн-обучение. Платформы Skillbox, Нетология, GeekBrains, SkillFactory, ProductStar и Stepik предлагают свои обучающие программы:

Уточню, что на этом учеба не должна заканчиваться. Data Scientist – это такая профессия, которая предполагает непрерывное обучение. Даже если вы уже работаете, периодически повышать свой уровень надо обязательно. К тому же выбор достаточно широк – это и онлайн-курсы, и тренинги, и конференции.

Где найти работу

Сложно сказать, где именно искать работу по этой профессии. Не из-за того, что мало мест, а, наоборот, потому что нет такой сферы бизнеса, где нельзя было бы применить талант этого специалиста. Ему доступна как работа в офисе, так и удаленно на дому.

Он востребован в таких областях деятельности как:

Как я уже говорила, Data Scientist нужен во многих сферах, где необходимы прогнозы, анализ рисков и поведения клиентов. Поэтому список можно дополнить.

Перед откликом на вакансию надо подготовить резюме. В нем сосредоточиться в первую очередь нужно на математических и IT-навыках, опыте работе, успешных проектах и достижениях. Описание должно получиться кратким, лаконичным и простым. Специалисту надо прикрепить портфолио к резюме.

Учтите, что вакансии на эту должность не всегда называются именно “Data Scientist”. Работодатели могут написать, что требуется IT-аналитик, специалист по анализу систем, аналитик Big Data.

Заключение

Сейчас вы уже знаете о должности Data Scientist: что это за профессия, какие обязанности у специалиста, плюсы и минусы деятельности, где можно выучиться и найти работу.

Это сложная профессия и подойдет она далеко не всем. Но те, кто все же заинтересуется, должны знать, как отзываются об этой работе действующие специалисты:

Источник

Знакомимся с Data Science: от новичка до специалиста

Несколько лет назад Harvard Business Review назвал Data Scientist наиболее сексуальной профессией века. С тех пор её «сексуальность» только росла, а потребность в специалистах увеличивается по экспоненте. В 2016 году Data Scientist вошла в топ-25 лучших вакансий на территории Соединённых Штатов по версии Glassdoor. На Россию тенденция тоже распространяется, хоть и не в таких больших масштабах. Однако, потребность в квалифицированных кадрах всё же растёт.

реклама

Что такое Data Science – кто такой Data Scientist

Чтобы понять, кто такой Data Scientist, нужно сначала дать определение самой профессии. Называется она Data Science. В последнее время термин стал очень популярным, и вы часто можете встречать его, бороздя просторы всемирной паутины.

реклама

Так вот, Data Science – работа с большими данными. Отметим, что термин «большие данные» уже прочно укоренился, хотя изначально использовался английский вариант – Big Data. Большие данные представляют собой огромные объёмы неструктурированной информации, для обработки которой требуется математическая статистика и машинное обучение.

Специалист, который занимается этим, называется Data Scientist. Его задачей является анализ больших данных, на основе которых можно сделать прогноз в зависимости от поставленной задачи. В конченом счёте финальным продуктом Data Scientist’a является создание прогнозной модели – алгоритма для оперативного поиска наиболее подходящего решения поставленной задачи.

Вы могли не знать, но с результатами работы специалистов в сфере Data Science вы встречаетесь по несколько раз в день. Например, когда слушаете музыку в YouTube Music, Spotify или Deezer. В этих стриминговых сервисах алгоритмы, написанные дата сайентистами, подбирают композиции, наиболее соответствующие вашим вкусовым предпочтениям. Так же само рекомендуются видеоролики в соответствующих сервисах и списки пользователей, с которыми вы можете быть знакомы, в социальных сетях.

Где работает Data Scientist

реклама

Если вы не хотите применять свои умения только для того, чтобы помогать людям быстрее находить одноклассников и учить программное обеспечение рекомендовать к прослушиванию Eisbrecher после Rammstein – не переживайте. Есть ещё немало областей, в которых можно применить свои таланты.

Например, в транспортной компании Data Scientist позволяет найти оптимальный маршрут передвижения, а на производстве созданные модели могут помочь спрогнозировать сбои в работе. Страховым компаниям дата сайентисты помогают рассчитать вероятность страхового случая, а в сельском хозяйстве делают прогноз по урожаю и ищут способы наиболее эффективного использования с/х угодий. Кроме того, на базе алгоритмов в медицине оборудование может автоматически ставить диагнозы пациентам.

реклама

Несмотря на то, что специалистов в Data Science становится всё больше, количество высококвалифицированных кадров всё ещё не соответствует спросу на них. Это приводит к росту оплаты труда. Заработная плата зависит от опыта работы. Например, специалисты, которые уже имели дело с большими массивами данными, а в их арсенале есть глубокие знания и навыки построения математических моделей, могут получать в Москве свыше 100 000 рублей ежемесячно. Для дата сайентистов без опыта зарплата стартует примерно 70 000 рублей в столице Российской Федерации.

Само собой, российские зарплаты ни в какое сравнение не идут с американскими. Например, хороший специалист с опытом в Соединённых Штата может получать свыше 130 000 долларов в год, т.е. порядка 11 000 долларов в месяц.

Пройти курс обучения Data Science с нуля

На сегодняшний день при наличии большого желания расти в области анализа больших данных не составляет никакого труда пройти курсы по Data Science. В России есть масса возможностей на любой кошелёк и вкус. Например, программа GeekBrains, разработанная совместно с NVIDIA и «МегаФон», обучает Data Science с нуля.

Для прохождения курса студентам будет достаточно школьных знаний, а онлайн-университет обеспечит всеми необходимыми ресурсами и инструментарием. В рамках программы обучающиеся будут ознакомлены с нейронными сетями и технологиями машинного обучения.

Программа в GeekBrains подойдёт как начинающим аналитикам, предоставив толчок для карьерного роста, так и для практикующих специалистов, желающих перейти в более востребованное направление. Курс состоит из 262 часов обучающего контента, 534 часов практики, 2-4 еженедельных семинаров и гарантирует трудоустройство.

Обучение разделено на четверти. С октября по декабрь студенты занимаются изучением основ языка Python, осваивают операционную систему Linux, создают сервера в облачных сервисах AWS. Также в список целей входит обучение SQL.

Во второй четверти студенты продолжают изучать библиотеки Python для Data Science, а также начинают решать задачи по комбинаторике, изучают методы проверки статистических гипотез и знакомятся с особенностями открытых данных. В третьей четверти придётся уделить внимание математике. В течение трёх месяцев нужно детально изучить математические аспекты алгоритмов, которым находится применения в Data Science.

Последний этап первого года уделён машинному обучению, а его программа разработана совместно с «МегаФон». Студентам даётся три месяца, в течение которых нужно научиться решать бизнес задачи, применяя машинное обучение. Также в рамках четвёртой четверти обучения удастся изучить реализацию рекомендательных систем.

Второй год обучения начинается с изучения нейронных сетей. Студенты решают задачи ML с данными из социальных сетей и др., а также на практике знакомятся с Tensorflow, Keras и PyTorch. Наконец, во второй четверти второго года изучаются продвинутые архитектуры нейронных сетей, компьютерное зрение и нейролингвистическое программирование.

Заключение

В целом, Data Scientist – профессия, которая требует как теоретических знаний, так и практических навыков. Причём вряд ли вам удастся обойтись опытом лишь одной профессии. Чтобы освоить Data Scientist, придётся приложить немало усилий и времени, но в конечном счёте это должно будет окупиться сполна.

Первые полтора года опыта в профессии вы можете получить на курсе «Data Science с нуля». После прохождения которого вы также получите полную поддержку при трудоустройстве, начиная от помощи в составлении резюме до подготовки к собеседованию.

Источник

Что такое Data Science и кто такой Data Scientist

Что делает Data Scientist, сколько получает и как им стать, даже если вы не программист. Объясняем и делимся полезными ссылками.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Что такое Data Science?

Data Science — это работа с большими данными (англ. Big Data). Большие данные — это огромные объёмы неструктурированной информации: например, метеоданные за какой-то период, статистика запросов в поисковых системах, результаты спортивных состязаний, базы данных геномов микроорганизмов и многое другое. Ключевые слова здесь — «огромный объём» и «неструктурированность». Чтобы работать с такими данными, используют математическую статистику и методы машинного обучения.

Специалист, который делает такую работу, называется дата-сайентист (или Data Scientist). Он анализирует большие данные (Big Data), чтобы делать прогнозы. Какие именно прогнозы — зависит от того, какую задачу нужно решить. Итог работы дата-сайентиста — прогнозная модель. Если упростить, то это программный алгоритм, который находит оптимальное решение поставленной задачи.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Пишу научпоп, люблю делать сложное понятным. Рисую фантастику. Увлекаюсь спелеологией. Люблю StarCraft, шахматы, «Монополию».

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Эти прогнозы и правда полезны?

Да. Очень многие сервисы, к которым мы уже привыкли, создали дата-сайентисты. И вы сталкиваетесь с результатами их работы каждый день. Например, это прогнозы погоды, чат-боты, голосовые помощники… А ещё — алгоритмы, рекомендующие музыку и видео под вкус конкретного пользователя. Список возможных друзей в социальных сетях — тоже результат Data Science. В основе поисковых систем и программ для распознавания лиц тоже лежат алгоритмы, написанные дата-сайентистами.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

То есть Data Science — то же самое, что и обычная бизнес-аналитика?

Нет, это не одно и то же. Основная разница заключается в результате. Data Scientist ищет в массивах данных связи и закономерности, которые позволят ему создать модель, предсказывающую результат, — то есть можно сказать, что Data Scientist работает на будущее. Он использует программные алгоритмы и математическую статистику и решает поставленную задачу в первую очередь как техническую.

Бизнес-аналитик сосредоточен не столько на технической, программной стороне задачи, сколько на коммерческих показателях компании. Он работает со статистикой и может оценить, например, насколько эффективна была рекламная кампания, сколько было продаж в предыдущем месяце и так далее. Вся эта информация может использоваться для улучшения бизнес-показателей компании. Если данных много и нужен какой-то прогноз или оценка, то для решения технической стороны этой задачи бизнес-аналитик может привлечь дата-сайентистов.

Поясним на примере. Допустим, программа анализирует финансовые операции клиента и рекомендует выдать ему кредит или отказать. То есть задача программы — оценить платёжеспособность клиента. Создание такого програмного алгоритма — работа дата-сайентиста.

А бизнес-аналитик не занимается такими техническими задачами. Его не интересует работа с конкретным клиентом, но он может проанализировать всю статистику банка по кредитам, например, за последние три месяца — и рекомендовать банку сократить или увеличить объёмы кредитования. Это бизнес-задача: предлагаются действия, которые увеличат доходность банка либо снизят финансовые риски.

Работа бизнес-аналитика и дата-сайентиста нередко пересекается, просто каждый занимается своей частью задачи.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

А где обычно работает Data Scientist?

Вот несколько вариантов:

И это далеко не полный список. Везде, где нужны прогнозы, совершаются сделки или оцениваются риски, пригодится Data Scientist. Вот несколько примеров рабочих моделей. Некоторые неожиданные: например, Corrupt Social Interactions — модель, выявляющая коррупцию в Департаменте строительства (Department of Building) США. Или сервис А Roommate Recommendation — он помогает подобрать соседа по комнате в кампусе или хостеле.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Понятно. А работу найти легко? Это точно востребовано?

Легко ли найти работу — зависит и от кандидата тоже. Но сама профессия весьма востребована. В 2016 году американская компания Glassdoor опубликовала рейтинг 25 лучших вакансий в США и профессия Data Scientist возглавила этот список. С тех пор востребованность стала даже выше.

Алгоритмы машинного обучения сейчас стремительно развиваются, прогнозы на их основе становятся точнее, а сфер их применения всё больше. Это значит, что у профессии Data Scientist большое будущее.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Но это за рубежом. А что в России?

У нас спрос на этих специалистов тоже постоянно растёт. Например, в 2018 году вакансий с названием Data Scientist было в 7 раз больше по сравнению с 2015 годом, а в 2019 году рост продолжился.

На середину апреля 2020 года на hh.ru — 323 вакансии с заголовком Data Scientist, из них 204 вакансии — в Москве, 39 — в Санкт-Петербурге и остальные — в других городах.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

А сколько они зарабатывают?

Как и везде, это зависит от опыта работы и навыков дата-сайентиста, особенностей компании и сложности конкретного проекта. Но общий расклад примерно такой (данные приведены по состоянию на февраль 2020 года):

Высококвалифицированные специалисты по Data Science могут получать в месяц 250 тысяч рублей и более.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Вы сказали, что Data Scientist создаёт программный алгоритм. А что конкретно он делает?

В разных компаниях деятельность дата-сайентиста будет различаться. Однако основные этапы похожи:

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Что нужно знать и уметь, чтобы работать в Data Science?

Если в общих чертах, то нужно знать математику, математическую статистику, программирование, принципы машинного обучения и ту отрасль, где всё это будет использоваться.

И умение работать в команде тоже никто не отменял: дата-сайентисту приходится общаться с разными специалистами.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Если у меня нет технического образования, то о работе в Data Science лучше не мечтать?

Будем откровенны — гуманитариям осваивать эту профессию может быть непросто: для работы в Data Science нужно хорошее знание математики и программирования. А у гуманитария этих знаний чаще всего нет. И наоборот: чем увереннее вы чувствуете себя в этом уже на старте, тем проще будет учиться.

Однако не стоит опускать руки: очень многое зависит от мотивации, от того, насколько вы готовы восполнять пробелы в своем образовании. Сейчас люди приходят в Data Science с разным бэкграундом и в разном возрасте. Вот пример одной такой истории — возможно, она вас поддержит.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

А с чего лучше начать?

Начать лучше с математики. Очень сложная математика не понадобится, но вы должны свободно ориентироваться в таких понятиях, как производная, дифференциал, определитель матрицы, и в том, что с ними связано. Освоить это вам помогут книги и лекционные курсы. Например, книга «Математический анализ» Липмана Берса, написанная довольно простым языком.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

А что дальше? Там было что-то о статистике?

Да, потому что математическая статистика используется в любой аналитике. И Data Science не исключение. Вот несколько бесплатных курсов, которые помогут вам изучить статистику.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Кажется, с математической частью закончили. Что по программированию?

Следующим шагом будет изучение Python. Сейчас этот язык программирования, пожалуй, основной инструмент в Data Science. Среди его достоинств — относительная простота и гибкость. Освоить Python вполне по силам новичку, который до того не программировал. Неслучайно этот язык нередко рекомендуют для начинающих.

По Python есть много курсов, как платных, так и бесплатных. Вот один из бесплатных курсов. И ещё один: «Питонтьютор».

У Skillbox тоже есть курс, он называется «Профессия Python-разработчик». Курс платный, длится год, и за это время студенты фактически осваивают с нуля новую профессию (как теорию, так и практику) и собирают личное портфолио — с помощью наставника. Поэтому по окончании курса им уже есть что показать потенциальному работодателю.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Что учить после Python?

Теперь можно изучать алгоритмы машинного обучения. Когда освоитесь с ними, уже сможете работать в Data Science.

Вот несколько бесплатных онлайн курсов по машинному обучению (много курсов на английском, но кое-что есть и на русском).

Мало знать методы машинного обучения, нужно уметь применять их для решения практических задач. Научиться этому можно на платформе Kaggle, где собрано огромное количество реальных задач.

Если вы хорошо знаете английский, он поможет вам быстрее развиваться в Data Science. Если нет — самое время его выучить.

Дата сайентист что за профессия. Смотреть фото Дата сайентист что за профессия. Смотреть картинку Дата сайентист что за профессия. Картинка про Дата сайентист что за профессия. Фото Дата сайентист что за профессия

Очень много всего. Может быть, есть курсы, где можно освоить сразу всё?

Да, есть и такие. Например, наш курс по Data Science. Он так и называется — «Профессия Data Scientist». На наш курс приходят как люди с опытом в программировании, так и совсем новички, программа курса это учитывает. Обучение длится около года, в нём уже есть все блоки, которые мы описали выше.

Учиться можно онлайн, из любого города. Наши преподаватели — практики с опытом работы 10–15 лет. У вас будет возможность не только освоить теорию, но и практиковаться на реальных задачах, получая рекомендации от наставника. Очень важный бонус — помощь при трудоустройстве.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *