Десятичная запятая что это
Десятичный разделитель
Десятичный разделитель — знак, используемый для разделения целой и дробной частей вещественного числа в форме десятичной дроби в системе десятичного исчисления. Для дробей в иных системах счисления может использоваться термин разделитель целой и дробной частей числа. Иногда также могут употребляться термины десятичная точка и десятичная запятая.
В англоязычных странах в качестве десятичного разделителя используется точка, в большинстве остальных — запятая (,).
Выбор символа для десятичного разделителя влияет и на выбор знака разделителя групп разрядов, который используется для того, чтобы упростить чтение больших чисел. Например, в русскоязычной среде в качестве этого разделителя принято использовать точку (.) или пробел.
Содержание
История вопроса
В Средние века, в допечатную эпоху было принято надчёркивать (¯) целую часть числа. Таким способом пользовался, например, иранский математик ал-Хорезми. Позже для этих целей стал применяться небольшой вертикальный штрих (ˌ) (символ U+02CC). Уже после начала книгопечатания этот штрих стало естественным отображать либо точкой, либо запятой. Большинство стран выбрали в качестве десятичного символа запятую. Однако англоязычные страны предпочли точку, а запятую стали использовать как разделитель групп разрядов.
В США в качестве десятичного разделителя использовалась точка. В Британской империи в рукописной записи также использовали точку, однако в типографском наборе предпочтительнее был интерпункт — точка, расположенная на середине строки (·). Но такой символ уже был общеупотребительным в математике для обозначения операции умножения, и система СИ не допускала его использования в качестве разделителя. В то же время использование точки допускалось. Поэтому в Британии постепенно переняли американскую систему.
В ЮАР при принятии метрической системы в качестве разделителя стали использовать запятую, заменив принятую в бывших британских колониях точку.
В большинстве международных организаций (таких, как Международное бюро мер и весов и ISO) до 1997 года во всех языках, включая английский, в качестве десятичного разделителя рекомендовалось использовать только запятую. Затем постепенно начался процесс признания точки в качестве десятичного разделителя, увенчавшийся принятием в 2003 году нормы ISO 31-0, допускающей использование как точки, так и запятой.
В арабских странах в качестве десятичного разделителя используется особый символ моммайе: «٫» (U+066B).
Разделитель групп разрядов
Для упрощения чтения, цифры в больших числах слева (а иногда и справа) от знака десятичного разделителя могут быть разделены на группы специальным символом — разделителем групп разрядов. Разбивка на группы осуществляется начиная от десятичного разделителя. Как правило, группы состоят из трёх цифр. В то же время в некоторых странах числа традиционно делятся на группы из двух или четырёх цифр. Деление на группы, как правило, не осуществляется, если с соответствующей стороны от десятичного разделителя не больше четырёх или пяти цифр.
Так же, как и в случае с десятичным разделителем, для разделителя групп разрядов используются разные символы. Если в качестве десятичного разделителя используется точка, то разделитель групп разрядов может быть представлен запятой, апострофом или пробелом, а если запятая, — то точкой (например, в испанском языке [1] [2] ) или пробелом. Таким образом, значение точки и запятой оказывается зависимым от контекста (например, запись 1,546 в английской нотации обозначает тысяча пятьсот сорок шесть, а в русской — одна целая пятьсот сорок шесть тысячных). Поэтому, чтобы избежать неоднозначности, для разделителя групп разрядов международные стандарты (ISO, Международное бюро мер и весов, ИЮПАК) рекомендуют всегда использовать пробел (или тонкую шпацию при типографском наборе).
Десятичные разделители в разных странах
Австралия и Океания | Америка | Азия | Африка | Европа |
---|---|---|---|---|
Австралия, Новая Зеландия | Англоязычная Канада, Мексика, США | Бруней, Израиль, Индия, Китай, КНДР, Малайзия, Пакистан, Сингапур,Тайвань, Таиланд, Филиппины, Шри Ланка, Южная Корея, Япония | Ботсвана, Зимбабве, Нигерия | Великобритания, Ирландия |
Австралия и Океания | Америка | Азия | Африка | Европа |
---|---|---|---|---|
— | Вся Южная Америка, кроме Перу, а также Гватемала, Гондурас, Доминиканская республика, франкоязычная Канада, Куба, Никарагуа, Панама, Сальвадор | Вьетнам, Индонезия, Турция | Камерун, ЮАР | Вся Европа, кроме Великобритании и Ирландии, а также все страны бывшего СССР |
А также в искусственных языках интерлингва и эсперанто. |
Австралия и Океания | Америка | Азия | Африка | Европа |
---|---|---|---|---|
— | — | Бахрейн, Иран, Ирак, Катар, Кувейт, ОАЭ, Оман, Саудовская Аравия, Сирия | — | — |
Распространение систем обозначений
Все страны, использующие в качестве десятичного разделителя запятую, знакомы и с англоязычной нотацией из-за того, что такая система используется во многих электронных устройствах, например, калькуляторах.
Большинство операционных систем позволяют пользователю выбрать предпочтительные символы для десятичного разделителя и для разделителя групп разрядов, и программное обеспечение может учитывать этот выбор.
В большинстве языков программирования в качестве десятичного разделителя используется точка, а при разработке языка Алгол между разработчиками разыгралась «десятичная буря» (см. в статье о языке Алгол): европейцы требовали выбрать запятую, а американцы — точку.
Десятичная запятая
Мы уже видели, как наша система счета работает с группировкой чисел по десяткам, когда каждый разряд в числе в десять раз больше, чем его сосед справа (сто в десять раз больше десяти, тысяча в десять раз больше ста и т. д.). Эта же модель работает и в обратном направлении. Читая слева направо, увидим, что каждый следующий столбец в десять раз меньше предыдущего (сто в десять раз меньше тысячи, единица в десять раз меньше десятка). Но зачем останавливаться на этом?
Мы можем поделить единицы на кусочки, которые будут в десять раз меньше: десятые доли. А эти десятые доли поделить на кусочки, которые вновь будут в десять раз меньше: сотые доли. Мы называем все эти доли десятичной дробной частью, или десятичными знаками. В английском языке они обозначаются словом decimals – с ним связано слово «децимация», произошедшее от латинского decimatio. (В Древнем Риме существовало жестокое наказание с таким названием: если когорта в войске совершала какой-то проступок, то в ней казнили каждого десятого солдата просто по счету).
Когда математики придумали принцип образования десятичных дробей, встал вопрос: как записывать эти новые числа? Можно было бы, конечно, писать просто но кому-то в голову пришла блестящая идея просто обозначить специальным значком место, где заканчиваются целые числа и начинается дробная часть: 93,58. В настоящее время в качестве такого значка в разных странах используются точка и запятая.
Десятичные знаки в дробной части тоже могут продолжаться сколь угодно долго:
Так что числа могут не только увеличиваться, но и уменьшаться до бесконечности.
В голове ребенка
Давайте сравним 11 111 и 9999. Ребенок уже знает, что, хотя число 11 111 кажется на первый взгляд меньше, чем 9 999 (поскольку в нем одни единицы), на самом деле оно больше. Ведь это число пятизначное, а 9999 – лишь четырехзначное; а чем больше знаков в числе, тем оно больше, какие бы цифры в нем ни стояли. Если человеку предлагают в качестве зарплаты четырехзначную сумму или же трехзначную сумму, он, даже если не знает точных цифр, понимает, что в первом случае ему будут платить больше, чем во втором.
Далее ребенок узнает, что десятичные дроби уменьшаются с увеличением числа знаков после запятой: 0,03 меньше, чем 0,3, а 0,003 еще меньше. Чрезмерное обобщение возникает в том случае, когда ребенок считает: если с увеличением количества знаков в целом числе оно становится больше, то дробное число обязательно тем меньше, чем больше в нем знаков после запятой. Ему кажется, что 0,125 меньше 0,8 потому, что в числе 0,125 есть тысячные доли, тогда как в числе 0,8 – только десятые. (Обратите внимание, как язык здесь помогает создать путаницу: число, в котором присутствует тысячный разряд, на самом деле больше, чем число, в котором есть только десятки, а слова «тысячных» и «десятых» звучат очень похоже на слова «тысяч» и «десятков».)
Вы сможете помочь своему ребенку, поговорив с ним о значениях разрядов в каждом из приведенных чисел: в числе 0,8 содержится восемь десятых долей, тогда как в числе 0,125 десятая доля только одна – а на остальные цифры можно не смотреть.
Десятичные дроби: определения, запись, примеры, действия с десятичными дробями
Данный материал мы посвятим такой важной теме, как десятичные дроби. Сначала определимся с основными определениями, приведем примеры и остановимся на правилах десятичной записи, а также на том, что из себя представляют разряды десятичных дробей. Далее выделим основные виды: конечные и бесконечные, периодические и непериодические дроби. В финальной части мы покажем, как точки, соответствующие дробным числам, расположены на оси координат.
Что такое десятичная запись дробных чисел
Так называемая десятичная запись дробных чисел может быть использована как для натуральных, так и для дробных чисел. Она выглядит как набор из двух и более цифр, между которыми есть запятая.
Десятичная запятая нужна для того, чтобы отделять целую часть от дробной. Как правило, последняя цифра десятичной дроби не бывает нулем, за исключением случаев, когда десятичная запятая стоит сразу после первого же нуля.
Определение десятичных дробей
Основываясь на указанном выше понятии десятичной записи, мы можем сформулировать следующее определение десятичных дробей:
Десятичные дроби представляют собой дробные числа в десятичной записи.
О том, как правильно представить в десятичном виде обыкновенные дроби с десятками, сотнями, тысячами в знаменателе, будет рассказано в рамках отдельного материала.
Как правильно читать десятичные дроби
Что такое разряды в десятичных дробях
Названия разрядов, расположенных до запятой, аналогичны тем, что существуют в натуральных числах. Названия тех, что расположены после, наглядно представлены в таблице:
Любую десятичную дробь можно разложить по отдельным разрядам, то есть представить в виде суммы. Это действие выполняется так же, как и для натуральных чисел.
Что такое конечные десятичные дроби
Все дроби, о которых мы говорили выше, являются конечными десятичными дробями. Это означает, что количество цифр, расположенное у них после запятой, является конечным. Выведем определение:
Конечные десятичные дроби представляют собой вид десятичных дробей, у которых после знака запятой стоит конечное число знаков.
Основные виды бесконечных десятичных дробей: периодические и непериодические дроби
Мы указывали выше, что конечные дроби называются так потому, что после запятой у них стоит конечное число цифр. Однако оно вполне может быть и бесконечным, и в этом случае сами дроби также будут называться бесконечными.
Бесконечными десятичными дробями называются такие, у которых после запятой стоит бесконечное количество цифр.
В «хвосте» такой дроби могут стоять не только случайные на первый взгляд последовательности цифр, но постоянное повторение одного и того же знака или группы знаков. Дроби с чередованием после десятичной запятой называются периодическими.
Периодическими десятичными дробями называются такие бесконечные десятичные дроби, у которых после запятой повторяется одна цифра или группа из нескольких цифр. Повторяющаяся часть называется периодом дроби.
Во избежание ошибок введем однообразие обозначений. Условимся записывать только один период (максимально короткую последовательность цифр), который стоит ближе всего к десятичной запятой, и заключать его в круглые скобки.
Бесконечные десятичные периодические дроби относятся к рациональным числам. Иначе говоря, любую периодическую дробь можно представить в виде обыкновенной, и наоборот.
Существуют и дроби, у которых после запятой бесконечно повторяющаяся последовательность отсутствует. В таком случае их называют непериодическими дробями.
К непериодическим десятичным дробям относятся те бесконечные десятичные дроби, в которых после запятой не содержится периода, т.е. повторяющейся группы цифр.
Непериодические дроби относятся к иррациональным числам. В обыкновенные дроби их не переводят.
Основные действия с десятичными дробями
С десятичными дробями можно производить следующие действия: сравнение, вычитание, сложение, деление и умножение. Разберем каждое из них отдельно.
Сравнение десятичных дробей может быть сведено к сравнению обыкновенных дробей, которые соответствуют исходным десятичным. Но бесконечные непериодические дроби свести к такому виду нельзя, а перевод десятичных дробей в обыкновенные зачастую является трудоемкой задачей. Как же быстро произвести действие сравнения, если нам нужно сделать это по ходу решения задачи? Удобно сравнивать десятичные дроби по разрядам таким же образом, как мы сравниваем натуральные числа. Этому методу мы посвятим отдельную статью.
Чтобы складывать одни десятичные дроби с другими, удобно использовать метод сложения столбиком, как для натуральных чисел. Чтобы складывать периодические десятичные дроби, необходимо предварительно заменить их обыкновенными и считать по стандартной схеме. Если же по условиям задачи нам надо сложить бесконечные непериодические дроби, то нужно перед этим округлить их до некоторого разряда, а потом уже складывать. Чем меньше разряд, до которого мы округляем, тем выше будет точность вычисления. Для вычитания, умножения и деления бесконечных дробей предварительное округление также необходимо.
Нахождение разности десятичных дробей обратно действию сложения. По сути, с помощью вычитания мы можем найти такое число, сумма которого с вычитаемой дробью даст нам уменьшаемую. Подробнее об этом расскажем в рамках отдельного материала.
Умножение десятичных дробей производится так же, как и для натуральных чисел. Для этого тоже подходит метод вычисления столбиком. Это действие с периодическими дробями мы опять же сводим к умножению обыкновенных дробей по уже изученным правилам. Бесконечные дроби, как мы помним, надо округлить перед подсчетами.
Процесс деления десятичных дробей является обратным процессу умножения. При решении задач мы также пользуемся подсчетами в столбик.
Положение десятичных дробей на оси координат
Можно установить точное соответствие между конечной десятичной дробью и точкой на оси координат. Выясним, как отметить точку на оси, которая будет точно соответствовать необходимой десятичной дроби.
Если мы находим не точку на оси, а десятичную дробь, соответствующую ей, то это действие называется десятичным измерением отрезка. Посмотрим, как правильно это сделать.
Допустим, нам нужно попасть от нуля в заданную точку на оси координат (или максимально приблизиться в случае с бесконечной дробью). Для этого мы постепенно откладываем единичные отрезки от начала координат, пока не попадем в нужную точку. После целых отрезков при необходимости отмеряем десятые, сотые и более мелкие доли, чтобы соответствие было максимально точным. В итоге мы получили десятичную дробь, которая соответствует заданной точке на оси координат.
Если мы не можем попасть в точку в процессе десятичного измерения, то значит, что ей соответствует бесконечная десятичная дробь.
Десятичная запятая
Имеет особую форму записи: целая часть в десятичной системе счисления, затем запятая и затем дробная часть в десятичной системе счисления, причём количество цифр дробной части строго определяется размерностью дробной части: если это десятые доли, дробная часть записывается одной цифрой; если тысячные — тремя; десятитысячные — четырьмя и т. д.
обыкновенная дробь | десятичная дробь |
---|---|
4 /10 | 0,4 |
79 395 /1000 | 79,395 |
Очевидно, в начало целой части и/или в конец дробной части можно дописывать сколько угодно нулей.
Существуют также бесконечные десятичные дроби — периодические и непериодические. Например, ⅓ записывается как бесконечная периодическая дробь 0,3333… или 0,(3). А число π записывается как бесконечная непериодическая дробь 3,141592…
Периодическая десятичная дробь называется чистой периодической дробью, если её период (группа повторяющихся цифр) начинается сразу после запятой, а период может содержать любое конечное число цифр. Так, дробь 1,(3) — чистая периодическая дробь. Если периодическая десятичная дробь содержит ещё число, заключённое между целой частью и периодом, то такая периодическая дробь называется смешанной; число периодической дроби, стоящее между целой частью и периодом, называется предпериодом этой дроби.
Очевидно, что всякая периодическая дробь является рациональным числом вида , где
,
. Верно и обратное утверждение: всякое рациональное число вида
можно представить в виде десятичной периодической дроби.
Произношение десятичных дробей
В русском языке десятичные дроби читаются так: сначала произносится целая часть, потом слово «целых» («целая»), потом десятичная часть так, как если бы всё число состояло только из этой части, то есть числитель дроби — количественное числительное женского рода (одна, две, восемь и т. д.), а знаменатель — порядковое числительное (седьмая, сотая, двести тридцатая и т. д.).
Однако на практике часто встречается такое произношение: целая часть, союз «и», дробная часть.
Десятичные дроби
Понятие десятичной дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:
В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.
В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
Свойства десятичных дробей
Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:
Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:
Обучение на курсах по математике — отличный способ закрепить полученные знания на практике и подтянуть сложные темы.
Как записать десятичную дробь
Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.
Пример 1. Перевести обыкновенную дробь 16/10 в десятичную.
Пример 2. Перевести 37/1000 в десятичную дробь.
Ответ: 37/1000 = 0,037.
Как читать десятичную дробь
Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:
Сколько цифр после запятой? | Читается, как |
---|---|
одна цифра — десятых; | 1,3 — одна целая, три десятых; |
две цифры — сотых | 2,22 — две целых, двадцать две сотых; |
три цифры — тысячных; | 23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных; |
четыре цифры — десятитысячных; | 0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных; |
и т.д. |
Сохраняй наглядную картинку, чтобы быстрее запомнить.
Преобразование десятичных дробей
Чтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся!
Как перевести десятичную дробь в проценты
Уже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %.
Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше.
А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере:
Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило.
2/5 = 0,4
0,4 · 100% = 40%
8/25 = 0,32
0,32 · 100% = 32%
Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник:
Преобразование десятичных дробей
Десятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой.
Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой).
Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся!
Пример 1. Перевести 5,4 в смешанное число.
Пример 2. Перевести 4,005 в смешанное число.
Ответ: 4,005 = 4 1/200.
Пример 3. Перевести 5,60 в смешанное число.
Как перевести десятичную дробь в обыкновенную
Не будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать:
Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!
Действия с десятичными дробями
С десятичными дробями можно производить те же действия, что и с любыми другими числами. Рассмотрим самые распространенные на простых примерах.
Как разделить десятичную дробь на натуральное число
Пример 2. Разделить 183,06 на 45.
Ответ: 183,06 : 45 = 4,068.
Как разделить десятичную дробь на обыкновенную
Чтобы разделить десятичную дробь на обыкновенную или смешанную, нужно представить десятичную дробь в виде обыкновенной, а смешанное число записать, как неправильную дробь.
Пример 1. Разделить 0,25 на 3/4.
Пример 2. Разделить 2,55 на 1 1/3.
Ответ: 2,55 : 1 1/3 = 1 73/80.
Как умножить десятичную дробь на обыкновенную
Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила за 6 класс. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.
Пример 1. Умножить 2/5 на 0,8.
Пример 2. Умножить 0,28 на 6 1/4.
Ответ: 0,28 ∗ 6 1/4 = 0,8.