Датчик ускорения для чего нужен
Акселерометр — что это и для чего? Узнайте все о том, как работает акселерометр
Вы когда-нибудь задумывались, как случается, что умные часы начинают светиться, когда вы поднимаете руку, или ваш смартфон автоматически настраивает изображение, когда вы поворачиваете его из вертикального положения в горизонтальное? За все это отвечает акселерометр. Что это такое и как работает? Объясняем!
Для чего нужен акселерометр?
Развитие технологий означает, что от электроники ожидается все больше и больше. Телефон больше не предназначен только для звонков, часы — для отсчета времени, а камера — для фотосъемки. Повседневные устройства оснащены новейшими решениями, гарантирующими многофункциональность этих устройств. Кроме того, производители по-прежнему ищут новые технологии, которые выделят их продукт.
В последних моделях вы найдете, например, датчик интенсивности света, датчик движения, датчик приближения, GPS и акселерометр. Для чего нужен акселерометр? Его задача — измерение линейного и углового ускорения. Где среднестатистический человек встретит акселерометр? В телефоне, в часах, браслете. Как он работает?
Что такое акселерометр?
Акселерометр — это датчик, который измеряет линейное и угловое ускорение, то есть измеряет собственное движение. Он может указывать позицию по 1, 2 или 3 осям (X / Y / Z). В настоящее время наиболее популярны 3-х осевые датчики. Они состоят из 3 акселерометров, каждый из которых измеряет одну ось.
Как работает акселерометр? При отклонении или вибрации энергия вибрации преобразуется в электрический сигнал, который прямо пропорционален ускорению устройства. Сигнал отправляется в соответствующие компоненты для принятия соответствующих мер.
Акселерометр и гироскоп
Многие путают акселерометр с гироскопом. Это связано с тем, что для определения позиции необходимы оба компонента, но каждый из них делает это по-своему. Акселерометр измеряет собственное движение, а гироскоп дает точное положение объекта в пространстве.
Эти два компонента могут работать вместе и дополнять друг друга, но они не являются взаимозаменяемыми. По этой причине вы найдете оба этих решения в высокотехнологичной электронике. Поэтому, если вы заботитесь о точности ваших измерений, выберите модель с акселерометром и гироскопом.
Акселерометр — конструкция и типы преобразователей
Существует 3 основных типа преобразователей: емкостные MEMS, пьезоэлектрические и пьезорезистивные. Эти типы конструктивно различаются, но действуют аналогично.
MEMS
Наиболее распространены акселерометры MEMS. Эта технология недорогая и позволяет создавать микропреобразователи. Они состоят из гребенчатого конденсатора, грузила и соединяющих их пружин. Когда к датчику прикладывается сила, груз перемещается по пружинам, вызывая изменение емкости. Значение изменения преобразуется в электрический сигнал.
Пьезоэлектрический
Более дорогими, но не менее популярными являются акселерометры, использующие пьезоэлектрический эффект. Внутри преобразователя находятся микроскопические кристаллические структуры, которые под действием ускоряющего напряжения, в свою очередь, генерируют напряжение. Датчик их считывает и на основании этого определяет ориентацию и скорость движения.
Пьезорезистивный
Пьезорезистивный акселерометр работает как тензодатчик, то есть датчик, измеряющий напряжение. В центре акселерометра находится пьезорезистивный материал. Он деформируется под действием внешней силы, вызывая изменение сопротивления. Затем это изменение преобразуется в электрический сигнал.
Узнайте, как работает акселерометр в разном оборудовании
Принцип работы одинаков во всех устройствах, в которых реализован акселерометр. Датчик измеряет наклон и кручение, отправляет сигнал процессору, который выполняет соответствующее действие. В настоящее время датчик ускорения установлен во всех гаджетах, где имеют значение колебания положения — от умных часов до дронов, ноутбуков и подушек безопасности.
Как работает акселерометр в умных часах?
Умные часы были разработаны для измерения физической активности. Без датчиков, которые реагируют на движение или положение, умные часы были бы невозможны. Вот почему практически в каждых умных часах есть акселерометр.
Что это значит для владельца часов? Акселерометр в этом оборудовании чувствителен к движению запястья. Он используется в различных приложениях для измерения расстояния. Самый распространенный — шагомер. Акселерометр интерпретирует каждое движение руки как шаг. Затем это подсчитывается программой. Вы просматриваете результат на экране своих часов.
Датчик оказывается необходим еще и для измерения пройденных километров. После ввода личных данных, таких как возраст, рост и вес, приложение вычисляет стандартную длину шага. Датчик сообщает ей о ее движениях, чтобы она могла переводить шаги в метры. Аналогичным образом рассчитываются сожженные калории. Вы можете быть удивлены, но акселерометр также используется для отслеживания сна. Принцип работы такой же, как и у предыдущих вариантов. Программа определяет активность пользователя по движениям рук и на этой основе приблизительно оценивает продолжительность сна.
Другие функции, для которых потребуется акселерометр — это управление приложениями с помощью движений запястья и подсветка циферблата при поднятии руки на заданную высоту.
Умные часы Huawei WATCH GT 2 Black B19S
Если вас интересуют умные часы с акселерометром, обратите внимание на Huawei WATCH GT 2 Black B19S. Эта модель также оснащена барометром, гироскопом, высотомером, световым фактором, GPS и секундомером. Часы записывают вашу частоту сердечных сокращений в реальном времени и измеряют сатурацию крови кислородом (SpO2).
Кроме того, они поддерживают 15 видов спорта, в том числе: бег, езду на велосипеде, плавание, триатлон, скалолазание, велотренажер и фитнес. Huawei WATCH GT 2 отличается минималистичным дизайном. Вы можете легко адаптировать внешний вид часов к своему стилю, заменив циферблат и ремешки.
Акселерометр в телефоне — что это?
Современный смартфон — это еще одно устройство с акселерометром. Принцип работы такой же, как и в умных часах. Основная функция обсуждаемого сенсора — автоматический поворот изображения. Когда вы переворачиваете телефон из портретной ориентации в альбомную или наоборот, датчик определяет движение, и изображение адаптируется к положению оборудования. Эта опция чаще всего активируется сразу после первой настройки телефона, но вы всегда можете отключить ее в настройках.
Отключение звука — это еще один момент, когда на вашем телефоне потребуется акселерометр. Что это за функционал? Если вы получаете входящий звонок, но не хотите на него отвечать, просто переверните камеру вверх дном, и сигнал будет отключен. Разработчики игр также используют акселерометр. В гоночных играх вы сможете управлять автомобилем, наклоняя смартфон. Если у вашей камеры есть приложения для измерения расстояния или шага, они также работают таким же образом.
Samsung G991B Galaxy S21 5G
Ищете телефон с акселерометром? Если вы фанат новейших гаджетов, рекомендуем модель Samsung G991B Galaxy S21 5G. Помимо акселерометра, в устройство встроены классические датчики: барометр, датчик Холла, магнитометр, свет, зум и гироскоп.
Galaxy S21 — это в первую очередь мультимедийное оборудование. Наличие 4-х разных объективов и возможность записи в разрешении 8K означает, что вам не придется брать в отпуск профессиональную тяжелую камеру.
Вы любите играть или смотреть фильмы? Дисплей Dynamic AMOLED 2X с адаптивным обновлением 120 Гц гарантирует изображение без полос с чистыми цветами и глубокими оттенками черного.
Hammer Explorer Pro 6 / 128GB LTE
Смартфон оснащен 8-ядерным процессором и дисплеем с диагональю 5,7 дюйма =. Такие параметры означают, что вы можете свободно работать в Интернете, смотреть фильмы или участвовать в виртуальных играх. Помимо акселерометра, в телефоне есть датчики качества воздуха, датчики силы тяжести и т. д. датчики приближения, датчики света и сканер отпечатков пальцев, магнитометр и гироскоп.
Samsung M515F Galaxy M51
Если вас интересует универсальное оборудование, обратите внимание на смартфон Samsung M515F Galaxy M51. Благодаря ёмкому аккумулятору на 7000 мАч вы сможете пользоваться телефоном без подзарядки весь день. Если у вас закончится заряд, функция сверхбыстрой зарядки мощностью 25 Вт позволит зарядить аккумулятор всего за 97 минут!
Вы также можете делать хорошие фотографии на свой смартфон. На этом смартфоне установлены 4 камеры и цифровой зум до 8x. Благодаря 8-ядерному процессору Snapdragon 730 и 6 ГБ оперативной памяти вы можете использовать несколько приложений одновременно без перебоев. Конечно, эта модель также предлагает стандартные функции, такие как акселерометр, гироскоп, датчики окружающего света и приближения, компас и датчик отпечатков пальцев.
Акселерометр камеры
На данный момент о хорошей камере без встроенной стабилизации изображения не может быть и речи. Оборудование становится все меньше и меньше, а использование штатива или стабилизатора не всегда возможно. Поэтому производители стараются внедрять технологии, позволяющие снимать неподвижно.
Одно из решений — акселерометр. Как он работает в камере? Как только датчик обнаруживает вибрацию, он посылает сигнал на миниатюрные моторы, которые немедленно стабилизируют изображение. Благодаря этому даже фотографии, сделанные на бегу, будут четкими. Более того, если вы записываете фильм, вибрация вашей руки не повлияет на качество записанного видео.
Дроны и акселерометр
Дроны — это оборудование, которое приобретает все большую популярность. Они отлично подходят для наблюдения за улицами, съемки с воздуха и съемки со значительной высоты. Устройства маленькие и очень легкие, поэтому им нужна хорошая система, стабилизирующая их в воздухе. Без нее вы не сможете получить резкие фотографии.
Одним из необходимых элементов оказывается акселерометр. Его задача — точно измерить линейное и угловое ускорение. Показания, предоставляемые на регулярной основе, позволяют дрону стабильно летать или даже зависать на месте в очень ветреные дни.
Как работает акселерометр в ноутбуке?
Вы знаете, что такое акселерометр и как он работает в фототоварах и смартфонах. Какая его польза для ноутбука? Конвертер ускорения используется для защиты жесткого диска. Жесткий диск ноутбука является очень чувствительным элементом к ударам и вибрации. Чтобы не повредить его, в нем установлен акселерометр. Основная задача датчика — посылать сигналы об отклонениях в положении ноутбука прямо на процессор.
Например, если ноутбук упадет, система управления дисками немедленно получит уведомление о прекращении работы. Таким образом снижается риск потери данных.
Где еще применим акселерометр?
Акселерометр будет работать везде, где это необходимо для поддержания устойчивости. Рассматриваемые датчики обычно используются, например, в робототехнике. Все самодвижущиеся машины должны быть оснащены акселерометром, который точно измеряет ускорение по всем 3 осям. Датчик, установленный в электрическом скейтборде, также играет роль.
Акселерометр — полезная функция в умных часах или телефоне
Покупая смартфон или умные часы, вы обязательно проверяете, что выбранная модель имеет хорошую камеру и устойчива к влаге. Однако вряд ли кто-то смотрит на загадочные названия, например, гироскоп или акселерометр. Конструкция второй составляющей — дело, которое вы уже хорошо знаете, но, к сожалению, не всем интересно, что означает наличие акселерометра в том или ином гаджете. И все же без встроенного в устройство акселерометра даже приложение, загруженное из Интернета, не будет считать шаги или сожженные калории.
Аналогично обстоит дело и с камерами, где акселерометр встраивается в систему стабилизации изображения. Без него невозможно делать идеально четкие фотографии. Однако помните, что не во всех приборах есть этот элемент. С другой стороны, акселерометр теперь становится стандартом в последних моделях.
МЭМСы. Как устроены современные датчики?
Микроэлектромеханические системы (МЭМС) — устройства, объединяющие в себе микроэлектронные и микромеханические компоненты. Сейчас довольно трудно встретить системы в которых не используются датчики, выполненные по данной технологии. Но как устроены современные датчики и какие преобразователи используются для работы с ними? Постараемся детально разобраться в этом вопросе, основываясь на работе современных МЭМС-акселерометров.
Простейший акселерометр, как он работает?
Акселерометр — прибор, измеряющий проекцию кажущегося ускорения (разности между истинным ускорением объекта и гравитационным ускорением). Принцип работы можно объяснить с помощью простой модели.
Модель устройства механического акселерометра (оригинал)
При увеличении ускорения, масса будет растягивать пружину. По закону Гука из школьной программы физики можно с легкостью найти ускорение системы:
Используя три перпендикулярно расположенных датчика, можно узнать ускорение предмета по 3-м осям, и зная начальные условия определить положение тела в пространстве.
Эта незамысловатая модель представляет собой основу работы большинства акселерометров, которые можно поделить на 3 основные подгруппы:
Пьезоэлектрический акселерометр
Основывается данный тип датчиков на пьезорезистивном эффекте, который был открыт в 1954 году Смитом в таких полупроводниках как германий и кремний. В отличие от пьезоэлектрического эффекта, пьезорезистивный эффект вызывает изменение только электрического сопротивления, но не электрического потенциала.
При увеличении ускорения, инертная масса увеличивает/уменьшает давление на пьезоэлемент. Благодаря пьезоэффекту происходит генерация сигнала, который зависит от внешнего ускорения.
Устройство пьезоэлектрического акселерометра (оригинал)
Датчики такого типа требуют дополнительного усилителя, который увеличивает амплитуду сигнала, и создает низкоимпедансный выход для работы с внешними устройствами. Для калибровки нулевого значения ускорения используется Preload Bolt, масса которого рассчитана так, чтобы соответствовать нулевой точки ускорения в системе.
Датчики такого типа до сих пор сильно распространены, и в основном применяются в системах, требующих высокую надежность — automotive. Для коммерческой электроники зачастую используют электронные акселерометры, которые имеют меньший размер и цену.
Электронные акселерометры
Принцип работы электронных датчиков основан на изменении емкости конденсаторов при изменении ускорения. Простейшая модель работы представлена на картинке.
Устройство 2-х осевого электро-механического акселерометра
При изменении ускорения, масса изменяет расстояние между обкладками конденсатора. Из простейшей формулы емкости конденасатора следует, что при изменении d расстояния между обкладками емкость конденсатора будет также изменяться. Широкое применение данный метод получил, благодаря развитию МЭМС (MEMS)– микроэлектромеханических систем.
МЭМС технологии позволяют создавать конденсаторы с подвижными обкладками на кремниевой подложке, что существенно уменьшает размер устройства, и что не маловажно – его стоимость.
Устройство 2-х осевого электро-механического акселерометра (оригинал из книги «Introductory MEMS». Дальнейшие иллюстрации тоже взяты из этой книги)
У читателя наверняка возник вопрос: “как именно детектировать изменение емкости конденсатора?” Постараюсь дать на этот вопрос исчерпывающий ответ.
Устройство МЭМС акселерометра. Как превратить изменение емкости в сигнал?
Емкостной полумост
Итак прежде, чем описывать работу самого датчика, обратимся к довольно популярной схеме в схемотехнике – емкостному полумосту (Capacitive half-bridge).
Емкостной полумост — основа МЭМС-датчиков
Напряжения и
являются входными, а
– выходной сигнал для последующего преобразования. Емкости обоих конденсаторов зависят от внешнего ускорения, и изменяются на величину x(t). При x = 0, заряды на емкостях являются идентичными, и при этом
. При условии, что x Вывод формулы для изменения емкости
Запишем через формулу емкости:
Упростив данные формулы, получаем следующее:
Учитывая условие, что x Вывод формулы зависимости выходного тока от изменения емкости
Учитывая тот факт, что ток является производной заряда dq/dt, а заряд q=CU, преобразуем данное уравнение в следующий вид:
Пусть потенциалы , тогда исходя из формулы (1.1):
Результат получился довольно странный: выходной ток никак не зависит от изменения емкости. Для того, чтобы детектировать изменение емкости, необходимо задавать на обкладках напряжения разной полярности, то есть: , а
. Тогда переделаем уравнение с учетом данной модификации.
Учитывая уравнение 1.2 для изменения емкости, получаем:
, где – частота переменного сигнала (определяется на этапе разработки, в зависимости от полосы пропускания системы и нормальной работы механических емкостей).
Итак, мы получили уравнение (1.4), которое показывает, как изменение емкости конденсатора влияет на выходной сигнал системы. Однако такой сигнал будет довольно малый по амплитуде, к тому же если подключим к нему нагрузку для общения с внешним миром — вся система рухнет. Тут нужен усилитель…
Просто добавь усилитель
Добавим в нашу систему усилитель (будем считать, что коэффициент усиления — — сл-но работает принцип виртуальной земли).
Емкостной полумост + интегратор
Итак теперь найдем зависимость выходного напряжения усилителя от изменения емкости.
Ток через конденсатор можно записать через изменение заряда dq/dt, поэтому исходя из полученного уравнения (1.4) получаем:
Данное уравнение показывает, что выходной сигнал зависит не только от положения обкладки x, но и от ее скорости движения (что не желательно). Для того чтобы компонента, вносимая скоростью, была незначительной, необходимо использовать высокочастотный входной сигнал (обычно такую частоту выбирают в районе 1 ГГц). Запишем компоненты уравнения как гармонические сигналы:
Выбираем частоту достаточно высокую, чтобы :
Учитывая, что сигналы и
имеют одинаковую частоту переходим к отношению их амплитуд:
В итоге мы получили зависимость выходного сигнала усилителя от изменения положения обкладки конденсатора. Внимательный читатель должен сразу обратить внимание – это же амплитудная модуляция! Действительно, в данной системе мы имеем сигнал x(t), который перемножается с сигналом и усиливается на величину
. Следующий шаг – убрать несущую частоту
, и мы получим усиленный сигнал x(t) – который пропорционален ускорению. Долгий путь вычислений привел нас к пониманию архитектуры МЭМС-акселерометра.
Архитектура МЭМС акселерометра
Рассмотрим сначала функциональную схему датчика:
Функциональная схема МЭМС-акселерометра
Изначально у нас есть сигнал x(t) – который отражает изменение ускорения. Далее мы перемножаем его с несущим сигналом и усиливаем с помощью операционного усилителя (в режиме интегратора). Далее происходит демодуляция – простейшая схема – диод и RC фильтр (в реальности используют усложненную схему, синхронизируя процесс модуляции и демодуляции одной несущей частотой
). После чего остатки шума фильтруются с помощью фильтра низких частот.
В качестве примера приведу один из первых МЭМС акселерометров компании Analog Devices – ADXL50:
Структурная схема ADXL50
Наверное, приведя структурную схему датчика в начале статьи многим читателям не было бы понятно назначения некоторых блоков. Теперь завеса приоткрыта, и можем обсудить каждый из них:
Какой преобразователь выбрать для работы с датчиками?
Выбор преобразователя для работы с датчиками зависит от точности, которую вы хотите получить. Для работы с датчиками подойдут АЦП с архитектурой SAR или Delta-Sigma с высокой разрядностью. Однако современные датчики обладают встроенными преобразователями. Лидерами этого направления являются STMicroelectronics, Analog Devices и NXP. В качестве примера, можно привести новую микросхему с 3-х осевым акселерометром и встроенным АЦП – ADXL362.
Структурная схема ADXL362
Для работы с АЦП в схему добавлены антиэлайзинговые фильтры, чтобы исключить попадания в спектр дополнительных гармоник.
Где достать такие технологии?
Сейчас для fabless компаний доступно множество фабрик, которые предлагают технологии МЭМС. Однако для создания современных микросхем требуется интегрировать емкости с подвижными пластинами в стандартный маршрут проектирования, ведь помимо такой емкости необходимо спроектировать дополнительные блоки (генератор, демодулятор, ОУ и тд) на одном чипе. В качестве примера можно привести фабрики TSMC и XFab, которые предлагают технологию для реализации МЭМС датчика вместе со всей обвязкой. На картинке представлены емкости, которые позволяют создать трехосевой акселерометр:
Трехосевой емкостной полумост от TSMC
В России также существует фабрика по выпуску МЭМС датчиков – “Совтест”, однако предприятие не обладает технологией интегрирования дополнительных схемотехнических блоков, которые необходимы для создания конечного устройства и единственный выход — применять технологию микросборки.
Какие наработки есть у нашей компании в этом направлении?
У нас есть несколько преобразователей, которые предназначены для работы с датчиками. Из новых продуктов это:
Преобразователь напряжение-частота
Для преобразования данных с датчика обычно используются SAR или delta-sigma АЦП, однако существует еще один тип преобразователей — интегрирующие ПНЧ, которые имеют существенные преимущества:
ПНЧ под микроскопом
Каждый из трех основных каналов преобразует входное напряжение в диапазоне ± 4В в частоту до 1250кГц на 3-х выходах, соответствующих положительному и отрицательному входным напряжениям. Также микросхема имеет в каждом канале 16 битный реверсивный счетчик, для подсчета частотных импульсов. SPI интерфейс служит для управления режимами преобразования и выборки содержимого счетчиков импульсов каналов. Основными требованиями к параметрам ПНЧ являлись:
Есть только одно “но” – биполярное питание. Для обеспечения хорошей стабильности нуля (напряжение, которое соответствует ускорению 0g) необходимо использовать биполярное питание. Такое решение довольно эффективное – ведь когда 0g соответсвует “земля”, система априори будет стабильной. Также это улучшает проектирование системы. В современных датчиках в качестве нуля используют половину питания Vdd/2, однако если значение напряжения на преобразователе будет отличаться от напряжения на датчике – мы автоматически получаем смещение, которое нужно дополнительно калибровать.
Наверное, для многих потребителей биполярное напряжение немного отпугивает, и мы как разработчики это понимаем. Возможно, в дальнейшем сделаем коммерческий вариант для МЭМСов (или интегрируем датчик в ПНЧ). Пока, конечно, это всего лишь планы, но уверен они увидят свет.