Дифференциал что такое exp x
Производная e в степени x и показательной функции
Основные формулы
Вывод формулы производной экспоненты
Применяем эти факты к нашему пределу (3). Используем свойство (4):
;
.
Применим свойство логарифма (5):
. Тогда
.
Применим свойство (6). Поскольку существует положительный предел и логарифм непрерывен, то:
.
Здесь мы также воспользовались вторым замечательным пределом (7). Тогда
.
Тем самым мы получили формулу (1) производной экспоненты.
Вывод формулы производной показательной функции
Преобразуем формулу (8). Для этого воспользуемся свойствами показательной функции и логарифма.
;
.
Итак, мы преобразовали формулу (8) к следующему виду:
.
Тем самым, мы нашли производную показательной функции с произвольным основанием степени:
.
Другие способы вывода производной экспоненты
Пример
Производные высших порядков от e в степени x
Мы видим, что производная от функции (14) равна самой функции (14). Дифференцируя (1), получаем производные второго и третьего порядка:
;
.
Отсюда видно, что производная n-го порядка также равна исходной функции:
.
Производные высших порядков показательной функции
Дифференцируя (15), получаем производные второго и третьего порядка:
;
.
Удивительная особенность производной e в степени х
Многие числа обрели свою величину и суеверное значение еще в древности. В наши дни к ним добавляются новые мифы. Существует много легенд о числе пи, немногим уступают ему в известности знаменитые числа Фибоначчи. Но, пожалуй, самым удивительным является число е, без которого не может обойтись современная математика, физика и даже экономика.
Арифметическое значение числа е равно приблизительно 2,718. Почему не точно, а приблизительно? Потому что это число иррациональное и трансцендентное, его нельзя выразить дробью с натуральными целыми числами или многочленом с рациональными коэффициентами. Для большинства расчетов указанной точности значения в 2,718 достаточно, хотя современный уровень вычислительной техники позволяет определить его значение с точностью более триллиона знаков после запятой.
Что такое предел
К первому же замечательному пределу относят выражение lim n →∞ (Sin n / n) = 1.
Что такое производная функции
Для раскрытия понятия производной следует напомнить что такое функция в математике. Чтобы не загромождать текст сложными определениями, остановимся на интуитивном математическом понятии функции, заключающимся в том, что в ней одна или несколько величин полностью определяют значение другой величины, если они взаимосвязаны. Например, в формуле S = π ∙ r 2 площади круга, значение радиуса r полностью и однозначно определяет площадь круга S.
В зависимости от вида, функции могут быть алгебраическими, тригонометрическими, логарифмическими и др. В них могут быть взаимосвязаны два, три и более аргументов. Например, пройденное расстояние S, которое объект преодолел с равноускоренной скоростью, описывается функцией S = 0,5 ∙ a ∙ t 2 + V ∙ t, где «t» — время движения, аргумент «а» ускорение (может быть как положительной, так и отрицательной величиной) и «V» начальная скорость движения. Таким образом, величина пройденного расстояния зависит от значений трех аргументов, два из которых («а» и «V») постоянны.
Покажем на этом примере элементарное понятие производной функции. Оно характеризует скорость изменения функции в данной точке. В нашем примере это будет скорость движения объекта в конкретный момент времени. При постоянных «а» и «V» она зависит только от времени «t», то есть говоря научным языком нужно взять производную функции S по времени «t».
Этот процесс называется дифференцированием, выполняется путем вычисления предела отношения прироста функции к приросту ее аргумента на ничтожно малую величину. Решения подобных задач для отдельных функций часто является непростым делом и здесь не рассматриваются. Также стоит отметить, что некоторые функции в определенных точках вообще не имеют таких пределов.
В нашем же примере производная S по времени «t» примет вид S’ = ds/dt = а ∙ t + V, из которого видно, что скорость S’ изменяется по линейному закону в зависимости от «t».
Производная экспоненты
Известный математик Тейлор сумел разложить эту функцию в ряд, названный его именем e x = 1 + x/1! + x 2 /2! + x 3 /3! + … в диапазоне x от — ∞ до + ∞.
Закон, базирующийся на этой функции, называется экспоненциальным. Он описывает:
Приведем производные для наиболее общих случаев экспоненты:
Используя данные зависимости, несложно найти производные для других частных видов этой функции.
Некоторые интересные факты о числе е
С этим числом связаны фамилии таких ученых, как Непер, Отред, Гюйгенс, Бернулли, Лейбниц, Ньютон, Эйлер, и другие. Последний собственно и ввел обозначение е для этого числа, а также нашел первые 18 знаков, используя для расчета открытый им ряд е = 1 + 1/1! + 2/2! + 3/3! …
Число e встречается в самых неожиданных местах. Например, оно входит в уравнение цепной линии, которое описывает провис каната под действием собственного веса, когда его концы закреплены на опорах.
Видео
Экспоненциальная функция
Содержание
Определение
Экспоненциальная функция может быть определена различными эквивалентными способами. Например через ряд Тейлора:
Свойства
Экспонента от комплексного аргумента
От комплексного аргумента z = x + iy экспонента определяется следующим образом:
Вариации и обобщения
Аналогично экспонента может быть определена для элемента произвольной ассоциативной алгебры. В конкретном случае требуется также доказательство того, что указанные пределы существуют.
Матричная экспонента
Экспоненту от квадратной матрицы (или линейного оператора) можно формально определить, подставив матрицу в соответствующий ряд:
Определённый таким образом ряд сходится для любого оператора A с ограниченной нормой, поскольку мажорируется рядом для экспоненты нормы A: Следовательно, экспонента от матрицы
всегда определена и сама является матрицей.
С помощью матричной экспоненты легко задать вид решения линейного дифференциального уравнения с постоянными коэффициентами: уравнение с начальным условием x(0) = x0 имеет своим решением x(t) = exp(At)x0.
Обратная функция
Обратной функцией к экспоненциальной функции является натуральный логарифм.
Обозначается ln(x) :
См. также
Полезное
Смотреть что такое «Экспоненциальная функция» в других словарях:
ЭКСПОНЕНЦИАЛЬНАЯ ФУНКЦИЯ — то же, что показательная функция … Большой Энциклопедический словарь
экспоненциальная функция — экспонента — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы экспонента EN exponential function … Справочник технического переводчика
экспоненциальная функция — то же, что показательная функция. * * * ЭКСПОНЕНЦИАЛЬНАЯ ФУНКЦИЯ ЭКСПОНЕНЦИАЛЬНАЯ ФУНКЦИЯ, то же, что показательная функция (см. ПОКАЗАТЕЛЬНАЯ ФУНКЦИЯ) … Энциклопедический словарь
экспоненциальная функция — eksponentinė funkcija statusas T sritis fizika atitikmenys: angl. exponential function vok. exponentielle Funktion, f rus. экспоненциальная функция, f pranc. fonction exponentielle, f … Fizikos terminų žodynas
Экспоненциальная функция — функция у = ex, то есть Показательная функция. Обозначается также y = exp х. Иногда Э. ф. называют и функцию у = ax при любом основании а > 0 … Большая советская энциклопедия
ЭКСПОНЕНЦИАЛЬНАЯ ФУНКЦИЯ — показа тельная функция, функция у=е х;обозначается также y = ехр х. Иногда Э. ф. наз. и функцию у = а х при любом основании а>0. БСЭ 3 … Математическая энциклопедия
ЭКСПОНЕНЦИАЛЬНАЯ ФУНКЦИЯ — то же, что показательная функция … Естествознание. Энциклопедический словарь
экспоненциальная — функция [ Словарь иностранных слов русского языка
Почему производная экспоненты равна ей самой?
Однако, многие ли из Вас знают, почему так происходит? Сегодня я хочу это рассказать на максимально простом языке. Поехали! Рассмотрим две показательные функции:
Вспомним теперь классическое определение производной функции как предела отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю.
Простыми словами: мы анализируем скорость изменения функции f(x) при бесконечно малом изменении её аргумента, которое мы будем обозначать ∆х.
В формулах для первой функции это выглядит так:
Давайте кое-что посчитаем на калькуляторе, а именно выражение под знаком предела. Например, пусть изменение функции ∆х = 0,001. Тогда:
Впрочем, это ничего нам не даст. До того момента, как мы не посчитаем аналогичное выражение для функции, в основании которой 3:
А вот это уже интересно. Если немного вспомнить математический анализ, то в голове всплывает вторая теорема Больцано-Коши или теорема о промежуточном значении.
Применительно к нашему случаю она позволяет утверждать, что рассматриваемая функция (имеется ввиду дробь (x^∆х-1)/∆х) при каком-то x равняется единице! Если мы найдем такое х, то по определению получим равенство функции её производной! Начинаем! Приравниваем нашу функцию к единице:
Это. просто. восклицательный знак
TELEGRAM «Математика не для всех» — там я публикую не только интересные статьи, но и математический юмор и многое другое.
Как найти производную степенной функции: формула, примеры
Таблица производных и правила дифференцирования
Задание. Найти производную функции
Решение. Так как производная суммы равна сумме производных, то
Воспользуемся формулами для производных показательной и обратной тригонометрической функций:
Ответ.
Производные сложных функций
Задание.Найти производную функции
Решение. По правилу дифференцирования сложной функции:
В свою очередь производная также берется по правилу дифференцирования сложной функции:
Ответ.
Производные элементарных функций
Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.
Итак, производные элементарных функций:
Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:
В общем, константы можно выносить за знак производной. Например:
Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам.
Геометрический и физический смысл производной
Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:
Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.
Иначе это можно записать так:
Какой смысл в нахождении такого предела? А вот какой:
Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.
Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.
Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:
Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:
Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:
Нам нужно найти скорость в момент времени t=2c. Вычислим производную:
Производная функции с экспонентой
Понятие производной сложной функции
Если g(x) и f(u) – дифференцируемые функции своих аргументов соответственно в точках x и u = g(x), то сложная функция также дифференцируема в точке x и находится по формуле
Типичная ошибка при решении задач на производные – машинальное перенесение правил дифференцирования простых функций на сложные функции. Будем учиться избегать этой ошибки.
А теперь посмотрите на картинку ниже, которая иллюстрирует решение задач на сложные производные по аналогии с простым примером из кулинарии – приготовлении запечёных яблок, фаршированных ягодами.
Итак, “яблоко” – это функция, аргументом которой является промежуточный аргумент, а промежуточный аргумент по независимой переменной x, в свою очередь, является “фаршем” (ягодами). Представим себе, что решая задачи на производные сложной функции, сначала помещаем яблоко с фаршем в особую (физико-математическую) духовку и устанавливаем режим 1. При таком режиме духовка воздействует только на “яблоко”, поскольку нужно, допустим, больше пропечь яблоко, а фарш из ягод оставить более сочным, то есть обрабатывать в другом режиме. Итак, в при режиме 1 обрабатывается яблоко, а фарш остаётся незатронутым, или, ближе к нашим задачам, находим производную функции лишь от промежуточного аргумента, то есть, “яблока”. Затем в духовке устанавливается режим 2, который воздействует только на фарш, иначе говоря, записываем производную функции, являющейся промежуточным аргументом по независимой переменной x. И, в конце концов, записываем произведение производной “яблока” и производной “фарша”. Можно подавать!
Пример 1.Найти производную функции
Сначала определим, где здесь “яблоко”, то есть функция по промежуточному аргументу u, а где “фарш”, то есть промежуточный аргумент u по независимой переменной x. Определяем: возведение в степень – это функция по промежуточному аргументу, то есть “яблоко”, а выражение в скобках (разность двух тригонометрических функций) – это промежуточный аргумент, то есть “фарш”.
Далее по таблице производных (производная суммы или разности, производные синуса и косинуса) находим:
Требуемая в условии задачи производная (готовое “фаршированое яблоко”):
Нахождение производной сложной логарифмической функции имеет свои особенности, поэтому у нас есть и урок “Производная логарифмической функции”.
Пример 2.Найти производную функции
Неправильное решение: вычислять натуральный логарифм каждого слагаемого в скобках и искать сумму производных:
Правильное решение: опять определяем, где “яблоко”, а где “фарш”. Здесь натуральный логарифм от выражения в скобках – это “яблоко”, то есть функция по промежуточному аргументу u, а выражение в скобках – “фарш”, то есть промежуточный аргумент u по независимой переменной x.
Тогда (применяя формулу 14 из таблицы производных)
Во многих реальных задачах выражение с логарифмом бывает несколько сложнее, поэтому и есть урок “Производная логарифмической функции”.
Пример 3.Найти производную функции
Правильное решение. В очередной раз определяем, где “яблоко”, а где “фарш”. Здесь косинус от выражения в скобках (формула 7 в таблице производных)- это “яблоко”, оно готовится в режиме 1, воздействующем только на него, а выражение в скобках (производная степени – номер 3 в таблице производных) – это “фарш”, он готовится при режиме 2, воздействующей только на него. И как всегда соединяем две производные знаком произведения. Результат:
Производная сложной логарифмической функции – частое задание на контрольных работах, поэтому настоятельно рекомендуем посетить урок “Производная логарифмической функции”.
Кроме того, полезно знать следующее. Если сложная функция может быть представлена в виде цепочки из трёх функций
,
то её производную следует находить как произведение производных каждой из этих функций:
.
Пример 4.Найти производную функции
Применяем правило дифференцирования сложной функции, не забывая, что в полученном произведении производных промежуточный аргумент по независимой переменной x не меняется:
Готовим второй сомножитель произведения и применяем правило дифференцирования суммы:
Второе слагаемое – корень, поэтому
Таким образом получили, что промежуточный аргумент, являющийся суммой, в качестве одного из слагаемых содержит сложную функцию: возведение в степень – сложная функция, а то, что возводится в степень – промежуточный аргумент по независимой переменной x.
Поэтому вновь применим правило дифференцирования сложной функции:
Степень первого сомножителя преобразуем в корень, а дифференцируя второй сомножитель, не забываем, что производная константы равна нулю:
Теперь можем найти производную промежуточного аргумента, нужного для вычисления требуемой в условии задачи производной сложной функции y:
Пример 5.Найти производную функции
Сначала воспользуемся правилом дифференцирования суммы:
Получили сумму производных двух сложных функций. Находим первую из них:
Здесь возведение синуса в степень – сложная функция, а сам синус – промежуточный аргумент по независимой переменной x. Поэтому воспользуемся правилом дифференцирования сложной функции, попутно вынося множитель за скобки :
Теперь находим второе слагаемое из образующих производную функции y:
Здесь возведение косинуса в степень – сложная функция f[g(x)], а сам косинус – промежуточный аргумент по независимой переменной x. Снова воспользуемся правилом дифференцирования сложной функции:
Результат – требуемая производная:
Определение и формулы
Заметим, что степенно-показательную функцию можно представить в показательном виде:
.
Поэтому ее также называют сложной показательной функцией.
Пошаговые примеры – как найти производную
Пример 3. Найти производную функции
.
Решение. Определяем части выражения функции: всё выражение представляет произведение, а его сомножители – суммы, во второй из которых одно из слагаемых содержит постоянный множитель. Применяем правило дифференцирования произведения: производная произведения двух функций равна сумме произведений каждой из этих функций на производную другой:
Далее применяем правило дифференцирования суммы: производная алгебраической суммы функций равна алгебраической сумме производных этих функций. В нашем случае в каждой сумме второе слагаемое со знаком минус. В каждой сумме видим и независимую переменную, производная которой равна единице, и константу (число), производная которой равна нулю. Итак, “икс” у нас превращается в единицу, а минус 5 – в ноль. Во втором выражении “икс” умножен на 2, так что двойку умножаем на ту же единицу как производную “икса”. Получаем следующие значения производных:
Подставляем найденные производные в сумму произведений и получаем требуемую условием задачи производную всей функции:
Пример 4. Найти производную функции
Решение. От нас требуется найти производную частного. Применяем формулу дифференцирования частного: производная частного двух функций равна дроби, числитель которой есть разность произведений знаменателя на производную числителя и числителя на производную знаменателя, а знаменатель есть квадрат прежнего числителя. Получаем:
Производную сомножителей в числителе мы уже нашли в примере 2. Не забудем также, что произведение, являющееся вторым сомножителем в числителе в текущем примере берётся со знаком минус:
Пример 5. Найти производную функции
Решение. В данной функции видим произведение, один из сомножителей которых – квадратный корень из независимой переменной, с производной которого мы ознакомились в таблице производных. По правилу дифференцирования произведения и табличному значению производной квадратного корня получаем:
Пример 6. Найти производную функции
Решение. В данной функции видим частное, делимое которого – квадратный корень из независимой переменной. По правилу дифференцирования частного, которое мы повторили и применили в примере 4, и табличному значению производной квадратного корня получаем:
Чтобы избавиться от дроби в числителе, умножаем числитель и знаменатель на :
Примеры решения задач
Производная от суммы или разности функция равна сумме или разности их производных, то есть
Производную от найдем как производную от степенной функции:
Для нахождения производной одночлена вначале константу вынесем за знак производной:
Далее дробь представим как степень с отрицательным показателем по свойству
представим как степень с отрицательным показателем по свойству :
Далее производную находим как от степенной функции:
Для нахождения производной запишем корень в виде степени с дробным показателем:
Далее производную находим как от степенной функции:
Записываем дробную степень в виде корня:
Производная от двойки, как от константы, равна нулю:
Итак, окончательно имеем:
Задание | Найти производную функции |
Решение | Искомая производная |
Данную производную находим как производную от степенной функции, но так как основание степени является сложной функцией (отличается от просто
является сложной функцией (отличается от просто ), то нужно еще умножить на производную от основания:
Найдем отдельно оставшуюся производную. Производная о суммы равна сумме производных:
Из первого слагаемого вынесем константу за знак производной, а производная от второго, как от константы, равна нулю:
Производная от равна единице:
Таким образом, производная заданной функции
Применение дифференциала в приближенных вычислениях
Задание. Вычислить приближенно , заменяя приращение функции ее дифференциалом.
Решение. Рассмотрим функцию . Необходимо вычислить ее значение в точке
. Представим данное значение в виде следующей суммы:
Величины и
выбираются так, чтобы в точке
можно было бы достаточно легко вычислить значение функции и ее производной, а
было бы достаточно малой величиной. С учетом этого, делаем вывод, что
, то есть
,
.
Вычислим значение функции в точке
:
Далее продифференцируем рассматриваемую функцию и найдем значение :
Ответ.
Производная суммы и разности
Пусть даны функции f ( x ) и g ( x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:
Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, ( f + g + h )’ = f ’ + g ’ + h ’.
Задача. Найти производные функций: f ( x ) = x 2 + sin x; g ( x ) = x 4 + 2 x 2 − 3.
Функция f ( x ) — это сумма двух элементарных функций, поэтому:
f ’( x ) = ( x 2 + sin x )’ = ( x 2 )’ + (sin x )’ = 2 x + cos x;
Аналогично рассуждаем для функции g ( x ). Только там уже три слагаемых (с точки зрения алгебры):
g ’( x ) = ( x 4 + 2 x 2 − 3)’ = ( x 4 + 2 x 2 + (−3))’ = ( x 4 )’ + (2 x 2 )’ + (−3)’ = 4 x 3 + 4 x + 0 = 4 x · ( x 2 + 1).
Ответ:
f ’( x ) = 2 x + cos x;
g ’( x ) = 4 x · ( x 2 + 1).
Таблица производных часто встречающихся функций
В следующей таблице приведены формулы для производных от степенных, показательных (экспоненциальных), логарифмических, тригонометрических и обратных тригонометрических функций. Доказательство большинства их этих формул выходит за рамки школьного курса математики.
где c – любое число
где c – любое число
где a – любое положительное число, не равное 1
где a – любое положительное число, не равное 1
где c – любое число
Формула для производной:
где c – любое число
Формула для производной:
Формула для производной:
где a – любое положительное число, не равное 1
Формула для производной:
Формула для производной:
, x > 0
где a – любое положительное число, не равное 1
Формула для производной:
, x > 0
Формула для производной:
Формула для производной:
Формула для производной:
,
Формула для производной:
Формула для производной:
Формула для производной:
Формула для производной:
Формула для производной:
Найти производные самостоятельно, а затем посмотреть решения
Пример 7. Найти производную функции
.
Пример 8. Найти производную функции
.
Пример 9. Найти производную функции
, где a и b – константы.
Пример 10. Найти производную функции
.
Пример 11. Найти производную функции
.
Производная функции с корнем
Степенная функция плюс осложнение внутри скобки. Пример не дорешан, всего лишь нужно вспомнить из таблицы пару элементарных функций.
Логарифмическая производная
Если производная от логарифмов – это такая сладкая музыка, то возникает вопрос, а нельзя ли в некоторых случаях организовать логарифм искусственно? Можно! И даже нужно.
Найти производную функции
Похожие примеры мы недавно рассмотрели. Что делать? Можно последовательно применить правило дифференцирования частного, а потом правило дифференцирования произведения. Недостаток способа состоит в том, что получится огромная трехэтажная дробь, с которой совсем не хочется иметь дела.
Но в теории и практике есть такая замечательная вещь, как логарифмическая производная. Логарифмы можно организовать искусственно, «навесив» их на обе части:
Примечание: т.к. функция может принимать отрицательные значения, то, вообще говоря, нужно использовать модули: , которые исчезнут в результате дифференцирования. Однако допустимо и текущее оформление, где по умолчанию принимаются во внимание комплексные значения. Но если со всей строгостью, то и в том и в другом случае следует сделать оговорку, что
, которые исчезнут в результате дифференцирования. Однако допустимо и текущее оформление, где по умолчанию принимаются во внимание комплексные значения. Но если со всей строгостью, то и в том и в другом случае следует сделать оговорку, что
.
Теперь нужно максимально «развалить» логарифм правой части (формулы перед глазами?). Я распишу этот процесс очень подробно:
Собственно приступаем к дифференцированию.
Заключаем под штрих обе части:
Производная правой части достаточно простая, её я комментировать не буду, поскольку если вы читаете этот текст, то должны уверенно с ней справиться.
Как быть с левой частью?
В левой части у нас сложная функция. Предвижу вопрос: «Почему, там же одна буковка «игрек» под логарифмом?».
Дело в том, что эта «одна буковка игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (если не очень понятно, обратитесь к статье Производная от функции, заданной неявно ). Поэтому логарифм – это внешняя функция, а «игрек» – внутренняя функция. И мы используем правило дифференцирования сложной функции :
В левой части как по мановению волшебной палочки у нас «нарисовалась» производная . Далее по правилу пропорции перекидываем «игрек» из знаменателя левой части наверх правой части:
А теперь вспоминаем, о каком таком «игреке»-функции мы рассуждали при дифференцировании? Смотрим на условие:
Окончательный ответ:
Найти производную функции
Это пример для самостоятельного решения. Образец оформления примера данного типа в конце урока.
С помощью логарифмической производной можно было решить любой из примеров № 4-7, другое дело, что там функции проще, и, может быть, использование логарифмической производной не слишком-то и оправдано.
Производная сложной степенной функции
В сложной функции вместо x представлено более сложное выражение. Производная такой функции определяется по формуле:
Правила нахождения производных
Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.
Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.
Таблица производных некоторых сложных функций
Для сложных функций на основании правила дифференцирования сложной функции формула производной простой функции принимает другой вид.
1. Производная сложной степенной функции, где u – дифференцируемая функция аргумента x | |
2. Производная корня от выражения | |
3. Производная показательной функции | |
4. Частный случай показательной функции | |
5. Производная логарифмической функции с произвольным положительным основанием а | |
6. Производная сложной логарифмической функции, где u – дифференцируемая функция аргумента x | |
7. Производная синуса | |
8. Производная косинуса | |
9. Производная тангенса | |
10. Производная котангенса | |
11. Производная арксинуса | |
12. Производная арккосинуса | |
13. Производная арктангенса | |
14. Производная арккотангенса |
Примеры
Решим примеры. Преобразования, позволяющие применить другие свойства производной, мы применять не будем. В решениях будем использовать только формулу производной от дроби.
По условию даются функции. Нужно найти производные.
Рисунок 2. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 3. Пример. Автор24 — интернет-биржа студенческих работ
Рисунок 4. Пример. Автор24 — интернет-биржа студенческих работ
Производная произведения
Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike “>равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:
( f · g ) ’ = f ’ · g + f · g ’
Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.
Функция f ( x ) представляет собой произведение двух элементарных функций, поэтому все просто:
f ’( x ) = ( x 3 · cos x )’ = ( x 3 )’ · cos x + x 3 · (cos x )’ = 3 x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x − x · sin x )
У функции g ( x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g ( x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:
Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.
Продолжаем искать производные вместе
Пример 12. Найти производную функции
.
Решение. Применяя правила вычисления производной алгебраической суммы функций, вынесения постоянного множителя за знак производной и формулу производной степени (в таблице производных – под номером 3), получим
.
Пример 13. Найти производную функции
Решение. Применим правило дифференцирования произведения, а затем найдём производные сомножителей, так же, как в предыдущей задаче, пользуясь формулой 3 из таблицы производных. Тогда получим
Пример 14. Найти производную функции
Решение. Как и в примерах 4 и 6, применим правило дифференцирования частного:
Теперь вычислим производные в числителе и перед нами уже требуемый результат:
Пример 15.Найти производную функции
Шаг1. Применяем правило дифференцирования суммы:
Шаг2. Найдём производную первого слагаемого. Это табличная производная квадратного корня (в таблице производных – номер 5):
Шаг3. В частном знаменатель – также корень, только не квадратный. Поэтому преобразуем этот корень в степень:
и далее дифференцируем частное, не забывая, что число 2 в первом слагаемом числителя – это константа, производная которой равна нулю, и, следовательно всё первое слагаемое равно нулю:
Корень из константы, как не трудно догадаться, является также константой, а производная константы, как мы знаем из таблицы производных, равна нулю:
,
а производная, требуемая в условии задачи:
Синтаксис описания формул
В описании функции допускается использование одной переменной (обозначается как x), скобок, числа пи (pi), экспоненты (e), математических операций: + — сложение, – — вычитание, * — умножение, / — деление, ^ — возведение в степень.
Допускаются также следующие функции: sqrt — квадратный корень, exp — e в указанной степени, lb — логарифм по основанию 2, lg — логарифм по основанию 10, ln — натуральный логарифм (по основанию e), sin — синус, cos — косинус, tg — тангенс, ctg — котангенс, sec — секанс, cosec — косеканс, arcsin — арксинус, arccos — арккосинус, arctg — арктангенс, arcctg — арккотангенс, arcsec — арксеканс, arccosec — арккосеканс, versin — версинус, vercos — коверсинус, haversin — гаверсинус, exsec— экссеканс, excsc — экскосеканс, sh — гиперболический синус, ch — гиперболический косинус, th — гиперболический тангенс, cth — гиперболический котангенс, sech — гиперболический секанс, csch — гиперболический косеканс, abs — абсолютное значение (модуль), sgn — сигнум (знак), logP — логарифм по основанию P, например log7(x) — логарифм по основанию 7, rootP — корень степени P, например root3(x) — кубический корень.
Производная дроби с переменной произвольной степени в знаменателе
( 1 / x с )’ = – c / x с+1
(впереди ставим минус, показатель степени переменной поднимаем в числитель дроби, а степень переменной в знаменателе увеличиваем на единичку. Немного “ненаучно”, но подходит для быстрого запоминания)
1-ый способ
То есть вначале производная берется как от степенной функции, а потом как от показательной.
Порядок следования слагаемых неважен: можно вначале взять производную от показательной функции, а затем как от степенной, так как от перестановки слагаемых сумма не меняется:
Задание. Найти производную функции
Решение. Применяем формулу. В рассматриваемом случае
Ответ.
Производные простых функций
1. Производная от числа равна нулю
с´ = 0
Пример:
5´ = 0
Откуда следует, что
(cx + b)’ = c
то есть дифференциал линейной функции y=kx+b равен угловому коэффициенту наклона прямой (k).
Вычисление производной
Вычисление производной — дело нехитрое, достаточно знать несколько простых правил и формулы дифференцирования простых функций; сложнее в этом онлайн калькуляторе было сделать интерпретатор математических выражений и алгоритм упрощения полученного результата, но об этом как-нибудь в другой раз…