Диагонали ромба равны чему равен наименьший угол
Диагонали ромба равны. Чему равен наименьший угол ромба? Полным решение!А не 6-2=4.
Угол В=180-внешний угол при вершине В=180-70=110. Угол А=35 (по условию). Угол С=180-угол А-угол В=180-35-110=35. Ответ: 35, 35, 110
B5.
Дано:треугольник ABC;угол B=70 градусов.
Найти:угол A,B
Решение:угол A,B=(180-70)/2=55 градусов.
Ответ:угол A=55 градусов,угол B=55 градусов.
B6.
Дано:треугольник ABC;угол A=72 градуса;угол B в 5 раз меньше угла C
Найти:угол C
Решение:пусть х см.-угол B,5х см.- угол C.
1)угол B+ угол C=180-72=108 градусов.
2)ММЗ:5х+х=108
6х=108
х=18
3)угол B=5*18=90 градусов
Ответ:90 градусов
Углы при основании у равнобедренной трапеции равны, значит второй угол тоже 60°.
Так как при диагонали угол 30°, то 60-30=30°
Сумма всех углов 360°
240°:2=120° (остальные два угла
рассмотрим верхний треугольник с меньшим основанием. 180°-120°-30°=30°, следовательно два угла одинаковые. Это равнобедренный треугольник.
Если боковая сторона 4 см, то и меньшее основание тоже 4 см.
Большее основание трапеции является гипотенузой этого треугольника.
Геометрические фигуры. Ромб. Углы ромба. Как найти угол ромба.
Углы ромба, нахождение:
Ромбы с равным размером стороны могут внешне довольно сильно отличаться друг от друга. Это разница объясняется различной величиной внутренних углов. То есть, для определения угла ромба не хватит знать лишь длину его стороны.
2. Для вычисления величины углов ромба хватит знать длины диагоналей ромба. После построения диагоналей ромб разбивается на 4 треугольника. Диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
Ромб — симметричная фигура, его диагонали есть в одно время и осями симметрии, вот почему каждый внутренний треугольник равен остальным. Острые углы треугольников, которые образованы диагоналями ромба, равняются ½ искомых углов ромба.
3. Тангенс острого угла прямоугольного треугольника соответствует отношению противолежащего катета к прилежащему. ½ любой из диагоналей ромба оказывается катетом прямоугольного треугольника.
Обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — А (острый) и В (тупой), теперь из соотношения сторон в прямоугольных треугольниках внутри ромба находим:
По тригонометрическим таблицам находят углы, которые соответствуют полученным значениям тангенсов.
Острый угол ромба равен 60 градусам.
Когда острый угол ромба = 60°, значит, диагональ равняется стороне ромба и делит его на 2 одинаковых равносторонних треугольника.
∆ ABD и ∆ BCD — равносторонние,
1) Изучим треугольник ABD.
Т.к. AB=AD (так как являются сторонами ромба), значит, ∆ ABD является равнобедренным треугольником с основанием BD.
Углы при основании равнобедренного треугольника:
Так как каждый угол треугольника ABD равен 60 градусов, значит, ∆ ABD является равносторонним треугольником. Значит, BD=AB.
2) Треугольники ABD и BCD одинаковы по трем сторонам (AB=BC=CD=AD (как стороны ромба), BD=AB (из доказанного)).
То есть, ∆ BCD оказывается равносторонним треугольником.
Что и требовалось доказать.
Т.к. сумма углов ромба, которые прилежат к одной стороне, равна 180º, когда острый угол ромба равен 60º, его тупой угол равен 120º. Таким образом:
Когда тупой угол ромба равен 120 градусам, значит диагональ равняется стороне ромба и делит его на 2 равных равносторонних треугольника.
Ромб с прямыми углами называется квадратом.