Длина световой волны в чем измеряется
На рисунке показаны основные параметры волны, используемые в физике:
Определение и формула длины волн
Длина представляет собой фактическое расстояние, пройденное волной, которое не всегда совпадает с расстоянием среды, или частиц, в которых распространяется волна. Ее также определяют как пространственный период волнового процесса.
Греческая буква «λ» (лямбда) в физике используется для обозначения длины в уравнениях. Она обратно пропорциональна частоте волны.
Период Т — время завершения полного колебания, единица измерения секунды (с).
У различных длин разная скорость распространения. Например, скорость света в воде равна 3/4 от скорости в вакууме.
Частота f — количество полных колебаний в единицу времени. Измеряется в Герцах (Гц).
При одном полном колебании в секунду f = 1 Гц; при 1000 колебаний в секунду f = 1 килогерц (кГц); 1 млн. колебаний в секунду f = 1 мегагерц (1 МГц).
Зная, что скорость света в вакууме с — 300 000 км/с, или 300 000 000 м/с, то для перевода длины волны в частоту нужно 3 х 10 8 м/с поделить на длину в метрах.
Свет, который исходит от Солнца, является электромагнитным излучением, которое движется со скоростью 300 000 км/с, но длина не одинакова для любого фотона, а колеблется между 400 нм и 700 нм. Длина световой волны влияет на цвет.
Таблица показывает длину волны в зависимости от цвета:
Излучения с длиной меньше фиолетового называются ультрафиолетовым излучением, рентгеновским и гамма-лучами в порядке уменьшения. Излучения больше красного называются инфракрасными, микроволнами и радиоволнами, в порядке возрастания.
Предельная дальность связи зависит от длины. Размеры антенны часто превышают рабочую длину радиоэлектронного средства.
Рисунок показывает длину волн и частоту (нм), исходящих от различных источников:
Примеры расчета длины волны для звуковых, электромагнитных и радиоволн
Задача №1
Скорость звука в воде 1450 м/с. На каком расстоянии находятся ближайшие точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц?
Задача №2
Мимо неподвижного наблюдателя, стоящего на берегу озера, за 6 с. прошло 4 гребня волны. Расстояние между первым и третьим гребнями равно 12 м. Определить период колебания частиц волны, скорость распространения и длину волны.
Задача №3
Голосовые связки певца, поющего тенором (высоким мужским голосом), колеблются с частотой от 130 до 520 Гц. Определите максимальную и минимальную длину излучаемой звуковой волны в воздухе. Скорость звука в воздухе 330 м/с.
Длина световой волны в чем измеряется
Ежедневно на протяжении всей своей жизни мы неразрывно связаны со светом, что оказывает влияние не только на наше зрительное восприятие окружающего мира, но и на здоровье, самочувствие, продуктивность и настроение.
С давних времен по своей природе человек с восходом солнца просыпается, когда солнце находится в своём пике – работает, а с наступлением ночи готовится ко сну. Это не случайно и взаимосвязано со светом. Каким образом? Для этого необходимо рассмотреть характеристики света
Световое излучение характеризуется такими параметрами, как световой поток, сила света, яркость, освещенность и др., но подробней хотелось бы остановиться на спектральных характеристиках и их взаимосвязи с природой.
Свет – это видимая область электромагнитного излучения в диапазоне длин волн от 380 нм до 780 нм. Именно в этом диапазоне оптическое излучение способно возбуждать сетчатку глаза человека и создавать зрительный образ.
Помимо видимой области излучения в светотехнике рассматривают также ультрафиолетовое (длина волны от 1 нм до 380 нм) и инфракрасное излучение (длина волны от 780 нм до 1 мк).
Видимое излучение с разной длиной волны воспринимаются глазом как разные цвета:
Таблица 1. Длины волн различных цветов
Длина волны
от 380 нм до 450 нм
от 450 нм до 480 нм
Границы цветов приблизительны – разные люди отличаются друг от друга восприятием цветовых сигналов головным мозгом. Для нас же самым наглядным примером видимого спектра в природе является радуга.
Полный видимый спектр на шкале излучений различных длин волн выглядит так:
Белый свет является смешением всех (или нескольких) цветов спектра в определенной пропорции. Если луч белого света пропустить через стеклянную призму, то он разложится на спектр (явление дисперсии света).
Различные цвета мы видим каждый день и не придаём значения тому, что это очень сложный процесс восприятия. Цвет предмета определяется спектральным составом света и спектральными характеристиками отражения и пропускания материалов.
Цвет – это объективная величина, которая может быть измерена и выражена конкретными параметрами. Для этого чаще всего используют колориметрическую систему координат цветности:
На рис. 3 представлено поле реальных цветов. На ограничивающей его кривой линии отмечены длины волн монохроматических излучений, воспринимаемых глазом – от 380 (фиолетовый цвет) до 700 (красный цвет) нм.
Средняя часть цветового поля – это область белых цветов. В ней проходит линия – кривая теплового излучения, то есть кривая координат цветности белого света.
Цветность белого света зависит от цветовой температуры – температуры чёрного тела, при которой оно испускает излучение того же цветового фона, что и рассматриваемое излучение. Цветовая температура измеряется в градусах Кельвина.
Цвет излучения тепловых источников света (ламп накаливания) очень точно соответствует данной кривой на графике.
На рис. 4 представлено наглядное сравнение источников света с различной цветовой температурой.
Многие ошибаются, полагая, что чем выше цветовая температура, тем свет «теплее», чем ниже – «холоднее». Ассоциация происходит с температурой тела и воздуха, когда при повышении температуры становится теплее.
В случае цветовой температуры света можно провести аналогию с цветом звёзд.
Цвет звезды зависит от температуры на поверхности: чем больше тепла звезда излучает, тем более голубой цвет она имеет, и наоборот, самые холодные звёзды по температуре на поверхности имеют оранжевый и красный цвет. Как видно из рис. 5, самые горячие небесные тела – голубые звёзды с температурой 30000 К, самые холодные звёзды – красные с температурой 3500 К, солнце в середине дня имеет температуру на поверхности 6000 К и желто-белый цвет.
2. Влияние цветовой температуры источников света на человека
В современном мире большая часть нашего активного времени суток проходит на рабочем месте, т.е. под воздействием искусственного освещения. Качество света и его достаточное количество – важная составляющая верного восприятия окружающего мира. Формы объектов, цвета, люди, предполагаемые опасности распознаются нами, если обеспечивается достаточные уровень освещенности, время воздействия света и его цветность. Наравне с визуальными эффектами, цветность влияет также и на другие сферы жизни человека.
С конца 20-го века было проведено большое количество исследований незрительного воздействия света на организм. Оказалось, что в глазах человека имеются не только известные рецепторы – колбочки и палочки, воспроизводящие изображения предметов, но и фоторецепторы, воспринимающие свет без образования изображения – меланопсин. Эти рецепторы отвечают за выработку гормона мелатонина, кортизола, регулируя циркадные ритмы человека.
Гормон мелатонин отвечает за отдых и расслабление организма и работает в партнерстве с другими гормонами (кортизол, серотонин, допамин). В течение дня кортизол обеспечивает бодрость и стрессовую реакцию организма, серотонин контролирует импульс и углеводную потребность, а допамин обеспечивает хорошее настроение, удовольствие, бдительность и координацию.
Высокий уровень мелатонина является причиной сонливости, но он может быть урегулирован воздействием на другие гормоны. Т.к. в течение рабочего дня регулировать уровень естественного освещения сложно, то оказывать влияние на эти четыре гормона, следовательно, и на циркадные ритмы, можно благодаря правильному выбору цветовой температуры источников искусственного освещения.
Воздействие на циркадные ритмы человека происходит за счет изменения уровня освещенности и цветовой температуры в определенные фазы суток. Например, синяя спектральная составляющая подавляет мелатонин и активизирует кортизол, что подходит для середины дня, обеспечивая высокую работоспособность человека, умственную и физическую активность. Излучения в желтом спектре подходят для утра и вечера, когда организм расслабляется и восполняет жизненные силы. Таким образом, изменяя цветовую температуру можно напрямую влиять на самочувствие человека, его настроение и работоспособность в течении дня, не нарушая жизненных циклов.
3. Практическое применение различной цветовой температуры в искусственном освещении
В настоящее время стало возможным применить на практике знания, что освещение в теплом спектре активизирует гормоны отдыха и действует расслабляюще на организм, освещение в нейтрально белом цвете обеспечивает комфортное выполнение текущих задач, а освещение в холодном спектре способствует умственной активности.
Для этого можно обеспечить биологически и эмоционально эффективное освещение двумя способами:
Например, для стандартного рабочего времени подходит цветовая температура источников света равная 4000 К.
Для совещаний и важных переговоров необходима цветовая температура в 5000 К. За счёт более холодной цветовой температуры активизируется выработка гормона кортизола, что приводит к улучшению мозговой деятельности и концентрации.
Но в течение рабочего дня человеку необходим ещё и отдых для восстановления сил. Для этой цели в помещениях отдыха обеспечивают цветовую температуру источников света 3000 К.
В основе данного метода лежит зависимость естественного солнечного цикла от цветовой температуры излучения и зависимость человека от солнечного цикла. Если понаблюдать за солнцем в течение дня, то можно увидеть следующую картину:
Как известно, человек ориентируется во времени по естественному освещению (смена дня и ночи), и что свет имеет влияние на человеческие биоритмы.
Утром, при восходе солнца (при теплой цветовой температуре) начинает снижаться выработка мелатонина, и организм пробуждается. Днём (при переходе от нейтральной цветовой температуры к холодной) при выработке кортизола повышается работоспособность. Вечером (при тёплой цветовой температуре) выработка кортизола уменьшается, мелатонина – увеличивается, организм входит в состояние покоя и готовится ко сну. Сохранить гармоничный для организма человека цикл цветовой температуры в искусственном освещении можно, организовав запрограммированное изменение цветовой температуры источников света.
Таблица 2. Зависимость организма от цветовой температуры источников света
Цветовая температура
Что происходит
Эффект
2700 – 3000 К, тёплая
Выработка гормона мелатонина, снижение выработки гормона кортизола
Утром – пробуждение, днём – отдых, расслабление, вечером – подготовка ко сну
4000 – 5000 К, нейтральная
Выработка гормона кортизола, снижение выработки гормона мелатонина
Основное рабочее время – увеличение концентрации
5000 – 6500 К, холодная
Выработка гормона кортизола
Пик активности мозга, концентрации, внимания и продуктивности
Таким образом, обеспечив один из подходов управления освещением на рабочем месте, можно грамотно положительно влиять на самочувствие и продуктивность сотрудников.
4. Торговое освещение
Где ещё можно наблюдать влияние цветовой температуры источников света на человека? В магазине. Да, это влияние не меняет настроения покупателя, но помогает сделать выбор. При правильном освещении булочки будут выглядеть вкуснее, а рыба и мясо – свежее.
В настоящее время вопрос, какой товар и в каком магазине выбрать, возникает каждый день. Современного потребителя, т.е. каждого из нас, окружает множество магазинов, конкурирующих между собой, но мы всегда пойдём в тот, где товар лучше. А товар лучше там, где его правильно презентуют.
В чём состоит взаимосвязь презентации товара и спектральных характеристик света?
Для торгового освещения важным требованием является качественная передача визуальной информации о товаре потребителю, что можно обеспечить с помощью качественного освещения. За это отвечают такие параметры как высокий уровень освещенности, высокий индекс цветопередачи, правильно подобранная цветовая температура источника и использование специальных спектров.
Различные группы товаров требуют различного освещения: существуют специальные спектры излучения источников, подчеркивающие натуральные оттенки предметов.
К примеру, мясо подсвечивают спектром со смещением в красный цвет, чтобы оно выглядело аппетитно.
Замороженные продукты и рыбу подсвечивают светом с холодной цветовой температурой (5000-6500 К), что подчеркивает свежесть, блеск и охлажденность.
Хлебобулочные изделия подсвечивают теплым светом (2700-3000 К). Как правило, хлеб выложен на натуральных материалах теплых оттенков (дереве), что усиливает гармоничный вид.
Фрукты и овощи освещают направленным светом с высокой цветопередачей, чтобы товар выглядел ярким, свежим и привлекательным.
В табл. 3 приведены дополнительные виды товаров, которые также можно выгодно подчеркнуть:
Таблица 3. Виды товарного ассортимента и необходимые им цветовая температура и смещение спектра
Товарный ассортимент
Цветовая температура, К;
Смещение спектра в цвет
Длина световой волны в чем измеряется
Свет − это видимая часть электромагнитного спектра. Свет характеризуется тем, что имеет волновую природу [1]. Каждая волна описывается своей длиной − расстоянием между двумя соседними гребнями (рис. 1.4). Длина волны измеряется в нанометрах (нм). Нанометр − это одна миллионная часть миллиметра [3].
Рис. 1.4. Характеристики волны
Область электромагнитного спектра, видимая человеческим глазом, занимает диапазон примерно от 400 до 700 нм. Этот диапазон составляет всего лишь малую часть огромного спектра электромагнитных волн. Помимо видимых волн человек использует и многие другие невидимые волны: начиная с самых коротких волн − рентгеновских лучей − и кончая длинными волнами, которые улавливаются нашими теле- и радиоприемниками (рис. 1.5).
Внутри человеческого глаза имеются сенсоры света, чувствительные к электромагнитным волнам (палочки и колбочки) (раздел 1.2), длина которых попадает в видимый спектр.
Рис. 1.6. Спектральный состав видимого цвета
Когда на эти сенсоры попадают световые волны, они посылают сигнал нашему мозгу. Затем этот сигнал интерпретируется мозгом как определенный цвет. Какой именно цвет получится в результате этой интерпретации, зависит от сочетания в свете волн различной длины. Например, если сенсоры зарегистрируют волны сразу всех длин из видимого спектра, то мозг будет воспринимать этот свет как белый. Если не будет зафиксировано никаких волн с длиной волны из видимого спектра, то это значит, что никакого света нет, и мозг будет интерпретировать эту информацию как черный цвет.
Пропустив луч белого света через призму (рис. 1.6), можно разбить его на составляющие и таким образом понять, как наши глаза реагируют на каждую отдельную длину волны. Этот эксперимент показывает, что волны разной длины интерпретируются нами как разные цвета. Можно выделить основные области видимого спектра: красную, оранжевую, желтую, зеленую, голубую, синюю и фиолетовую. Цвета плавно и непрерывно переходят друг в друга, образуя «радугу». Когда наша зрительная система регистрирует волны с длиной около 700 нм, мы видим «красный» цвет, а когда длина волны находится в диапазоне 450-500 нм, − «голубой»; длина волны 400 нм соответствует «фиолетовому» и так далее. Такая реакция глаза является основой для образования миллионов различных цветов, которые каждый день регистрирует наша зрительная система.
Длина волны
Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой . [1] По аналогии с волнами, возникающими в воде от брошенного камня, длиной волны является расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.). Величина
, обратная длине волны, называется волновым числом и имеет смысл пространственной частоты.
Получить соотношение, связывающее длину волны с фазовой скоростью () и частотой (
) можно из определения. Длина волны соответствует пространственному периоду волны, то есть расстоянию, которое точка с постоянной фазой проходит за время, равное периоду колебаний
, поэтому
Волнам де Бройля также соответствует определенная длина волны. Частице с энергией Е и импульсом p, соответствуют:
Примеры
Приближённо, с ошибкой около 0,07%, рассчитать длину радиоволны можно так: 300 делим на частоту в мегагерцах, получаем длину волны в метрах, например для 80 Гц, длина волны 3750 километра, для 89 МГц — 3,37 метра, для 2,4 ГГц — 12,5 см.
Точная формула для расчёта длины волны электромагнитного излучения в вакууме выглядит так:
где — скорость света, равная в Международной системе единиц (СИ) 299 792 458 м/с точно.
Для определения длины волны электромагнитного излучения в какой-либо среде следует использовать формулу:
где — показатель преломления среды для излучения с данной частотой.
Примечания
Литература
Полезное
Смотреть что такое «Длина волны» в других словарях:
длина волны — (λ) Расстояние, на которое смещается поверхность равной фазы волны за один период колебаний. [ГОСТ 7601 78] длина волны Расстояние, проходимое упругой волной за время, равное одному полному периоду колебаний. [BS EN 1330 4:2000. Non… … Справочник технического переводчика
ДЛИНА ВОЛНЫ — (обозначение l), расстояние между следующими друг за другом точками волны, находящимися в одинаковой ФАЗЕ. Например, длину морской волны можно измерить как расстояние от гребня до гребня. Длина волны видимого света (колеблющаяся в пределах от 390 … Научно-технический энциклопедический словарь
ДЛИНА ВОЛНЫ — пространственный период волны, т. е. расстояние между двумя ближайшими точками гармонич. бегущей волны, находящимися в одинаковой фазе колебаний, или удвоенное расстояние между двумя ближайшими узлами или пучностями стоячей волны. Д. в. l связана … Физическая энциклопедия
ДЛИНА ВОЛНЫ — расстояние между двумя ближайшими точками гармонической волны, находящимися в одинаковой фазе. Длина волны l = uT, где T период колебаний, u фазовая скорость волны … Большой Энциклопедический словарь
длина волны — Расстояние по горизонтали между двумя последовательными гребнями или подошвами волны … Словарь по географии
ДЛИНА ВОЛНЫ — (Length of wave) расстояние между гребнями (вершинами) двух смежных волн. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь
длина волны — 3.42 длина волны (wavelength): Расстояние между двумя точками одинаковых фаз двух последовательных волновых циклов, измеряемое в направлении распространения волны. Длина волны λ зависит от фазовой скорости vp и частоты f и рассчитывается по… … Словарь-справочник терминов нормативно-технической документации
ДЛИНА ВОЛНЫ — хар ка гармонич. волны, равная расстоянию между двумя ближайшими точками, разность фаз волны в к рых равна 2ПИ. Д. в. X связана с частотой колебаний v и фазовой скоростью волны u соотношением Лямбда = u/v. См. рис. К ст. Длина волны … Большой энциклопедический политехнический словарь
Основные параметры световых волн: длина волны, частота, период, амплитуда, скорость распространения.
Двойственная природа света: корпускулярная и волновая.
Корпускулярная теория света, берущая начало от Ньютона, рассматривает его как поток частиц — квантов света или фотонов. В соответствие с идеей Планка любое излучение происходит дискретно, причём минимальная порция энергии (энергия фотона) имеет величину , где частота ν соответствует частоте излучённого света, а h есть постоянная Планка. Использование представлений о свете, как потоке частиц, объясняет явление фотоэффекта и закономерности теории излучения.
Волновая теория света, берущая начало от Гюйгенса, рассматривает свет как совокупность, поперечных монохроматических электромагнитных волн, а наблюдаемые оптические эффекты как результат сложения (интерференции) этих волн. При этом считается, что в отсутствие перехода энергии излучения в другие виды энергии, эти волны не влияют друг на друга в том смысле, что, вызвавшая в некоторой области пространства интерференционные явления, волна продолжает распространяться дальше без изменения своих характеристик. Волновая теория электромагнитного излучения нашла своё теоретическое описание в работах Максвелла в форме уравнений Максвелла. Использование представления о свете, как волне, позволяет объяснить явления, связанные с интерференцией и дифракцией, в том числе структуру светового поля (построение изображений и голографию).
Длина́ волны́ — расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой λ. Измеряется в единицах расстояния.
Д. в. λ связана с периодом колебания Т и скоростью с распространения волны v, соотношением λ = v*Т.
2е определение: Длина световой волны λ зависит от скорости распространения волны в среде и связана с нею и частотой соотношением:
Частота волны – количество колебаний в единицу времени. V (частота) = 1/T.
Амплитуда волны – максимальное по модулю отклонение волны.
Основные законы распр-я света: преломления, отражения, поглощения.
1. Луч падающий, отраженный и нормаль лежат в одной плоскости. Угол падения равен углу отражения.
2. Световой поток, встречающий на пути границу раздела двух сред частично отражается, но в основном преломляется. Угол преломления зависит от показателя преломления.
3. По закону преломления падающий и преломленный лучи и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости, а отношение синусов углов падения и преломления равно относительному показателю преломления второй среды относительно первой. SinE\SinEי=nי\n.
ρ = Fорт\Fпад. – коэффициент отражения
ά = Fпогл\Fпад – коэффициент поглощения
τ = Fпр\ Fпад – коэффициент пропускания
p+a+t = 1. Fпад = Fпогл+Fотр+Fпр
Свет разной длины волны преломляется по разному, в следствии этого появляется явление дисперсии света – разложения света в спектр. Отражение применяется, например, в пентапризме фотоаппарата, обтюраторе, оптиволокне, в котором идет полное внутреннее отражение света и он не теряется на большом расстоянии. Существуют оптиволоконные источники света. Преломление происходит на линзах объектива, где доминировать должен коэффициент пропускания. Преломление относится к интерференции, где луч преломляется и отражается и тем самым смещается на 1\2 длины волны и интерферирует сам с собой. В голографии, в трехматричной системе видео, в системе техниколор. Самое важное, что благодаря отражению света мы различаем предметы, потому что они отражают свет. В фотографии, например, стекла, которое пропускает свет мы можем даже не догадаться о его существовании, если не обозначим фактуру бликами и т.п. отражение как эффект в фото и кино, отражение используется всякими рамками и подсветами, отржателями. Фильтры чем плотнее, тем меньше свет пропускают.
Световая адаптация — снижение чувствительности глаза к свету при большой яркости поля зрения. Механизм световой адаптации: работает колбочковый аппарат сетчатки, зрачок суживается, зрительный пигмент поднимается с глазного дна.
Темновая адаптация — повышение чувствительности глаза к свету при малой яркости поля зрения. Механизм темновой адаптации: работает палочковый аппарат, зрачок расширяется, зрительный пигмент опускается ниже сетчатой оболочки. При яркостях от 0,001 до 1 кд/кв.м происходит совместная работа палочек и колбочек. Это так называемое сумеречное зрение.
Первая особенность или вид зрения состоит в том, что при освещенности ниже 0,01 лк возможно лишь ночное зрение благодаря исключительно работе палочек. Постепенность перехода от дневного к сумеречному и ночному зрению имеет большое практическое значение. Одной из важных сумеречного зрения является его бесцветность. Поскольку при низких освещенностях колбочки не функционируют, то цвета ночью не воспринимаются. В силу этого сумеречное и ночное зрение ахроматично: «ночью все кошки серы».
Второй особенностью сумеречного зрения является изменение светлоты (яркости) цветов. При резком понижении освещенности не только не воспринимаются цветовой тон и насыщенность цветов, но изменяется и их светлота. Днем наиболее светлым кажется зеленовато-желтый цвет.(длина волны 556 нм), при сумеречном же освещении — зеленый (длина волны 510 нм). Это явление носит название феномена Пуркинье. «Теплые» цветовые тона (красный, оранжевый, желтый) в сумерках кажутся более темными, а «холодные» (голубой, синий, зеленый) — более светлыми. Дольше всего сохраняется при пониженной освещенности синий, сине-зеленый, желтый и пурпурно-малиновый цвета.
Третья особенность сумеречного зрения — его периферия. Во время выпадения функций колбочек, обеспечивающих центральное зрение, центральная ямка пятна сетчатки почти не реагирует на слабый цвет и в условиях сумерек восприятие внешнего мира осуществляется с помощью периферического зрения. Наибольшая чувствительность периферической части сетчатки к восприятию света находится в 10—12° от центра. Для сравнения следует вспомнить, что при полнолунии освещенность равна 0,25 лк.
Глаз обладает сферическими и хроматическими абберациями, с которыми борется природа. На глазном дне образуется уменьшенное и перевернутое изображение, которое формируется на сечатке с помощью светоприемного аппарата. Сечатка слабочувствительна, зато палочки очень чувствительны. Палочки и колбочки – светочувствительные рецепторы, первые к свету, вторые к цвету. Макс чувствительности глаза в зеленой зоне 555 нм. Палочек – 120 млн, а колбочек – 5-6 млн. Слепое пятно – там где идут нервные окончания. Желтое пятно – максимально резкое и с наиболее полной информацией место в глазу. Содержит только колбочки. Аккомодация – наводкка на резуозть глазом. Зрачок – диафрагма. При свосем низком освещении к зрачку подключаются палочки. Они очень высокочувствительны но цвет не различают. Фокусировка изображения обеспечивается за счёт изменения кривизны хрусталика, которая регулируется цилиарной мышцей. При увеличении кривизны хрусталик становится более выпуклым и сильнее преломляет свет, настраиваясь на видение близко расположенных объектов. При расслаблении мышцы хрусталик становится более плоским, и глаз приспосабливается для видения удалённых предметов.
Дата добавления: 2015-04-22 ; просмотров: 8 | Нарушение авторских прав