Дегазация воды что это
Дегазация воды
Дегазация воды – одни из технологических процессов очистки жидкости. С его помощью вода очищается от различных растворенных в ней газов. Чаще всего, методы дегазации применяются для чистки жидкости от растворенного в ней сероводорода, углекислого газа, кислорода. О наиболее эффективных способах удаления растворенных газов из воды нужно поговорить подробнее.
Общая информация
Дезактивация и дегазация воды – это процедуры, направленные на удаление из жидкости различных растворенных газов. Во многих природных источниках вода перенасыщена различными газами. Некоторые из них не оказывают особого влияния на ее качество, другие же придают жидкости неприятный запах, делают ее непригодной для питья.
Наиболее опасными считаются 3 газа – сероводород, кислород, углекислый газ. Переизбыток кислорода, растворенного в жидкости, приводит к развитию язвенных заболеваний в желудке. Высокое содержание углекислого газа представляет большую опасность для состояния зубов. Сероводород образует сернистую кислоту, которая оказывает отравляющее и разрушительное воздействие.
Способы дегазации
Многочисленные способы дегазации воды можно разделить на 2 больших группы:
Каждую из представленных групп необходимо рассмотреть подробнее.
Физические методы
Методы, основанные на создании определенных условий для выведения растворенных газов из жидкости считаются наиболее простыми. Самые эффективные физические способы дегазации жидкости:
Для того, чтобы эффективно очищать воду от сероводорода и углекислого газа, чаще всего применяется способ ленточной аэрации. Для очистки жидкости от растворенного кислорода,
Химические методы
Химическая дегазация воды – основные методы:
Выше были представлены наиболее сложные химические методы дегазации жидкости. Все остальные способы основываются на добавление в воду различных реагентов. Они объединяют мельчайшие молекулы растворенных в жидкости газов, в более крупные частицы, которые можно будут легко улавливаться обычными фильтрами. Один из популярных видов реагентов – гидразин гидрат.
Методики дегазации воды пользуются большой популярностью в тех направлениях промышленности, где для осуществления определенных технологических операций, поддержания рабочего процесса применяются жидкости из природных и искусственных источников. Одновременно с этим, подобные технологии очень часто используют в системах горячего водоснабжения. Однако, если говорить об отдельном применении процесса дегазации, встретить его где-либо крайне сложно. Чаще всего он применяется в комплексных системах обработки воды.
Дегазация воды: химические и физические способы дегазации
Дегазация — технологический процесс очистки, суть которого заключается в улавливании растворенных в воде летучих газов. Метод активно применяется для удаления молекул кислорода, углекислого газа, сероводородных включений. В качестве коррозийных катализаторов эти элементы создают оптимальные условия на стадии обезжелезивания, однако негативным образом сказываются на окончательном качестве воды.
Реже на практике встречаются случаи, когда подобные установки используются для устранения из жидкости метана. Выделяемый в процессе первичной водоподготовки, газ при взаимодействии с воздухом образует взрывоопасную смесь. Во избежание серьезных последствий дегазация воды в подобных ситуациях является обязательной.
Актуальность метода
Данный способ применим ко многим сферам промышленной деятельности, работа которых основана на применении воды из первичных или центральных источников. Дегазация активно используется в системах горячего водоснабжения, без нее не обходится ни одна профессиональная подготовка подпитки для котельного оборудования.
В обособленном формате такой вид фильтрации встречается крайне редко. Чаще данная стадия присутствует в комплексных системах водоподготовки, функционал которых нацелен на ионитовое умягчение и обезжелезивание воды, а также борьбу с сероводородными включениями из подземных источников.
Способы дегазации
В настоящее время существуют две эффективные методики очистки воды с использованием профессиональных дегазаторов:
-химическая (с добавлением в рабочую среду специальных реагентов направленного действия);
-физическая (создание благоприятных условий для естественного удаления газовых скоплений).
Выбор оптимального решения зависит от индивидуальных особенностей объекта, уровня загазованности воды, присутствия в ее составе других посторонних включений и примесей. Рассмотрим каждый более подробно.
Химические методы дегазации
Под химическими процессами очистки воды понимают добавление в исходную жидкость подходящих по составу реагентов. Их способность объединять мельчайшие молекулы растворенных газов в более крупные частицы способствуют их дальнейшему удержанию встроенными фильтрующими элементами.
Ярким примером реализации представленного способа является обескислороживание воды при помощи добавления в нее гидразин-гидрата. При желании, такая методика может быть реализована при помощи специальных фильтров-уловителей, наполненных стальной стружкой. Обе технологии нацелены на изоляцию растворенного в воде кислорода с целью блокировки его коррозийных свойств.
Физические способы дегазации
По сравнению с предыдущей методикой подобные решения характеризуются относительно невысокой стоимостью, безопасностью и удобством реализации. Эти факты, пожалуй, служат основной причиной, по которой физические методы применяются на деле гораздо активней. Один из них — процедура аэрации. Основная задача данного метода заключается в удалении сероводорода и диоксида углерода путем насыщения исходной жидкости молекулами кислорода.
Наиболее распространенными моделями установок для физической дегазации являются пленочные дегазаторы. Конструктивно такие системы выполнены в форме цилиндрических колонн, оснащенных специальными насадками. Вода, проходя аэрационную стадию, стекает по выведенным каналам, контактируя при этом со встречным воздушным потоком. Обогащенный кислородом воздух подается через специальные отверстия под напором, который создается довольно мощным вентилятором.
В качестве наглядного примера рассмотрим все ту же необходимость обескислороживания жидкости, что и в предыдущем случае. Для эффективного удаления кислорода из жидкости, ее предварительно доводят до кипения. В ходе принудительного нагрева растворимость каждого из присутствующих в воде газов приближается к нулевой отметке. Для этих целей используются термические или вакуумные дегазаторы. Первые повышают температуру воды классическим способом, вторые достигают того же эффекта путем снижения ее нормального давления.
Дегазированная вода
При приготовлении этого вида целебной воды используют методику инженера гидротехника Алексея Лабазы, изложенную им в журнале Физкультура и спорт № 7 в 1989 году.
Способ приготовления
Цель процесса удаления из водопроводной воды находящихся в ней кислорода и углекислого газа – приблизить ее структурный состав к воде, содержащейся в клетках живых организмов. Лишенная газов вода гораздо быстрее усваивается, благодаря чему оказывает увлажняющий, заживляющий, иммуностимулирующий эффект.
Способ приготовления этой полезной воды прост. Если вы решили приготовить ее самостоятельно, то следуйте инструкции по дегазации воды в домашних условиях:
Дегазацию минеральной воды можно провести по тому же методу.
Внимание! Имейте в виду, что полученная жидкость быстро утрачивает свое новое состояние. Именно поэтому, если использовать сразу всю жидкость вы не в состоянии, нужно оградить ее от соприкосновения с воздухом.
Для этого прекрасно подойдут герметичные емкости. Но даже эти меры позволят сохранить свойства не более, чем на двое суток. Период хранения дегазированной воды в открытом сосуде не превышает одного часа.
Но этим рецепт приготовления дегазированной воды не исчерпывается. Оказывается, ее целебные свойства можно значительно улучшить. Для этого можно использовать несколько методов.
Улучшение свойств
Ежедневный прием такой воды здоровому человеку не рекомендуется! После недельного приема следует сделать перерыв в 2-3 недели!
Варианты применения
Особую роль воды, преобразованной методом дегазации, нужно отметить в растениеводстве. Ее используют для предварительного предпосевного замачивания семян, для полива. Она обладает защитными свойствами, предотвращающими различные заболевания, и, в отличие от химических препаратов, является совершенно безвредной для растений и человека.
Единственное ограничение в данном случае – это период использования. Не нужно поливать растения такой жидкостью постоянно. Достаточно замочить в ней семена и несколько раз подкормить растения на вегетативном этапе. Знающие цветоводы рекомендуют использовать именно такую воду в период пересадки декоративных растений.
Стоит подчеркнуть и значение таким образом измененной воды для здоровья человека. Ее можно пить (натощак), использовать для умывания, полоскания горла и носоглотки, для ингаляций и обработки ран. Дегазированная вода хорошо зарекомендовала себя как профилактическое средство при частых ангинах: надо лишь регулярно полоскать ею горло. Она также хорошо очищает зубы, укрепляет десны.
Вода, прошедшая процедуру дегазации, повышает работоспособность, успокаивающе действует на нервную систему. По сравнению с обычной водой, она быстрее впитывается в кожу, смягчает ее. Поэтому она особенно полезна при уходе за кожей лица при всякого рода высыпаниях.
Известно действие этой воды и в качестве обезболивающего средства – при болях в желудке, при острой зубной боли, ушибах, порезах. Систематически употребляя дегазированную воду утром натощак, человек легче переносит летнюю жару.
Для улучшения биологического воздействия и пользы дегазированной воды, можно добавить в стакан 3-5 витаминных глазных капель, которые всегда есть в аптеках. Такая витаминизированная вода имеет свойства фруктового или овощного сока.
Дегазированную воду можно употреблять внутрь для лечения не более месяца, затем следует сделать месячный перерыв.
Видео по теме
Дегазация воды с использованием обратноосмотических мембран
Содержание растворенных агрессивных газов СО2 и О2 в воде является причиной коррозии оборудования и трубопроводов. При повышении температуры воды подвижность молекул кислорода увеличивается, и коррозионная агрессивность воды растет.
Проблему удаления кислорода и диоксида углерода из воды решают преимущественно двумя способами. Это термическая и химическая дегазации (деаэрация).
При термической дегазации происходит удаление растворенных газов из воды в деаэрационной колонке. Вода в состоянии насыщения растекается по тарелкам деаэрационной колонки тонкой пленкой. При этом часть воды выпаривается, унося с собой растворенные газы, которые выделяются с поверхности воды при её кипении. Чем больше поверхность испарения воды и чем выше температура насыщения, тем эффективнее происходит дегазация воды.
При химической дегазации удаления газов не происходит. Происходит только их связывание в неорганические соединения.
При использовании сульфита натрия
При использовании гидразин-гидрата
Связывание углекислого газа в бикарбонат ион (подщелачивание) происходит по реакции:
Химическая деаэрация и подщелачивание имеет ряд существенных недостатков:
Термическая дегазация для паровых котельных, в настоящее время, является наиболее приемлемым вариантом. Деаэратор является также накопительным баком питательной воды,куда поступает подпиточная вода и конденсат. За счет небольшого избыточного давления не происходит повторного загрязнения воды агрессивными газами из атмосферы.
Те мне менее, термическая дегазация требует целого ряда сложных технических решений при проектировании и обладает значительной стоимостью основного и вспомогательного оборудования. Так необходимо обеспечить подогрев подпиточной воды перед деаэратором не менее 80 о С, что представляет значительную техническую сложность особенно при переменном расходе подпиточной воды. Прирезком снижении расхода подпиточной воды в деаэратор, за счет инерционности регулятора пара на теплообменник подпиточной воды, температура подпиточной воды после теплообменника резко увеличивается и наблюдается закипание воды в трубопроводе от теплообменника до деаэратора. При этом в данном трубопроводе начинается выделение кислорода из воды и интенсивная кислородная коррозия. Для исключения повреждения данного трубопровода целесообразно его выполнять из нержавеющей стали.
Руководства по проектированию предписывают обеспечить долю выпара в деаэраторе равную 2 кг на 1 тонну деаэрированной воды. На практике для получения кислорода в деаэрированной воде менее 50 мкг/л расход выпара может быть увеличен более чем в 10 раз. Кроме того, часто вызывает затруднение автоматизация деаэратора. Так как необходимо одновременно поддерживать заданное давление в деаэраторе, температуру воды в деаэраторе и уровень воды в деаэрационном баке. При резком изменение расхода питательной воды происходит понижение уровня воды в баке деаэратора, и для его поддержания увеличивается расход подпиточной воды в деаэратор выше паспортного значения. При этом качество деаэрации снижается.
Таким образом, для небольших паровых и особенно водогрейных котельных организация термической деаэрации является чрезвычайно дорогостоящим мероприятием, как по капитальным, так и по эксплуатационным затратам. Более того для водогрейных котельных используются вакуумные деаэраторы, конструкция которых ненадежна и не обеспечивает необходимое качество воды.
Как правило, на практике для котельных производительностью менее 3,0 – 6,0 т/ч по пару,даже если термический деаэратор установлен, то он не обеспечивает требуемой дегазации питательной воды и деаэратор по факту работает как накопительный бак питательной воды.
Для более эффективной дегазации питательной воды в котельных целесообразно применение мембранной дегазации воды.
Известно,что мембранную дегазацию воды можно осуществлять при помощи гидрофобных мембран, или так называемых мембранных контакторах.
В настоящее время для дегазации воды во многих отраслях промышленности используются гидрофобные мембранные контакторы. Это поливолоконные структуры с большой поверхностью. Через эту поверхность осуществляется массоперенос газа из жидкости в поток инертного газа или вакуум. Инертный газ находится внутри волокон. Вода протекает снаружи волокна. Сами волокна сделаны из гидрофобного материала. Волокно не впитывает (не пропускает воду), однако незаряженные молекулы газа могут свободно проходить через микропористую структуру волокна при наличии разницы концентраций газа внутри и снаружи волокон.
Дегазация при использовании мембранных контакторов достаточно эффективна для удаления диоксида углерода из воды, т.к. в качестве инертного газа может использоваться атмосферный воздух. Но для удаления кислорода из воды необходимо использовать азот высокой степени очистки с вакуумом. Это обстоятельство требует применять в котельной дополнительное дорогое и энергозатратное оборудование. При этом нормативного значения по кислороду не будет достигнуто и есть необходимость в дозировании сульфита натрия для связывания остаточного кислорода. Следует учесть, что значение рН воды достаточно сложно получить выше 8,5 сразу после мембранного контактора. Это обстоятельство вызывает необходимость в дозировании каустической соды в питательную воду, что впоследствии приведет к высокому содержанию углекислоты в конденсате.
Однако если на предприятии имеется система централизованного получения азота, данная схема мембранной дегазации может быть вполне конкурентоспособна с термической деаэрацией.
Авторы предлагают для дегазации воды использовать традиционные полимерные обратноосмотические мембраны, используемые повсеместно для обессоливания воды. Данные мембраны являются гидрофильными и не могут препятствовать прохождению через них воды.При этом ионы солей металлов, растворенные в воде, через гидрофильные не проходят. Селективность современных обратноосмотических мембранных элементов для очистки воды составляет от 99,0 до 99,7 %. Практически все соли задерживаются.
Растворенные в воде газы проходят через полимерные обратноосмотические мембраны.Соответственно для того чтобы удалить из воды газы необходимо перед мембранной эти газы перевести в неорганические соединения растворенные в воде.
Так для растворенного диоксида углерода необходимо в воду перед установкой обратноосмотического обессоливания дозировать раствор каустической соды NaOH.
В результате диоксид углерода связывается в бикарбонат натрия, который удаляется на мембране в потоке концентрата.
Для связывания кислорода необходимо дозировать раствор бисульфита натрия (1). Получающийся сульфат натрия также будет удаляться с концентратом.
В результате на выходе из установки обратноосмотического обессоливания получается обессоленная вода без растворенных агрессивных газов.
Данный метод дегазации принципиально отличается от чисто химической дегазации. В данном методе газы связываются и удаляются из воды. При химической деаэрации только связываются. Тем самым солесодержание воды не увеличивается и, что очень важно, не увеличивается количество бикарбонат и сульфат иона в питательной воде.
Основные преимущества мембранной дегазации гидрофильными мембранами:
У данного метода имеются недостатки:
Предложенный способ дегазации воды осуществляют следующим образом (рисунок 1).
Способ дегазации воды, содержит следующие технологические стадии. Вода проходит стадию осветления на установке непрерывного осветления воды (1) и поступает на установку системы непрерывного Na-катионитового умягчения воды (2). Целесообразно, чтобы было установлено не менее 2-х фильтров, которые позволяют работать системе в непрерывном режиме. Жесткость умягченной воды должна быть в пределах 0,02-0,1 мг-экв/л. Величина жесткости умягченной воды будет определяться исходя из количества раствора едкого натра,дозируемого в умягченную воду после установки умягчения (2). Чем выше жесткость умягченной воды и больше расход едкого натра, тем выше вероятность образования твердого осадка карбоната кальция на мембране.
После установки умягчения (2) в воду при помощи установки дозирования (3) дозируется раствор едкого натра.Количество едкого натра выбирают не более 10-15% количества свободной углекислоты в воде. Происходит связывание свободной углекислоты в бикарбонат ион (уравнение 3)
Значение рН воды возрастает до 8,2-8,5. Затем в воду при помощи установки (4) дозируется раствор сульфита натрия. При этом количество сульфита натрия выбирают либо эквивалентно равным количеству растворенного в воде кислорода, либо не менее чем на 10-30% больше количества растворенного в воде кислорода.
Затем вода, проходя через фильтр тонкой очистки (5), поступает на установку обратноосмотического обессоливания воды (6). На установке обратноосмотическогообессоливания (6) происходит разделение исходной воды на два потока: пермеат (обессоленная вода) и концентрат (вода насыщенная солями и сбрасываемая в канализацию). Работа данной установки организована так, что большая возвращается на вход установки обессоливания (6). Таким образом, получается рециркуляция части потока концентрата (рецикл).
Поступающий в воду при помощи установки дозирования (4)сульфит натрия реагирует с растворенным кислородом. В результате получается сульфат натрия (уравнение 1).
Данная реакция протекает достаточно быстро в горячей воде или в воде со значением рН более 8,5. Вода, поступающая на установку обессоливания (6), имеет температуру от 2 до 40°С. Тем не менее недостаточно быстрое протекание реакции (уравнение 1) компенсируется эффективным перемешиванием сульфита натрия в воде в фильтре тонкой очистки (5)и в самом обратноосмотическом мембранном элементе. Так, большая часть сульфита натрия не связавшая кислород перед и внутри обратноосмотического элемента возвращается на вход обратноосмотического элемента с потоком рецикла. Тем самым обеспечивается достаточно полное протекание реакции (уравнение 1) до и внутри обратноосмотического элемента.
Обратноосмотический мембранный элемент пропускает растворенные в воде газы, но практически не пропускает растворенные в воде ионы. Таким образом, углекислый газ, связанный в бикарбонат едким натром, не проходит через мембрану, а сбрасывается в виде бикарбонат иона в канализацию. Тот же принцип работает при связывании растворенного в воде кислорода. В результате протекания реакции (уравнение 1) растворенный в воде кислород связывается сульфитом натрия в сульфат натрия и затем сбрасывается с потоком концентрата в канализацию.
Таким образом, на обратноосмотической установке (6) проходит процесс одновременного обессоливания и дегазации воды, что является принципиально новым подходом в работе подобных устройств.
Обессоленная и дегазированная вода направляется потребителю. Важно не допустить вторичного загрязнения воды кислородом и углекислым газом атмосферного воздуха. Для этого рекомендуется использовать мембранный гидроаккумуляторный бак (7) перед насосом повысителем давления (8). Насос повыситель давления (8) нужен в случае, если требуется давление пермеата выше, чем 1,0-2,0 бар.
При работе системы как системы водоподготовки паровых и водогрейных котлов подготовленную воду необходимо направлять либо сразу в котел, либо в накопительный высокотемпературный бак (9), в котором поддерживается температура воды не менее 100°С.
Одновременное обессоливание и дегазация воды на обратноосмотической установке позволяет значительно сократить потери тепла, связанные с продувкой котла, а также работой термического деаэратора. При этом значительно уменьшается коррозионная агрессивность возвращаемого конденсата, упрощается технология дегазации воды и, соответственно, количество и состав оборудования, а также значительно уменьшается стоимость всей системы водоподготовки. Система легко автоматизируется и не требует постоянного контроля.
Предложенная схема достаточно вариативна. Если требуется удалить из воды только кислород, то можно отказаться от использования установки умягчения перед обратным осмосом и исключить из схемы дозирование раствора едкого натра перед обратноосмотической установкой.
В заключении можно сказать, что дегазация обратным осмосом подпиточной воды паровых и водогрейных котлов вполне может быть применима для автоматизированных котельных без обслуживающего персонала тепловой мощностью до 200 МВт.
На данную технологию подготовки воды подана и зарегистрирована заявка на патент, регистрационный № 2018138802 (Дата регистрации — 05.11.2018).
© 2018 Tikhonov Ivan. tiwater.info
1 – установка непрерывного осветления воды;
2 – установка системы непрерывного Na-катионитового умягчения воды;
3 — установка дозирования раствора едкого натра;
4 — установка дозирования раствора сульфита натрия;
5 — фильтр тонкой очистки;
6 – установка обратноосмотического обессоливания воды;
7 — мембранный гидроаккумуляторный бак;
8 – питательный насос котла, либо насос повыситель давления фильтрата;
9 – накопительный высокотемпературный бак.
Рисунок 1 Схема системы водоподготовки с дегазацией воды на установке обратного осмоса
Дегазация воды: химические и физические способы дегазации
Дегазацию воды можно позиционировать как устранение растворенных в ней газов, а также удаление газов, которые образовались в результате ее обработки. Наиболее часто из воды приходится устранять углекислоту, кислород и сероводород, более редко встречаются случаи, требующие использования методов по устранению из жидкости метана.
Углекислота, сероводород и другие коррозионно-активные газы создают благоприятные условия для образования коррозии металла, а также выступают в качестве катализаторов коррозионных процессов. Диоксид углерода способствует образованию коррозии бетона.
Дегазация используется в системах горячего водоснабжения, а также при подготовке питательных вод для котлов, как среднего, так и высокого давления, кроме того, она необходима при ионитовом умягчении воды, обезжелезивании воды. Кроме того дегазация является обязательным процессом в случае применения подземных вод, которые отличаются высоким содержанием сероводорода.
В настоящее время, для дегазации воды используют физические, а также химические способы. Под химическими способами, которые предназначены для дегазации воды, понимают добавление в жидкость специальных реагентов, которые имеют способность связывать растворенные в жидкости газы.
Примером данного способа может послужить обескислороживание (устранение кислорода) воды путем добавления в нее гидразин-гидрата. Такая процедура обескислораживания также может проходить путем фильтрации с использованием фильтров, которые загружены стальными стружками. И в первом, и во втором случае осуществляется связывание растворенного в воде кислорода, в результате чего он утрачивает свои коррозионные свойства.
Стоит отметить, что используемые для дегазации воды после водоочистки физические методы имеют более доступную стоимость по сравнению со стоимостью химических методов. Это обстоятельство, пожалуй, служит основной причиной, по которой физические методы применяются на практике гораздо чаще.
Сущность этого вида методов борьбы с газами в жидости заключается в создании условий, которые способствуют тому, что растворимость содержащихся в воде газов сводится практически к нулю. В качестве примера физических методов дегазации, можно взять аэрацию воды, к которой прибегают для удаления из жидкости таких газов, как сероводород или свободная углекислота. По своей сути процедура аэрации заключается в обеспечении соприкосновения газа, который растворен в воде, с воздухом.
Все дело в том, что парциальное давление сероводорода и углекислоты в атмосферном воздухе ничтожно мало и приравнивается к нулю, а это в свою очередь значит, что создаются идеальные условия для процесса диффузии растворенного в воде газа и пропускаемого через эту жидкость воздуха. Для осуществления аэрации необходимо использовать специальное оборудование, которое предназначено непосредственно для дегазации, и носит соответствующее название – дегазаторы. Хотя не исключены случаи, когда с этой же целью применяются так называемые брызгальные бассейны, в основном подобные устройства нужны, когда требуется провести обезжелезивание воды.
Среди различного оборудования, которое применяется при водоподготовке для дегазации воды, наиболее распространены пленочные дегазаторы. Эти устройства в целом представляют собой колонны, которые наполнены насадкой. Вода, которая проходит процедуру аэрации, стекает по насадке и при этом омывается встречным потоком воздуха, который подается довольно мощным вентилятором.
Физическая дегазация воды проводится также при необходимости обескислороживании жидкости. Для удаления кислорода из воды, ее доводят до кипения. В процессе кипения растворимость каждого из присутствующих в воде газов приближается к нулю. Для этой процедуры используются либо термические, либо вакуумные дегазаторы. Термические дегазаторы повышают температуру воды, доводя ее до кипения, в то время как вакуумные дегазаторы снижают давление жидкости, тем самым провоцируя кипение воды без изменения ее температуры.