Ддр 400 что это

Ддр 400 что это

Чипсеты i875P и i865PE официально поддерживают до 4 Гб оперативной памяти, но в четыре имеющихся слота DIMM до недавнего времени можно было установить максимум 2 Гб памяти (4 х 512 Мб), так как максимальный объем одного модуля DDR 400 был ограничен 512 Мб. Разумеется, предельный объем в 4 Гб мог бы понадобиться только самым амбициозным энтузиастам, однако владельцы рабочих станций на базе чипсета i875P тоже не отказались бы от возможности установить все 4 Гб памяти, ибо в некоторых областях применения (типа компьютерной графики) оперативной памяти никогда не бывает много :).

реклама

Судя по всему, для перечисленных выше категорий пользователей наступает благодатная пора. В японской рознице появились модули DDR 400 объемом 1 Гб. В частности, подобную память производит Samsung:

Чипы в упаковке TSOP-II объемом по 64 Мб расположены с обеих сторон модуля (итого 16 штук). Показатель CL для данного типа памяти равен 3.0, что не очень типично для более быстрых модулей DDR 400 объемом 512 Мб, но для такого «увесистого» модуля вполне нормально.

Теперь обратимся к результатам июльского исследования на тему поиска предпочтительной конфигурации памяти для двухканальных чипсетов Intel. Тогда было установлено, что в синхронном режиме (DDR 400, 1:1) наилучшую производительность демонстрируют два двухсторонних модуля или четыре двухсторонних модуля. Таким образом, при синхронном разгоне или работе без разгона предпочтительнее использовать пару или четверку двусторонних модулей DDR 400. Стало быть, желающие обеспечить свою систему всеми 4 Гб оперативной памяти от приобретения описанных сегодня модулей выиграют (в плане производительности, а не цены :)).

Источник

Исследование основных характеристик модулей памяти DDR

Мы продолжаем цикл статей, посвященный изучению важнейших характеристик модулей памяти DDR на низком уровне с помощью универсального тестового пакета RightMark Memory Analyzer. Очередной экземпляр, попавший в поле нашего исследования — 1-ГБ пара модулей (специально «подогнанных друг к другу» для работы в двухканальном режиме) DDR-400 серии +XBL (eXtreme Bandwidth and Latency), предназначенной для оверклокеров, энтузиастов и геймеров. Отличительная особенность этой серии — низкие задержки при работе в родном, официальном режиме DDR-400 (2-2-2-5), а также способность работать при частотах вплоть до 266 МГц, т.е. в неофициальных режимах DDR-433, DDR-466, DDR-500 и DDR-533.Информация о производителе модуля

Производитель модуля: Patriot Memory (подразделение PDP Systems, Inc.)
Производитель микросхем модуля: неизвестен
Сайт производителя модуля: www.patriotmem.comВнешний вид модуля

Фото модуля памяти

Ддр 400 что это. Смотреть фото Ддр 400 что это. Смотреть картинку Ддр 400 что это. Картинка про Ддр 400 что это. Фото Ддр 400 что это

Внешний вид модулей памяти, покрытых обычным алюминиевым теплоотводом красного цвета, вполне привычен для модулей памяти DDR Patriot.Part Number модуля

Ддр 400 что это. Смотреть фото Ддр 400 что это. Смотреть картинку Ддр 400 что это. Картинка про Ддр 400 что это. Фото Ддр 400 что это

Руководство по расшифровке Part Number модулей памяти DDR серии +XBL на сайте производителя отсутствует. В кратком техническом описании (datasheet) модулей с Part Number PDC1G3200+XBLK указывается, что продукт представляет собой комплект из двух «подогнанных» друг к другу модулей DDR-400 суммарным объемом 1ГБ, способных функционировать в широком интервале частот — от 200 МГц (DDR-400, PC3200) до 266 МГц (DDR-533, PC4200) и в номинальном режиме DDR-400 характеризуются очень низкими задержками — 2-2-2-5. Рекомендуемые схемы таймингов и рабочие напряжения для каждого из режимов приведены ниже в таблице. Производитель отмечает, что модули проходят 100% тестирование в каждом из указанных режимов при указанных условиях, т.е. фактически гарантирует стабильность их работы во всех перечисленных режимах.

Скоростной режимТаймингиПитающее напряжение
PC3200 (DDR-400)2-2-2-52.6 — 2.7V
PC3500 (DDR-433)2-3-3-62.6 — 2.7V
PC3700 (DDR-466)2-3-3-62.7 — 2.8V
PC4000 (DDR-500)2.5-3-3-72.75 — 2.85V
PC4200 (DDR-533)3-4-4-82.75 — 2.85V
ПараметрБайтыЗначениеРасшифровка
Фундаментальный тип памяти207hDDR SDRAM
Общее количество адресных линий строки модуля30Dh13 (RA0-RA12)
Общее количество адресных линий столбца модуля40Ah10 (CA0-CA9)
Общее количество физических банков модуля памяти502h2 физических банка
Внешняя шина данных модуля памяти6, 740h, 00h64 бит
Уровень питающего напряжения804hSSTL 2.5V
Минимальная длительность периода синхросигнала (tCK) при максимальной задержке CAS# (CL X)950h5.0 нс (200.0 МГц)
Тип конфигурации модуля1100hNon-ECC
Тип и способ регенерации данных1282h7.8125 мс — 0.5x сокращенная саморегенерация
Ширина внешнего интерфейса шины данных (тип организации) используемых микросхем памяти1308hx8
Ширина внешнего интерфейса шины данных (тип организации) используемых микросхем памяти ECC-модуля1400hНе определено
Длительность передаваемых пакетов (BL)160EhBL = 2, 4, 8
Количество логических банков каждой микросхемы в модуле1704h4
Поддерживаемые длительности задержки CAS# (CL)1804hCL = 2.0
Минимальная длительность периода синхросигнала (tCK) при уменьшенной задержке CAS# (CL X-0.5)2350h5.0 нс (200.0 МГц)
Минимальная длительность периода синхросигнала (tCK) при уменьшенной задержке CAS# (CL X-1.0)2500hНе определено
Минимальное время подзарядки данных в строке (tRP)2728h10.0 нс
2, CL = 2.0
Минимальная задержка между активизацией соседних строк (tRRD)2828h10.0 нс
2, CL = 2.0
Минимальная задержка между RAS# и CAS# (tRCD)2928h10.0 нс
2, CL = 2.0
Минимальная длительность импульса сигнала RAS# (tRAS)3019h25.0 нс
5, CL = 2.0
Емкость одного физического банка модуля памяти3140h256 МБ
Минимальное время цикла строки (tRC)4137h55.0 нс
11, CL = 2.0
Период между командами саморегенерации (tRFC)4241h65.0 нс
13, CL = 2.0
Максимальная длительность периода синхросигнала (tCKmax)4328h10.0 нс
Номер ревизии SPD6200hНе определено
Контрольная сумма байт 0-6263F4h244 (верно)
Идентификационный код производителя по JEDEC (показаны только первые значимые байты)64-717Fh, 7Fh,
7Fh, 7Fh,
02h
PDP Systems
Part Number модуля73-9001h, 64h,
08h
Неверно
Дата изготовления модуля93-9400h, 00hНе определено
Серийный номер модуля95-9800h, 00h,
00h, 00h
Не определено

Содержимое микросхемы SPD выглядит несколько необычно. По данным байта 18, модули поддерживают всего одно значение задержки CAS# = 2. Этому, главному значению задержки сигнала CAS# (CL X), соответствует период синхросигнала 5 нс, т.е. функционирование модулей в режиме DDR-400. Схема таймингов для этого случая совпадает с указанной в техническом описании — 2-2-2-5, что по идее должно гарантировать выставление именно этих таймингов по умолчанию BIOS-ами большинства материнских плат. Тем не менее, в байте 23 по непонятной причине прописано и второе, уменьшенное значение задержки CAS# (CL X-0.5, т.е. по идее, неофициальная для DDR величина tCL = 1.5), которому, тем не менее, соответствует тот же самый период синхросигнала 5 нс, т.е. режим DDR-400. Схема таймингов для второго случая, если бы она поддерживалась стандартом, записывалась бы как 1.5-2-2-5. К слову об отклонении от стандарта, среди прочих особенностей содержимого SPD рассматриваемых модулей можно отметить неопределенный номер ревизии SPD «0.0», а также отсутствие данных о Part Number модуля (вместо него приводится некая последовательность байтов 01h, 64h и 08h, непереводимая в текстовый вид), а также их дате изготовления и серийном номере. Код производителя (PDP Systems), тем не менее, указан верно.Конфигурации тестовых стендов

Тестовый стенд №1

Тестовый стенд №2

Тестовый стенд №3

Тестовый стенд №4

Тесты в режиме DDR-400

Первая серия тестов проводилась в стандартном скоростом режиме DDR-400 (стенд №1). Для сопоставления полученных результатов с чем-либо мы провели те же самые тесты с использованием давно имеющейся в распоряжении нашей тестовой лаборатории пары 512-МБ модулей Corsair DDR-400, обладающих столь же низкими таймингами 2-2-2-5 (стенд №2).

Результаты тестов достаточно очевидны и не нуждаются в пояснениях: модули DDR-400 серии +XBLK от Patriot в стандартном режиме DDR-400 обладают отличными скоростными характеристиками. По многим параметрам они не уступают, если и вовсе не оказываются идентичными высокоскоростным модулям Corsair DDR-400 с таймингами 2-2-2-5.

«Тесты стабильности», т.е. тесты модулей в более экстремальных условиях — с «разгоном по таймингам» в данном случае не проводим по той простой причине, что значения таймингов 2-2-2-5 на платформе AMD Athlon 64 далее уменьшать просто некуда. Вместо этого, переходим к рассмотрению результатов гораздо более интересной серии тестов в режиме «DDR-500».

Тесты в режиме «DDR-500»

Мы не зря взяли название этого режима в кавычки — во-первых, строгого соответствия ему (т.е. функционированию модулей памяти при 250 МГц) здесь нет, во-вторых, частота памяти зависит от частоты процессора.

Какова причина проведения этих тестов? Как известно, последняя ревизия «E» процессоров AMD Athlon 64/FX поддерживает новые, «неофициальные» (они официально не указаны в документации AMD, по всей вероятности, поскольку сами режимы не утверждены стандартом JEDEC) режимы функционирования подсистемы памяти — с предельной частотой в 233 и 250 МГц, которые можно задать в BIOS-ах недавних моделей материнских плат, например, ECS RD480-A939. «Предельной» именно потому, что реальная частота зависит от частоты процессора/контроллера памяти (она получается делением ее на некоторый целый делитель) и, как правило, всегда оказывается меньшей по сравнению с этим пределом (MemClk limit).

Таким образом, с последней ревизией процессоров AMD и надлежащей поддержкой со стороны BIOS материнских плат мы теперь можем реально использовать более скоростную, нестандартную память DDR «по ее прямому назначению», не прибегая при этом к разгону остальных компонентов системы посредством повышения частоты FSB. Поскольку рассматриваемые модули поддерживают частоты вплоть до 266 МГц (DDR-533), мы решили незамедлительно воспользоваться ими для тестирования новых режимов работы двухканального контроллера памяти AMD64, интегрированного в процессоры AMD Athlon 64/FX.

Итак, в теории все выглядит хорошо, однако на деле оно оказывается не так, как того можно было бы ожидать. Проблема заключается в уже отмеченной выше неизбежной установке частоты памяти в зависимости от частоты процессора путем ее деления на некоторую целую константу. С одной стороны, это приводит к непостоянству частоты памяти во времени при динамическом изменении частоты процессора с помощью удобной, нужной и полезной технологии AMD Cool`n’Quiet, либо (если по каким-либо причинам эта технология не используется) просто к зависимости частоты памяти от данной конкретной модели процессора, рассчитанного на функционирование при данной конкретной максимальной частоте. С другой стороны (что более важно), тесты показывают, что в неофициальном режиме «DDR-500» процессор зачастую выбирает не тот делитель, который наиболее близко соответствовал бы заданному пределу, а больший, что соответствует меньшей частоте памяти. Все это отражено в приведенной ниже таблице с результатами.

Рассмотрим, для начала, результаты тестов на процессоре AMD Athlon 64 3500+ (стенд №3). В штатном частотном режиме (частота 2.2 ГГц) ожидаемая частота памяти могла бы составлять 244.4 (2200 / 9) МГц, реально же выбирается больший делитель (/10), снижающий ее частоту до 220 МГц (как если бы она была ограничена режимом DDR-466 — кстати, тесты, проведенные в этом режиме ограничения частоты, действительно оказались аналогичными). Подтверждением этого является, в частности, величина максимальной реальной ПСП на чтение, составляющая 6915 МБ/с, тогда как теоретический предел 244-МГц шины памяти составляет 7820 МБ/с. Максимальная теоретическая ПСП 220-МГц шины памяти, равная 7040 МБ/с, оказывается гораздо ближе к наблюдаемой величине, т.е. в этом тесте наблюдается 98% эффективность утилизации шины памяти, вполне типичная для этого класса платформ.

Аналогичная картина наблюдается при понижении частоты процессора до 2 ГГц. Ожидаемая частота памяти в этом случае вообще могла бы оказаться предельной — 250 (2000 / 8) МГц, тем не менее, и здесь выбирается больший делитель (/9), вновь ближе соответствующий режиму DDR-466, нежели DDR-500 — реальная частота памяти оказывается равной 222.2 МГц. Как мы видим, это сопровождается некоторым дальнейшим увеличением максимальной реальной ПСП на чтение до 7029 МБ/с.

Переходим к результатам тестов с участием процессора Athlon 64 FX-57 (стенд №4), позволяющего использовать гораздо более широкий частотный диапазон. Штатный режим (частота 2800 МГц) позволяет достичь несколько большую частоту памяти по сравнению с тем, что мы видели выше. Более того, на этот раз действительное значение частоты совпало с ожидаемым — 233.3 МГц (2800 / 12). Максимальная реальная ПСП в этом тесте составила 7193 МБ/с, т.е. примерно 96% от теоретического максимума (7467 МБ/с).

Еще большую частоту памяти нам удалось достичь при понижении частоты процессора до 2.4 ГГц. И вновь ожидаемая частота памяти (240 МГц = 2400 / 10) совпала с реально наблюдаемой, которая проявила себя в виде еще большей максимальной реальной ПСП, равной 7331 МБ/с. Теоретический предел ПСП для 240 МГц составляет 7680 МБ/с, т.е. в этом тесте эффективность утилизации шины памяти составляет примерно 95.5%. Надо заметить, она несколько падает по мере увеличения частоты памяти, что, возможно, отражает реальный предел эффективности памяти DDR как таковой.

Дальнейшее понижение частоты процессора Athlon 64 FX-57 до 2200 и, далее, 2000 МГц, приводит к результатам, аналогичным тем, что мы наблюдали выше при исследовании процессора Athlon 64 3500+ (единственная разница, пожалуй, заключается в том, что на Athlon 64 FX-57 при этих частотах максимальная реальная ПСП, по не совсем понятным причинам, оказывается несколько хуже). А именно, устанавливаются значительно меньшие частоты памяти — 220 и 222 МГц, по сравнению с ожидаемыми 244 и 250 МГц, соответственно. Складывается такое впечатление, что установка лимита частоты памяти в 250 МГц в настройках контроллера памяти AMD64 на самом деле ограничивает частоту памяти на уровне 240 МГц — именно такой частотный предел нам удалось достичь в реальных условиях.Итоги

Исследованные модули памяти Patriot DDR-400+XBLK можно считать типичными высокоскоростными модулями DDR на сегодняшний день, в связи с доступностью топовых 2-ГБ высокоскоростных модулей — уже среднего объема, не уступающих по своим скоростным характеристикам давно известной, аналогичной 1-ГБ паре модулей Corsair DDR-400.

В то же время, в отличие от последних, для Patriot DDR-400+XBLK производителем заявлена поддержка более высокоскоростных режимов — от DDR-433 до DDR-533 включительно, которые нам отчасти удалось испытать в настоящем исследовании. Поскольку для этого испытания мы не прибегали к помощи разгона всех компонентов системы по частоте шины, а использовали новые, неофициальные режимы работы интегрированного контроллера памяти последней ревизии «E» процессоров AMD Athlon 64/FX, формально позволяющие использовать частоты памяти до 250 МГц, скажем несколько заключительных слов и о результатах этого исследования.

Итак, модули Patriot DDR-400+XBLK при повышенном напряжении (2.75V) действительно способны устойчиво функционировать при частотах до 240 МГц (более высокие частоты просто не проверялись), достигая при этом несколько меньшую в сравнении с режимом DDR-400, но все равно весьма высокую (порядка 95%) эффективность утилизации пропускной способности шины памяти. Тем не менее, несколько разочаровывает поведение самого контроллера памяти процессоров AMD64, который в ряде случаев использует большие, чем это нужно, делители частоты памяти. В связи с этим, реально наблюдаемая частота памяти находится в интервале примерно от 220 до 240 МГц, в зависимости от частоты процессора, но никак «не дотягивает» до положенных ей и формально возможных 250 МГц.

В то же время, поскольку использование нестандартных делителей частоты памяти все же относится к «твикингу» (использованию недокументированных функций), то в реальности оно чаще всего остается уделом энтузиастов и сочетается с классическим разгоном «по шине». И здесь новые делители действительно здорово помогают — например, в случае со старшими процессорами, для которых рассчитывать на существенный разгон не приходится, так что элитная память остается «недоразогнанной». В таком случае, выбрав больший частотный предел (меньший делитель), можно дополнительно разогнать память и с большой вероятностью выбрать без остатка «запас прочности» даже у самых удачных модулей (причем агрессивные делители, соответствующие на номинальной частоте 250 МГц, в таком случае как раз и не нужны).

Источник

Какое поколение памяти DDR обозначает маркировка DDR400?

Тот, кто хоть немного разбирается в компьютерных комплектующих, знает о том, что оперативная память бывает нескольких типов (поколений): DDR, DDR2, DDR3, DDR4. Практически всегда на модуле памяти присутствует наклейка с маркировкой, по которой можно определить тип ОЗУ, ее частоту и объем. PC2 – означает память DDR2, PC3 – DDR3, PC4 – DDR4. А вот что означает DDR400? Об этом мы и поговорим в данной статье.

DDR-400 что это?

Если вам попался модуль памяти с данной маркировкой, то с уверенностью можно сказать что это DDR первого поколения, тот, который был перед DDR2.

Цифра 400 в названии показывает рабочую частоту планки памяти в мегагерцах. Довольно часто на таких модулях можно встретить маркировку PC-3200. Это говорит о том, что его пропускная способность составляет 3200 мегабайт в секунду.

Ддр 400 что это. Смотреть фото Ддр 400 что это. Смотреть картинку Ддр 400 что это. Картинка про Ддр 400 что это. Фото Ддр 400 что это

Присутствие маркировки PC-3200

В зависимости от рабочей частоты и пропускной способности выделяют следующие типы оперативной памяти DDR первого поколения:

PC-1600DDR-200
PC-2100DDR-266
PC-2400DDR-300
PC-2700DDR-333
PC-3200DDR-400
PC-3500DDR-433
PC-3700DDR-466
PC-4000DDR-500
PC-4200DDR-533
PC-5600DDR-700

Все это оперативная память DDR первого поколения. Она не совместима с другими типами ОЗУ (DDR2, DDR3, DDR4), так как расположение ключа у них всех разное. Такой модуль физически не войдет в разъем на материнской плате, кроме плат с поддержкой DDR первого поколения.

Ддр 400 что это. Смотреть фото Ддр 400 что это. Смотреть картинку Ддр 400 что это. Картинка про Ддр 400 что это. Фото Ддр 400 что это

Разница в расположении ключа на разных поколениях ОЗУ DDR

По состоянию на 2019 год DDR400, как и все поколение DDR1, официально можно считать мертвым. Такая память, так же как и материнские платы с ее поддержкой, давным давно сняты с производства. Она может представлять ценность только для очень старых компьютеров, доживших до наших дней.

Источник

Тесты модулей DDR400 семи типов от разных производителей. Влияние настроек памяти в BIOS Setup на быстродействие чипсета nVIDIA nForce2.

На данный момент мэйнстримом в настольных системах можно считать память DDR266 или PC2100. Ее достаточно высокая полоса пропускания (2,1 Гбайт/с) позволяет почти комфортно чувствовать себя современным процессорам AMD Athlon XP и Intel Pentium 4, хотя последним все же не совсем хватает скорости DDR266. Поэтому на смену DDR266 в настольных системах корпорация Intel с недавнего времени активно продвигает память DDR333 или PC2700 с полосой пропускания 2,7 Гбайт/с (см., например, наш обзор), спецификация на которую была утверждена JEDEC всего несколько месяцев назад. Не отстают и платформы на процессорах AMD, где в связи с недавним переходом на системную шину 333 МГц требования к скорости памяти заметно возросли, и именно DDR333 рассматривается в качестве основной памяти будущих систем на Athlon XP. Хотя уже сейчас использование памяти DDR333 приносит весьма весомый прирост производительности для систем как на процессорах AMD (читайте, например, обзоры на www.ferra.ru/online/system/21762, www.ferra.ru/online/system/20799, www.ferra.ru/online/system/20560 и www.ferra.ru/online/system/20800), так и на процессорах Intel Pentium 4 (см. обзоры на www.ferra.ru/online/system/19445, www.ferra.ru/online/system/18460, www.ferra.ru/online/system/17880, www.ferra.ru/online/system/17450, www.ferra.ru/online/system/16382 и www.ferra.ru/online/system/17860). Поскольку вопросы, связанные с применением памяти DDR266 и DDR333 на различных материнских платах и многочисленных чипсетах мы уже многократно освещали в наших предыдущих публикациях на www.ferra.ru/online/system (см., например, список публикаций чуть выше и в конце этой статьи), то сейчас речь пойдет о другом.

В нашем нынешнем практическом исследовании модулей DDR400, присутствующих сейчас на рынке памяти (то есть в магазинах) мы постарались исходить из сугубо практических целей, поэтому здесь не станем касаться некоторых интересных вопросов производства памяти и надежности модулей разных производителей (о них можно почитать, например, на www.ferra.ru/online/system/19343) или теоретических аспектов их функционирования или паспортных технических характеристик (их можно посмотреть на сайтах производителей).

С практической точки зрения нас будут интересовать, прежде всего, три основных вопроса:

1. С какими минимальными таймигами (задержками) модули разных производителей могут работать в качестве DDR400 или DDR333.

3. Как на практике (в реальных приложениях) будет меняться производительность ПК при различных таймингах и частоте работы системной памяти.

Из первых двух пунктов вытекает еще один весьма важный для памяти пункт, который мы будем тестировать косвенно: надежность работы модулей в паспортном режиме эксплуатации.

1. Kingmax DDR-400 MPXB62D-68KX3 (объемом по 256 Мбайт)
2. Samsung PC3200U M368L3223DTM-CC4 (объемом по 256 Мбайт)
3. Kingston ValueRAM KVR400X64C25/256 (объемом по 256 Мбайт)
4. A-Data DDR PC3200 на чипах Winbond (по 256 Мбайт)
5. A-Data DDR PC3200 на чипах Winbond (по 256 Мбайт, односторонний дизайн PCB)
6. TwinMOS PC3200 256 МВ CL2.5 на чипах Winbond (по 256 Мбайт)
7. Corsair CMX256A-3200C2 серии XMS3200v1.1 (по 256 Мбайт)

Источник

Память DDR400 (PC3200) SDRAM против DDR333, DDR266 и PC133. Тесты в играх.

Инфоповодом для нижеследующего текста послужила материнская плата Gigabyte GA-7VAXP на чипсете KT400, доставленная в нашу тестовую спецрейсом прямиком из Поднебесной. Центральная опция данной платы и чипсета, несомненно, — поддержка 400-мегагерцовой DDR-памяти. Вот о последней, ее предшественниках и последователях и хотелось бы поговорить.

Предыдущий стандарт памяти — DDR333 (он же PC2700) — лишь совсем недавно получил статус официального, принятого JEDEC (Joint Electron Device Engineering Council). А большинство разнокалиберных модулей на чипах Samsung с гордой маркировкой DDR333 CL2,5, до сих пор сплошь и рядом соглашаются устойчиво работать лишь на 266 МГц. Иногда, снизив частоту, в качестве компенсации удается уменьшить и задержку CL до 2 тактов, что дает свои пару процентов прироста общей производительности, но не более того. Конечно, задавшись целью, можно найти фирменный 333-мегагерцовый модуль, например, собственной самсунговской сборки, отлично работающий на штатной частоте (к тому же если поднять напряжение питания памяти на 0,1-0,2 В). Для большей стабильности настоятельно рекомендуется нескольким модулям маленького объема предпочесть один большой.

Купить бы такой и прочувствовать совершенство собственного ПК! Но не тут-то было, с недавних пор в общедоступной рознице появились знакомые безымянные DIMM’ы (в основном на микросхемах Winbond), правда — с новой, волнующей умы маркировкой DDR400 или PC3200. Они, естественно, пока тоже не стандартизованы медлительным JEDEC’ом. Но ответить на вопрос, стоит ли воздерживаться от приобретения DDR SDRAM прежнего образца, чтобы непременно купить новинку, можно уже сейчас.

Платформер

К сожалению, AMD-платформа, единолично пока поддерживающая DDR400, принципиально не дружит с единственной живой альтернативной памятью Direct Rambus DRAM. А Intel не станет реализовывать поддержку DDR400 в своих чипсетах до тех пор, пока этот стандарт не будет официально принят. В итоге приходится ограничиваться сравнением трех действующих разновидностей DDR плюс самой быстрой версии старой-доброй PC133 SDRAM (что ни говори, а старушка SDRAM-обыкновенная, несмотря на весь этот бурный прогресс, все еще остается самой распространенной).

Как ни странно, но на этот раз, взятый наугад DDR400-модуль (256 Мбайт, упакованных в 8 чипов производства вышеупомянутой Winbond) проявил отменную стабильность в штатном режиме. То же самое можно сказать и о матплате GA-7VAXP, несмотря на номер ее ревизии (всего лишь 1.1) и отсутствие большей части ответственных за стабильность питания конденсаторов на разведенных для них местах вокруг процессорного разъема. Попытка AMD сделать крепление кулеров более надежным (для чего была придумана конструкция, напоминающая крепеж кулеров у Pentium4), похоже, так и не встретила отклика у пользователей и изготовителей плат. В частности, наша GA-7VAXP не имела соответствующих крепежных отверстий, а на ее предшественнице GA-7VRXP (на чипсете KT333) таковые дырки были.

Из прочих новшеств, реализованных в чипсете KT400, непременно надо отметить следующее:
• поддержку AGP 8x (AGP 3.0), достойную особого рассмотрения (каковое несомненно воспоследует). Ради нового множителя пришлось поступиться поддержкой старых видеокарт с 3,3-вольтовым напряжением питания, работавших в режиме AGP 2x (реже — AGP 4x);
• 8X V-Link — новую шину между северным и южным мостом с пропускной способностью 533 Мбайт/с (против 266 Мбайт/с у KT266A и KT333);
• поддержку процессоров Athlon для системной шины 333 МГц. Как явствует из инструкции к нашей плате, с такими процессорами можно будет использовать только синхронную частоту памяти (DDR333). Обидно.

Память DDR400 PC3200 на своем рабочем месте.

У самой GA-7VAXP тоже есть обновка по сравнению с предшественницей. И без того богатая коллекция интерфейсов (USB 1.1 и 2.0, IDE RAID, адаптер Ethernet 10/100 Мбит/с) пополнилась контроллером FireWire (IEEE1394). Можно посетовать лишь на отсутствие уже входящего в обиход интерфейса для жестких дисков Serial ATA, но он пока не столь нужен, чтобы навешивать на плату еще несколько чипов, а встроенной поддержки SATA в KT400 по-прежнему не предусмотрено.

DDR в тесте

Оценить производительность подсистемы памяти можно с большой точностью, воспользовавшись многочисленными синтетическими тестами (PCMark, Cachemem), да только практическая польза от таких испытаний будет невелика. Их оценки можно предсказать или даже просчитать, зная частоты, задержки, ширину шины данных и т.п. Увы, в реальных задачах картина может оказаться совершенно иной (местами, конечно, результаты останутся прежними, но разница может сократиться в разы или даже стать нулевой).

Производительность DDR400 по мнению SiSoft Sandra.

Посему для наших целей традиционно больше всего подходят тесты, базирующиеся на игровых движках. Чтобы окончательно приземлить результаты, использовалось обиходное разрешение 1024х768х32 с выключенным сжатием текстур, а также видеокарта уровня чуть выше среднего — Sapphire Radeon 9000 Pro (64 Мбайт собственной памяти).

Результаты тестированиев разрешении 1024x768x32.

Результаты перед вами — см. таблицу (применялся процессор Athlon-1700+ XP). На первый взгляд разница заметна лишь между простой SDRAM и DDR-памятью. С другой стороны — что такое 300 «попугаев» в 3DMark? Фактически всего лишь прирост в 5-6 fps по некоторым из тестов или даже меньше того. С третьей стороны такой же разрыв отделяет самую медлительную версию DDR от виновницы нашего сегодняшнего торжества. А разница между DDR400 и простой SDRAM достигает уже 10-16 fps в самых удачных тестах. Как говорится, уже что-то. Хоть и, по-моему, совершенно недостаточно для того, чтобы немедленно бежать в магазин за новой памятью. Тем более что современные высокотехнологичные игры с поддержкой шейдеров и т.п. (ради них, как правило, и затеивается апгрейд) в наименьшей степени откликнулись на возросшую частоту памяти). По большому счету, того же десятка fps прироста с куда большей вероятностью можно добиться сменой видеокарты (а если карта старая, без аппаратного блока T&L — это в любом случае единственный действенный вариант).

Другое дело, что быстрая память влияет на производительность всех программ, включая операционную систему. Измерить изменения в скорости загрузки Windows XP — нетривиальная задача, но даже лишние доли секунды задержки на том или ином привычном действии порою очень портят общее ощущение темпа. А поскольку темп работы у каждого свой, сложно давать какие-либо рекомендации по поводу апгрейда, связанного с подсистемой памяти. Для иллюстрации я перегнал 240 Мбайт аудиоматериала из WAV в MP3 с помощью одного из самых популярных кодеков — Lame 3.92. Получившиеся 15% разницы между самой быстрой (DDR400) и самой медленной системой (PC133) мне лично кажутся достаточной причиной для беспокойства. Разница же между DDR400 и DDR266 не превысила 7% — вроде бы не столь страшно, чтобы отказываться от совсем еще свежей, но уже ставшей самой слабой памятью в иерархии DDR?

Безусловно, для стерильной оценки необходимо было бы использовать разные контроллеры памяти, входящие в состав разных чипсетов. Вполне возможно (даже — почти наверняка), что KT400 пока не использует всех возможностей последнего поколения DDR-памяти, да и сама эта память вряд ли пока пригодна для разгона и тонкой настройки (впрочем, не проверял — у нашей GA-7VAXP в текущей версии BIOS отсутствовала даже настройка CAS Latency, не говоря уже о более тонких). В то же время контроллер памяти у использовавшейся в тесте платы ABIT KT7A (как и у большинства фирменных плат на последнем поколении SDRAM-чипсетов) отточен до мелочей и более шлифовать его уже некуда. Три основные настройки — Bank DRAM Timing, DRAM Bank Interleave, SDRAM Cycle Length — были установлены в лучшую комбинацию — Turbo, 4-Way и 2 соответственно.

А значит, есть шанс, что с появлением оптимизированных версий BIOS для KT400 разрыв в скоростях еще увеличится на пару-тройку процентов.

Что же теперь будет?

Синхронная DRAM (SDRAM) в теперешней ее разновидности — Double Data Rate, то есть передающая данные по обеим фронтам синхронизирующего сигнала системной шины, — уже исчерпала весь потенциал для собственного роста. Следующим в «роадмапе» JEDEC’а значится DDR2, идеологически близкая к небезызвестной Direct Rambus DRAM. Частота шины ее стараниями будет учетверяться. Следовательно, пропускная способность в первой версии DDR2, работающей на 400 МГц составит 4800 Мбайт/с (маркироваться модули будут по-старому: например, DDR2-400 PC4800). Первые экземпляры данного чуда обещаны уже в первом квартале 2003 года. Рассчитывать, что эта память будет обратно совместимой с нынешними платами, конечно же, не приходится.

Нашли опечатку? Выделите текст и нажмите Ctrl+Enter

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *