Дайте определение понятию электроотрицательность в чем различие ковалентной полярной связи
Дайте определение понятию электроотрицательность в чем различие ковалентной полярной связи
§3.4. Электроотрицательность. Различие между полярной ковалентной и ионной связями.
Только о небольшой части всех химических связей можно сказать, что они являются чисто ковалентными. В таких соединениях поделенная пара электронов всегда находится на одинаковом расстоянии от ядер обоих атомов. Это возможно тогда, когда между собой связаны одинаковые атомы. Например, из рассмотренных нами в этой главе молекул чисто ковалентными окажутся двухатомные молекулы водорода, кислорода, хлора, азота:
Когда между собой связываются разные атомы, поделенная пара химической связи всегда смещена к одному из атомов. К какому? Разумеется, к тому атому, который проявляет более сильные акцепторные свойства.
Под электроотрицательностью (ЭО) понимают относительную способность атомов притягивать электроны при связывании с другими атомами. Электроотрицательность характеризует способность атома к поляризации химических связей.
Электроотрицательность зависит не только от расстояния между ядром и валентными электронами, но и от того, насколько валентная оболочка близка к завершенной. Атом с 7 электронами на внешней оболочке будет проявлять гораздо большую электроотрицательность, чем атом с 1 электроном.
Фтор является «чемпионом» электроотрицательности по двум причинам. Во-первых, он имеет на валентной оболочке 7 электронов (до октета недостает всего одного электрона) и, во-вторых, эта валентная оболочка (. 2s 2 2p 5 ) расположена близко к ядру. Например, в соединении NaF поделенная электронная пара оттянута к атому фтора так сильно, что можно, почти не погрешив против истины, приписать фтору целый отрицательный, а натрию – целый положительный заряд:
Ионную связь можно рассматривать как предельный случай полярной ковалентной связи.
Внешне соединения с ионными и ковалентными связями могут довольно сильно отличаться друг от друга. Ионные соединения – обычно твердые и хрупкие вещества, плавящиеся при высоких температурах. Растворы ионных соединений проводят электрический ток, потому что при растворении они распадаются на заряженные ионы. Типичное ионное соединение – поваренная соль NaCl.
Соединения с ковалентными и полярными ковалентными связями в обычных условиях часто являются газами или жидкостями. Если это твердые вещества, то плавятся они достаточно легко, хотя есть и исключения, которые мы обсудим в §3.8. Растворы таких веществ далеко не всегда проводят электрический ток, потому что при растворении они могут и не распадаться на ионы. Типичные соединения с полярными ковалентными связями: хлороводород HCl, углекислый газ СО2, вода Н2О, песок SiO2, многочисленные органические соединения.
На примере родственных соединений HCl и NaCl можно видеть, как увеличение полярности связи может в итоге приводить к качественным изменениям в свойствах веществ при одинаковых условиях (рис. 3-4).
Рис. 3-4. Хлороводород HCl (содержит полярную ковалентную связь) при комнатной температуре – газообразное вещество. В этих же условиях поваренная соль NaCl (ионная связь между атомами) – твердое кристаллическое вещество.
Иногда встречается утверждение, что ионная связь – это химическая связь, возникающая в результате кулоновского притяжения противоположно заряженных ионов. Действительно, электростатическое притяжение противоположных зарядов в ионных соединениях вносит заметный вклад в энергию связи. Но в то же время ковалентная составляющая химической связи никогда не выключается полностью даже в наиболее ионных соединениях.
Можно ли измерить степень полярности ковалентной связи? Где кончается полярная ковалентная связь и начинается ионная?
Электроотрицательность можно выразить количественно и выстроить элементы в ряд по ее возрастанию. Наиболее часто используют шкалу электроотрицательностей, предложенную американским химиком Л. Полингом. Электроотрицательность ( X ) измеряется в относительных величинах (таблица 3-3).
Таблица 3-3. Электроотрицательности ( X ) некоторых элементов.
Данные из справочника: CRS Handbook of Chemistry and Physics (издание 2007 года).
Электроотрицательнось по Полингу – это свойство атомов, связанных химическими связями, т.е. находящихся в составе химических соединений. Соединения таких благородных элементов, как гелий, неон и аргон до сих пор не получены, поэтому не определена и ЭО этих элементов. Однако в полной таблице в приложении VII уже можно найти значения для ксенона (Xe), соединения которого с фтором и кислородом известны с 60-х годов ХХ века.
Для фтора во многих книгах приводится значение X = 4,0 и в этом нет ошибки. Просто в таблице 3-3 приведены уточненные данные и, кроме того, значение 3,98 вполне может быть округлено до 4,0.
Менее всего электроотрицательны атомы щелочных и щелочноземельных металлов Li, Na, Mg и т.д. И это понятно – ведь их внешние электронные оболочки далеки от завершения и для них выгоднее сдвинуть свои валентные электроны к чужому атому, чем «добирать» электроны у соседей.
Обратите внимание на необычно высокую электроотрицательность атома водорода ( X = 2,20) – она значительно выше значений для щелочных металлов. В этом нет ничего удивительного: атом водорода лишь формально является электронным аналогом атомов щелочных металлов – на самом деле ему не хватает только одного электрона для полного завершения своей валентной оболочки (как и атомам галогенов с их высокими значениями X ). Поэтому электроноакцепторные свойства атома водорода выражены сильнее, чем у щелочных металлов.
Допустим, между двумя какими-то элементами образовалась химическая связь. Теперь разность электроотрицательностей этих элементов (Δ X ) позволит нам судить о том, насколько эта связь отличается от чисто ковалентной.
Какие бы два атома не были связаны между собой, для вычисления Δ X нужно из большей электроотрицательности вычесть меньшую.
Таким образом, при возникновении химической связи происходит не только обобществление электронов, но и в ряде случаев передача электронов от одного атома другому. Эта передача может быть частичной или почти полной. Электроны всегда передаются от атома с меньшей электроотрицательностью атому с большей электроотрицательностью.
3.14. Определите характер связи в приведенных ниже соединениях и разделите их на три группы: а) соединения с ковалентными связями, б) с полярными ковалентными связями, в) с ионными связями. Решение обоснуйте.
3.15. В таблице 3-3 в тексте параграфа не приведены электроотрицательности для благородных газов. Попробуйте предсказать значение электроотрицательности ксенона в соединении XeF 6 (речь идет о качественной оценке: “больше чем у фтора”, “меньше чем у фтора”). Проверьте свое предположение по таблице электроотрицательностей элементов в приложении. Предложите свое объяснение экспериментальным фактам.
Электроотрицательность. Ковалентная полярная связь
Описание презентации по отдельным слайдам:
Химическая связь — это связь между атомами, осуществляемая в молекулах и кристаллах вещества с помощью энергии электронов, входящих в состав атомов. + + + — — —
Ионная Химическая связь Ковалентная Металлическая
Ковалентная связь — химическая связь, возникающая в результате образования общих электронных пар.
Полярная Ковалентная связь Неполярная
Молекула водорода Ковалентная неполярная связь образуется между одинаковыми атомами элементов-неметаллов,
Полярная ковалентная связь может образовываться только между атомами разных элементов-неметаллов. фтороводород НF
Молекула фторводорода H1 1S1 F9 1S2 / 2S2 2p5 H F Неспаренный электрон Неспаренный электрон
Электроотрицательность — это способность атомов химического элемента смещать к себе общие электронные пары, участвующие в образовании химической связи.
F→ O→ N → CI → Br → I → S → C → Si →P → H Ряд химических элементов, расположенных в соответствии с уменьшением их электроотрицательности С уменьшением электроотрицательности уменьшаются и способность атома смещать общую электронную пару ближе к своему ядру.
H F + → H F F→ O→ N → CI → Br → I → S → C → Si →P → H
Смещение электроотрицательности в молекулах воды Н2О и оксида азота NO Н2О NO 2H + O → H H δ+ δ+ → → O δ- N δ+ O δ- →
Алгоритм образования ковалентной полярной на примере оксида серы SO2 1. Запись электронных формул кислорода и серы. O (кислород) 6 O8 1S2 / 2S2 2p4 1S2 / 2S2 2p6 / 3S2 3p4 S (сера) 8 6 S16
Алгоритм образования ковалентной полярной на примере оксида серы SO2 2. Изображение расположения внешних электронов у знаков химических элементов кислорода и серы. S O
Алгоритм образования ковалентной полярной на примере оксида серы SO2 3. Запись электронно-структурной формулы образовавшейся молекулы оксида серы SO2
Алгоритм образования ковалентной полярной на примере оксида серы SO2 3. Определение по рассмотренному нами ранее химическому ряду электроотрицательности кислорода и серы F→ O→ N → CI → Br → I → S → C → Si →P → H
Валентность — это число ковалентных связей, которыми атом одного химического элемента связан с атомами этого же или других элементов.
Аммиак NH3 NIIIHI Вода H2O HIOII Оксид фосфора P2O5 PVOII Запись валентности
Если валентность обоих элементов кратна какому-нибудь числу, то индексы записываются, уменьшенными на это число. SO3 S2O6 F2S2 F2S2 FS Pl2O4 PlO2
Al III S II S VI S IV
Валентность, равная общему числу ковалентных связей, может быть различной у одного и того же элемента.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс профессиональной переподготовки
Методическая работа в онлайн-образовании
Курс повышения квалификации
Современные педтехнологии в деятельности учителя
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1408195
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
Минпросвещения подготовило проект плана по модернизации детских лагерей в России
Время чтения: 3 минуты
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
В России отцы охотнее дают деньги детям на карманные расходы, чем матери
Время чтения: 2 минуты
В России создадут единый центр по работе с трудными подростками
Время чтения: 1 минута
ОНФ выявил за 2021 год более 600 опасных маршрутов к школам в регионах
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Химическая связь. Типы химической связи
Диссоциация хлорида натрия в воде
Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь
Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными.
Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов, в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.
Электроотрицательность χ – это способность атома притягивать (удерживать) внешние (валентные) электроны. Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.
Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль разность электроотрицательностей атомов, а она примерно одинакова в любой системе.
Если один из атомов в химической связи А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.
Основные типы химических связей — ковалентная, ионная и металлическая связи. Рассмотрим их подробнее.
Ковалентная химическая связь
Основные свойства ковалентных связей
Эти свойства связи влияют на химические и физические свойства веществ.
Насыщаемость — это способность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется валентностью.
Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.
Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.
Ковалентная неполярная химическая связь
Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.
Дипольный момент неполярных связей равен 0.
Ковалентная полярная химическая связь
Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).
Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).
Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.
Механизмы образования ковалентной связи
Ковалентная химическая связь может возникать по 2 механизмам:
1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:
2. Донорно-акцепторный механизм образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:
А: + B= А:В
При этом один из атомов предоставляет неподеленную электронную пару ( донор ), а другой атом предоставляет вакантную орбиталь для этой пары ( акцептор ). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.
Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей статье.
Ковалентная связь по донорно-акцепторному механизму образуется:
– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;
– в комплексных соединениях, химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na[Al(OH)4] связь между алюминием и гидроксид-ионами;
– в азотной кислоте и ее солях — нитратах: HNO3, NaNO3, в некоторых других соединениях азота;
– в молекуле озона O3.
Основные характеристики ковалентной связи
Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.
Кратность химической связи
Кратность химической связи — это число общих электронных пар между двумя атомами в соединении. Кратность связи достаточно легко можно определить из значения валентности атомов, образующих молекулу.
Например , в молекуле водорода H2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.
В молекуле кислорода O2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.
В молекуле азота N2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.
Длина ковалентной связи
Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А2 и В2:
Длину химической связи можно примерно оценить по радиусам атомов, образующих связь, или по кратности связи, если радиусы атомов не сильно отличаются.
При увеличении радиусов атомов, образующих связь, длина связи увеличится.
При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.
Энергия связи
Мерой прочности химической связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.
Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.
Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.
Ионная химическая связь
Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов.
Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.
+11 Na ) 2 ) 8 ) 1 — 1e = +11 Na + ) 2 ) 8
+17 Cl ) 2 ) 8 ) 7 + 1e = +17 Cl — ) 2 ) 8 ) 8
Обратите внимание:
Наглядно обобщим различие между ковалентными и ионным типами связи:
Металлическая химическая связь
Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов, образующих кристаллическую решетку.
У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов. Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями.
Межмолекулярные взаимодействия
Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.
Водородные связи возникают между следующими веществами:
— фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H2O (пар, лед, жидкая вода):
— раствор аммиака и органических аминов — между молекулами аммиака и воды;
— органические соединения, в которых связи O-H или N-H: спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.
Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение температуры кипения.