Для чего характерен мейоз
МЕЙО́З
Том 19. Москва, 2011, стр. 608-609
Скопировать библиографическую ссылку:
МЕЙО́З (от греч. μείωσις – уменьшение), способ деления клеток, при котором происходит уменьшение (редукция) числа хромосом и переход клеток из диплоидного состояния (с двойным набором хромосом) в гаплоидное (с одинарным набором); обязательное условие формирования половых клеток. Редукция числа хромосом вдвое при М. составляет биологич. смысл этого процесса и определяет его важную роль в механизме полового размножения эукариот: разделённый в ходе М. генетич. материал родительских клеток вновь объединяется в результате оплодотворения. Тем самым восстанавливается плоидность и сохраняется постоянство числа хромосом при смене поколений. Впервые М. описан у животных (1882) нем. цитологом В. Флемингом, у растений – нем. ботаником Э. Страсбургером (1888). У разных организмов М. протекает на разл. этапах жизненного цикла. Напр., у мн. грибов и некоторых водорослей, в жизненном цикле которых преобладает гаплоидная фаза, он происходит сразу после оплодотворения в зиготе ( зиготны й, или начальный, М.). У голосеменных и цветковых растений М. наблюдается у диплоидного поколения (спорофита) в период образования женских и мужских спор ( споровы й, или промежуточный, М.); прорастающие гаплоидные споры формируют гаплоидное поколение – гаметофиты, продуцирующие половые клетки. У многоклеточных животных, в т. ч. у человека, М. протекает в половых железах и сопровождает гаметогенез ( гаметны й, или конечный, М.).
Мейоз
Из Википедии — свободной энциклопедии
Мейо́з (от др.-греч. μείωσις — «уменьшение»), или редукционное деление — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). В результате мейоза образуются гаметы (у животных), споры (у грибов и растений) и другие зародышевые клетки (например, агаметы у фораминифер).
С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.
В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.
Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет (основным средством борьбы с этой проблемой является применение полиплоидных хромосомных наборов, поскольку в данном случае каждая хромосома конъюгирует с соответствующей хромосомой своего набора). Определённые ограничения на конъюгацию хромосом накладывают и хромосомные перестройки (масштабные делеции, дупликации, инверсии или транслокации).
Мейоз
Мейо́з (от греч. meiosis — уменьшение) или редукционное деление клетки — деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет, из недифференцированных стволовых.
С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса.
В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.
Этот же механизм лежит в основе стерильности межвидовых гибридов. Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет. Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).
Содержание
Фазы мейоза
Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.
Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.
В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).
Варианты
Мейоз — понятие, последовательность и особенности протекания процессов
Мейоз – это биологический процесс, в результате которого из одной соматической клетки образуются 4 гаметы с различными комбинациями генов и редуцированными хромосомными наборами. Без этого невозможно половое размножение многоклеточных организмов.
История открытия: В 1883 г. при изучении гаметогенеза и оплодотворения у червей была выявлена закономерность: в яйцеклетках и сперматозоидах содержится в 2 раза меньше хромосом, чем в зиготе. Детальное изучение гаметогенеза привело к открытию нового типа деления клетки, связанного с уменьшением количества хромосом в гаметах по сравнению с материнским организмом. Определение основных закономерностей мейоза в биологии заняло около 50 лет.
Фазы кратко
Деление проходит в 2 последовательных этапа, которые принято называть мейоз I (или первое деление мейоза) и мейоз II (или второе деление мейоза). Между ними есть короткий период интеркинеза (укороченная интерфаза). Каждый этап состоит из 4 фаз, основные процессы которых представлены на следующей схеме мейоза кратко и понятно:
Во время такого деления происходят постоянные перестройки ядерных структур и цитоплазмы, конденсация и деконденсация ДНК, образование и распад белковых комплексов. Схематично представлен мейоз в такой таблице по фазам:
Первый этап
В мейоз вступают определённые соматические клетки после интерфазы. У каждой из них диплоидный набор хромосом. Присутствуют гомологичные пары хромосом, которые несут одинаковые гены, но в разных вариациях, например, кодирующие группы крови А и В. Каждая из гомологичных хромосом состоит из 2 хроматид, в которых гены представлены в одинаковых вариациях.
В результате мейоза образуются клетки с гаплоидным геномом. Каждая из них содержит по одной хроматиде из каждой тетрады и по одной вариации каждого гена. Производство гамет с разными генетическими признаками имеет значение для выживания популяции.
Профаза I
Первый этап самый сложный, поскольку отвечает за перераспределение генетического материала. У человека его продолжительность составляет 22,5 суток. В этой фазе происходит кроссинговер – спаренные хромосомы обмениваются короткими последовательностями ДНК, гомологичными участками. Эта фаза состоит из 5 этапов:
Метафаза I
В профазе к делению готовится генетический материал, в метафазе – другие клеточные структуры. Ядро лишено оболочки, биваленты располагаются по экватору клетки, образуя метафазную пластинку. К каждой хромосоме прикреплено веретено деления.
Анафаза I
При участии веретена деления к полюсам клетки подтягивается по одной хромосоме из каждой тетрады. В клетке сформированы два гаплоидных генома – у каждого из двух полюсов. Но клетку продолжают считать диплоидной до разделения цитоплазмы.
Телофаза I
Цитоплазма клетки делится на 2 части. У растений — путём достраивания поперечной клеточной стенки, у животных цитоплазматическая мембрана инвагинируется и перешнуровывается. Формируются ядра. Образуется 2 клетки с неудвоенным набором хромосом, состоящих из 2 хроматид. Эти клетки имеют только по одной вариации каждого гена.
Второе деление
Второе деление происходит после короткой паузы – интеркинеза. В отличие от интерфазы, характерной для митоза, в интеркинезе не происходит удвоения генетического материала. Во второе деление вступают две клетки с гаплоидными геномами.
Профаза II
В клетках разрушаются ядерные структуры: мембраны и ядрышки. Хромосомы уплотняются, конденсируются. Экватор клетки теперь перпендикулярен экватору в первом делении. Центриоли передвигаются к противоположным полюсам, выстраивается веретено деления.
Метафаза II
Хромосомы упорядоченно размещаются в экваториальной плоскости. Метафазные пластинки на двух этапах мейоза взаимно перпендикулярны. Веретено деления связывает центриоли и хроматиды.
Анафаза II
К противоположным полюсам клетки расходится по одной дочерней хроматиде из каждой хромосомы. В делящейся клетке формируется 2 редуцированных генетических набора, но клетку считают гаплоидной до полного разделения цитоплазмы.
Телофаза II
Заканчивается редукционное деление. Заново формируются ядерные мембраны, разделяется цитоплазма. Из 2 клеток с гаплоидным геномом образуются 4 гаметы, где по-разному скомбинированы генетические признаки. При гаметогенезе у мужчин цитоплазма делится поровну между 4 сперматозоидами.
При гаметогенезе у женщин основная масса цитоплазмы отходит к яйцеклетке, большую часть трех остальных клеток занимает ядро. Эти клетки называют полярными тельцами.
Как происходит редукция генетического набора, хорошо иллюстрирует таблица с рисунками мейоза по фазам, где с — количество хроматид, а n — количество хромосом:
Фаза | Геном | Иллюстрация |
---|---|---|
Профаза I | 4с 2n | |
Метафаза I | 4с 2n | |
Анафаза I | 4с 2n | |
Телофаза I | 2с 1n | |
Профаза II | 2с 1n | |
Метафаза II | 2с 1n | |
Анафаза II | 2с 1n | |
Телофаза II | 1с 1n |
Типы мейоза
В жизненном цикле эукариотических организмов мейоз может занимать разное положение. В зависимости от этого выделяют 3 типа мейоза:
Существуют и модификации мейоза. Например, для лягушки съедобной характерна такая особенность, как полуклональное размножение. Каждая особь имеет диплоидный набор хромосом, получая от каждого из родителей по гаплоидному набору. Перед мейозом один из родительских наборов удаляется, а второй – удваивается. Гаметы получают набор хромосом, полностью идентичный таковому одного из родителей особи. В профазу 1 мейоза рекомбинации не происходит, поскольку перед вступлением в деление клетки несут только по одной вариации каждого гена.
В процессе мейоза происходит образование гамет с редуцированными геномами и разными генетическими наборами. У диплоидных организмов образуются гаметы с гаплоидным набором хромосом.
Это необходимо для того, чтобы после оплодотворения у зиготы снова восстановился диплоидный генетический набор. Кроссинговер обеспечивает формирование гамет с разнообразными генотипами, что способствует выживанию популяции.
Биология. 11 класс
§ 18. Мейоз
Мейоз — особый способ деления эукариотических клеток, в результате которого из одной материнской клетки образуются четыре дочерние с уменьшенным в 2 раза набором хромосом. Если в мейоз вступает диплоидная клетка (2n4c), то образуются четыре гаплоидные клетки (1n1c). Клетки с гаплоидным набором хромосом не способны делиться мейозом.
Мейоз представляет собой два последовательных деления — мейоз I и мейоз II. Важно отметить, что репликация ДНК предшествует только первому мейотическому делению. Между мейозом I и мейозом II удвоения ДНК не происходит. Каждое из двух делений обычно включает профазу, метафазу, анафазу и телофазу. Рассмотрим процесс мейотического деления диплоидной клетки. Первое деление мейоза осуществляется следующим образом (табл. 18.1)
Таблица 18.1. Первое деление мейоза (мейоз I)
Схема
Фаза и процессы, происходящие в ней
Гомологичные хромосомы попарно сближаются и соединяются друг с другом *сначала в нескольких участках, а затем по всей своей длине*. Этот процесс называется конъюгацией гомологичных хромосом, *а образовавшиеся хромосомные пары — бивалентами. В ходе конъюгации хромосомы тесно соприкасаются. В некоторых точках соприкосновения, называемых хиазмами, вследствие разрыва и последующего воссоединения молекул ДНК,* между хроматидами гомологичных хромосом может происходить обмен соответствующими участками — кроссингóвер. *Далее гомологичные хромосомы в составе каждого бивалента начинают отталкиваться друг от друга и в результате остаются связанными только в областях хиазм.*
Метафаза I. Завершается формирование веретена деления. Спирализация хромосом достигает максимума. * Биваленты * располагаются в центральной части клетки, *образуя метафазную пластинку. Каждый бивалент ориентирован таким образом, что центромеры гомологичных хромосом находятся по разные стороны от экваториальной плоскости клетки, на одинаковом расстоянии от нее.* При этом нити веретена деления, идущие от противоположных полюсов клетки, прикреплены к центромерам разных гомологичных хромосом. Таким образом, в составе каждого *бивалента* одна из хромосом оказывается связанной с одним полюсом клетки, а другая — с противоположным
Телофаза I. Веретено деления разрушается. Происходит деспирализация хромосом и формирование двух ядер. Далее клетка разделяется на две дочерние. Они имеют гаплоидный набор хромосом, каждая хромосома состоит из двух хроматид (1n2c)
Промежуток времени между первым и вторым делениями мейоза обычно очень короткий. В этот период, как уже отмечалось, не осуществляется репликация ДНК. Каждая из двух клеток, образовавшихся в результате мейоза I, вступает в мейоз II. Это деление протекает аналогично митозу (табл. 18.2).
*У некоторых организмов перерыв между мейозом I и мейозом II — так называемый интеркинез вообще отсутствует. При этом клетки, завершившие телофазу I, сразу же переходят в профазу II. Более того, могут выпадать и эти фазы. Так, у большинства растений, клетки, делящиеся мейозом, после окончания анафазы I вступают непосредственно в метафазу II. В этом случае переход от первого мейотического деления ко второму не сопровождается деспирализацией хромосом, формированием двух ядер и разделением материнской клетки на две дочерние.*
Таблица 18.2. Второе деление мейоза (мейоз II)
Схема
Фаза и процессы, происходящие в ней
Профаза II. В результате спирализации хроматина формируются двухроматидные хромосомы (набор 1n2c). В это же время начинается образование веретена деления. После распада ядерной оболочки отдельные хромосомы беспорядочно располагаются в гиалоплазме
Анафаза II. Происходит разделение центромер. Сестринские хроматиды (теперь уже дочерние хромосомы ) растягиваются к разным полюсам клетки. В конце анафазы II набор хромосом и хроматид у каждого полюса составляет 1n1c
Телофаза II. Хромосомы деспирализуются, формируются ядра, и происходит разделение клеток. При этом образуются четыре дочерние клетки, имеющие набор 1n1c
Таким образом, в результате первого деления мейоза исходная материнская клетка (2n4c) разделилась на две дочерние, имеющие гаплоидный набор хромосом. *Следовательно, в мейозе I произошла редукция (уменьшение) числа хромосом в 2 раза. Поэтому первое деление называют редукционным. В образовавшихся гаплоидных клетках каждая хромосома представлена двумя хроматидами (1n2c).
В результате второго деления, протекающего по типу митоза, набор хромосом (1n) не изменяется. Это деление мейоза называется эквационным (от лат. aequatio — уравнивание). Эквационное деление, в отличие от редукционного, сопровождается расхождением сестринских хроматид. Поэтому итогом второго деления является образование четырех гаплоидных клеток с однохроматидными хромосомами (1n1c).*
*Как и в случае митоза, правильное протекание мейоза может быть нарушено действием определенных внешних или внутриклеточных факторов. Последствия таких воздействий могут быть разными, вплоть до образования нежизнеспособных дочерних клеток. Наиболее часто встречающейся патологией мейоза является нерасхождение хромосом в анафазе I. Оно происходит вследствие нарушения разделения бивалентов и выражается в том, что обе гомологичные хромосомы перемещаются к одному из полюсов клетки. Нерасхождение может наблюдаться и на стадии анафазы II. При этом к одному и тому же полюсу отходят две сестринские хроматиды (дочерние хромосомы ). Как в первом, так и во втором случае результатом нерасхождения хромосом является образование генетически неравноценных клеток. В одних клетках наблюдается избыток хромосом (1n + 1), а в других — недостаток (1n — 1).*
Биологическое значение мейоза. У животных и человека путем мейоза образуются гаметы — гаплоидные половые клетки. В результате последу ющего оплодотворения формируется зигота с двойным набором хромосом, из которой развивается новый организм. Он является диплоидным, как и его родители, а значит, сохраняет свойственный данному виду организмов кариотип. Без мейоза, приводящего к уменьшению набора хромосом в 2 раза, половое размножение сопровождалось бы удвоением числа хромосом в каждом новом поколении. У растений, многих водорослей и грибов мейоз приводит к формированию спор, с помощью которых осуществляется бесполое размножение.