Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Определение квадратного неравенства
Числовое неравенство — это такое неравенство, в записи которого по обе стороны от знака находятся числа или числовые выражения.
Решение — значение переменной, при котором неравенство становится верным.
Решить неравенство значит найти множество, для которых оно выполняется.
Квадратное неравенство выглядит так:
Квадратное неравенство можно решить двумя способами:
Решение неравенства графическим методом
При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax^2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.
Как дискриминант влияет на корни уравнения:
Решение неравенства методом интервалов
Метод интервалов — это специальный алгоритм, который предназначен для решения рациональных неравенств.
Рациональное неравенство имеет вид f(x) ≤ 0, где f(x) — рациональная функция. При этом знак может быть любым: >, или ≥ — наносим штриховку над промежутками со знаками +.
Если неравенство со знаком
Плюс или минус: как определить знаки
Можно сделать вывод о знаках по значению старшего коэффициента a:
если a > 0, последовательность знаков: +, −, +,
если a 0, последовательность знаков: +, +,
Теперь мы знаем пошаговый алгоритм. Чтобы закрепить материал потренируемся на примерах и научимся использовать метод интервалов для квадратных неравенств.
Неравенство примет вид:
В этом весь смысл метода интервалов: определить интервалы значений переменной, на которых ситуация не меняется и рассматривать их как единое целое.
Отобразим эти данные на чертеже:
2 3 — на этом интервале ситуация не изменяется. Значит нужно взять любое значение из этого интервала и подставить его в произведение. Например: х = 25.
Удовлетворяющие неравенству точки закрасим, а не удовлетворяющие — оставим пустыми.
Пример 2. Применить метод интервалов для решения неравенства х2+4х+3
Квадратными неравенствами обозначают неравенства типа
В результате можем иметь нижеследующие варианты:
1) При D = 0 у квадратного уравнения один корень:
.
2) При D>0 у квадратного уравнения два корня. Парабола пересекает ось х в двух точках с абсциссами:
Если необходимо указать отрезок, на котором квадратный трехчлен положителен, то это отрезок расположен там, где парабола расположена над осью x. По аналогии если необходимо найти отрицательные значения, то берем отрезок, где парабола расположена под осью x
При решении неравенстваax2+bx+c > 0 не требуется тщательно строить параболуу=ax2+bx+c по точкам (к примеру, вовсе нет необходимости вычислять вершину параболы, точку пересечения с осью у и т. д.). Допустимо упрощенно изобразить кривую. Точность необходима только при вычислении корней уравнения ax2+bx+c=0 (при D > 0).
Универсальным методом решения неравенств по праву считается метод интервалов. Именно его проще всего использовать для решения квадратных неравенств с одной переменной. В этом материале мы рассмотрим все аспекты применения метода интервалов для решения квадратных неравенств. Для облегчения усвоения материала мы рассмотрим большое количество примеров разной степени сложности.
Алгоритм применения метода интервалов
Рассмотрим алгоритм применения метода интервалов в адаптированном варианте, который пригоден для решения квадратных неравенств. Именно с таким вариантом метода интервалов знакомят учеников на уроках алгебры. Не будем усложнять задачу и мы.
Перейдем собственно к алгоритму.
У нас есть квадратный трехчлен a · x 2 + b · x + c из левой части квадратного неравенства. Находим нули из этого трехчлена.
Отметив знаки значений трехчлена и нанеся штриховку над отрезками, мы получаем геометрический образ некоторого числового множества, которое фактически является решением неравенства. Нам остается лишь записать ответ.
Остановимся подробнее на третьем шаге алгоритма, который предполагает определение знака промежутка. Существует несколько подходов определения знаков. Рассмотрим их по порядку, начав с наиболее точного, хотя и не самого быстрого. Этот метод предполагает вычисление значений трехчлена в нескольких точках полученных промежутков.
Намного быстрее определить знаки можно с учетом следующих фактов.
При положительном дискриминанте квадратный трехчлен с двумя корнями дает чередование знаков его значений на промежутках, на которые разбивается числовая ось корнями этого трехчлена. Это значит, что нам вовсе не обязательно определять знаки для каждого из интервалов. Достаточно провести вычисления для одного и проставить знаки для остальных, учитывая принцип чередования.
У квадратных трехчленов с одним корнем, когда дискриминант равен нулю, мы получаем два промежутка на координатной оси с одинаковыми знаками. Это значит, что мы определяем знак для одного из промежутков и для второго ставим такой же.
Примеры решения квадратных неравенств
Рассмотрим примеры решения квадратных неравенств с использованием рассмотренного выше алгоритма.
Решение
Запишем аналитически числовое множество по полученному графическому изображению. Мы можем сделать это двумя способами:
Решение
Для начала найдем корни квадратного трехчлена из левой части неравенства:
Имеет ли квадратное неравенство x 2 + x + 7 0 решения?
Решение
Графическое изображение будет иметь вид числовой прямой без отмеченных на ней точек.
В результате вычислений мы получили пустое множество. Это значит, что данное квадратное неравенство решений не имеет.
Мы уже разобрали, как решать квадратные уравнения. Теперь давайте более подробно рассмотрим, что называют дискриминантом квадратного уравнения.
Вернемся к нашей формуле для нахожденя корней квадратного уравнения.
Выражение « b 2 − 4ac », которое находится под корнем, принято называть дискриминантом и обозначать буквой « D ».
По-другому, через дискриминант формулу нахождения корней квадратного уравнения можно записать так:
По одной из версий термин «Дискриминант» произошел от латинского discriminantis, что означает «отличающий» или «различающий».
В зависимости от знака « D » (дискриминанта) квадратное уравнение может иметь два, один или ни одного корня. Рассмотрим все три случая.
I случай D > 0 (дискриминант больше нуля)
x1 =
−5 + 9
4
x2 =
−14
4
x1 = 1
x2 = −3
2
4
x1 = 1
x2 = −3
II случай D = 0 (дискриминант равен нулю)
D = b 2 − 4ac D = (−8) 2 − 4 · 16 · 1 D = 64 − 64 D = 0
III случай D (дискриминант меньше нуля)
D = b 2 − 4ac D = (−6) 2 − 4 · 9 · 2 D = 36 − 72 D = −36 D
Ответ: нет действительных корней
Рассмотрим решение квадратных уравнений, дискриминант которых отрицателен:
Пример 42.4. Решить уравнение: .
.
Тогда .
Ответ:
Видим, что если дискриминант квадратного уравнения отрицателен, то уравнение имеет решения на множестве комплексных чисел. В ответе получаются два сопряженных комплексных числа. Это очень важный результат: теперь мы знаем, что абсолютно любое квадратное уравнение имеет два корня на множестве комплексных чисел.
Подобное утверждение, известное под названием «основная теорема алгебры», было доказано Гауссом в конце XVIII века: любое алгебраическое уравнение п-й степени имеет п комплексных корней (при этом некоторые корни являются кратными). Эти результаты подчеркивают ту исключительную роль, которую играют комплексные числа в теории алгебраических уравнений.
Дата добавления: 2014-12-27 ; Просмотров: 12919 ; Нарушение авторских прав? ;
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Дискриминант квадратного уравнения – это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.
Вид уравнения
Формула корней
Формула дискриминанта
ax 2 + bx + c = 0
b 2 – 4ac
ax 2 + 2kx + c = 0
k 2 – ac
x 2 + px + q = 0
p 2 – 4q
Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:
Вид уравнения
Формула
ax 2 + bx + c = 0
, где D = b 2 – 4ac
ax 2 + 2kx + c = 0
, где D = k 2 – ac
x 2 + px + q = 0
, где D =
, где D = p 2 – 4q
Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:
Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:
так как она относится к формуле:
которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.
Решение квадратных уравнений через дискриминант
Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.
Пример 1. Решить уравнение:
Определим, чему равны коэффициенты:
Определим, чему равны коэффициенты:
D = b 2 – 4ac = (-6) 2 – 4 · 1 · 9 = 36 – 36 = 0, D = 0
Уравнение имеет всего один корень:
Определим, чему равны коэффициенты:
D = b 2 – 4ac = (-4) 2 – 4 · 1 · (-5) = 16 + 20 = 36, D > 0