Для чего используется калифорний 252
Самый дорогой металл на планете: сколько стоит, как получают и где используют?
Какой металл является самым дорогим на планете и когда его открыли?
Среди всех металлов есть настоящий рекордсмен, как по цене, так и по трудности добычи. Им является калифорний-252. На нашей планете имеется не более 10 грамм этого металла в чистом виде! Калифорний-252 был открыт и впервые получен в 50-х годах прошлого века, когда между США и СССР шла гонка технологий, а своим названием он обязан американским учёным.
Как получают Калифорний-252?
Металл получают путём бомбардировки кюрия и плутония потоками нейтронов. Процесс протекает в ядерном реакторе, а за время облучения происходят сложные ядерные трансформации элементов (плутоний-америций-кюрий-берклий-калифорний). Чтобы получить всего 1 грамм калифорния-252 нужно потратить около 10 килограммов радиоактивного плутония.
После завершения ядерных реакций, калифорний-252 получается не в чистом виде. Его сложные оксиды и соли необходимо восстановить до металла. Период полураспада элемента составляет чуть больше 2 лет. Это значит, что через этот срок останется лишь половина активных ядер.
Сколько стоит самый дорогой металл и где его производят?
Вышеописанный процесс невероятно сложно реализовать, а потому металл очень дорогой. Цена всего 1 грамма этого металла может доходить до 30 миллионов долларов! Получают калифорний-252 всего в двух местах на планете: в США (Окриджская национальная лаборатория) и в России (Димитровград, Научно-исследовательский институт атомных реакторов).
Где используют Калифорний-252?
Высокая цена калифорния-252 оправдана его уникальными свойствами. Изотоп спонтанно испускает мощнейший поток нейтронов. Это сопоставимо с таким же количеством излучения урана, который находится в рабочем реакторе. Металл может быть использован для первичного запуска ядерных реакторов, для исследования свойств материи и для широкого спектра физических исследований.
Калифорний-252 может быть применён для лечения онкологии. Мельчайший образец металла, испускающий медленные нейтроны, способен разрушать поражённые клетки. Также нейтронный анализ используют в неразрушающей диагностике предметов старины, для определения их возраста и подлинности.
Если статья была интересна, пожалуйста, поддержите лайком!
Подписывайтесь на канал, чтобы не пропустить новые материалы.
masterok
Мастерок.жж.рф
Хочу все знать
Увидев заголовок, вы наверное сразу подумали о золоте, но на самом деле золото в рейтинге самых дорогих металлов всего лишь на пятом месте. Платина на 4, Родий 113 на третьем, а на втором изотоп Осмия 187
Так вот он самый дорогой металл в мире :
Этот металл в таблице Менделеева под номером 98 и называется он Калифорний (Cf).
Из этого металла не делают диадемы, им не оправляют драгоценные камни. Однако стоит калифорний аж 10 миллионов долларов за один грамм и используется при проведении дорогостоящих научных исследований.
Калифорний (Cf) или «камень надежды» это опасный, радиоактивный металл серебристо-белого цвета. Этот металл добывается искусственным путем и, соответственно, в природе его не существует.
Калифорний производится путем длительного облучения металлов плутония нейтронами в мощнейшем ядерном реакторе. Впервые этот драгоценный металл удалось добыть в 1950 году в США (Калифорнийский университет).
На сегодняшний день, реакторов, способных произвести калифорний, в мире только два — в США и в России. Два реактора способны произвести за год всего 80 микрограмм калифорния.
В 1950 году трансурановый элемент калифорний (Cf) появился на свет в количестве нескольких атомов. В настоящее время планируется и осуществляется «производственная программа» для получения его миллиграммовых количеств. Мировой запас калифорния составляет несколько граммов, вероятно, никак не более 5 г. Калифорний невероятно дорог. Один грамм его стоит около 10 миллионов долларов. Какие же свойства, несмотря на это, делают этот изотоп столь необходимым?
Калифорний-252 имеет период полураспада 2,6 года. При этом самопроизвольно делится 3 % всех атомов и при каждом делении выделяется четыре нейтрона. Вот именно такая нейтронная эмиссия и делает калифорний-252 столь интересным, ибо 1 г в секунду выделяет 2,4 биллиарда (1012) нейтронов. Это соответствует нейтронному потоку среднего ядерного реактора! Если бы такое нейтронное излучение захотели получить классическим путем из радиево-бериллиевого источника, то для этого потребовалось бы 200 кг радия. Столь огромного запаса радия вообще не существует на Земле. Даже такое невидимое глазом количество, как 1 мкг калифорния-252, дает более 2 миллионов нейтронов в секунду. Поэтому калифорний-252 в последнее время используют в медицине в качестве точечного источника нейтронов с большой плотностью потока для локальной обработки злокачественных опухолей.
Более распространено использование калифорния в нейтронно-активационном анализе. Под этим имеется в виду высокочувствительный метод анализа, пригодный в особенности для определения следов элементов. Исследуемые вещества подвергают облучению потоком нейтронов, в результате чего образуются искусственные радиоактивные изотопы. Интенсивность их излучения является мерой содержания составных частей примесей. При (n, g)-реакциях можно с помощью гамма-спектроскопии высокой точности изящным методом измерить интенсивность гамма-излучения, специфическую для каждого нуклида, а по интенсивности найти содержание определяемого элемента.
В настоящее время общепринято активировать материал пробы в атомном реакторе. Однако все более предпочтительными становятся небольшие переносные источники нейтронов. Они позволяют проводить нейтронно-активационный анализ на месте. Убедительным примером является изучение состава поверхности Луны и удаленных от Земли планет. При поисках рудных месторождений, находящихся в недоступных местах на Земле и на дне моря, применяют точечные источники нейтронов. Для разведывания месторождений нефти используют зонды буровых скважин с калифорнием-252.
Умер ли Наполеон 1 в ссылке естественной смертью? На этот вопрос, неоднократно подвергавшийся обсуждению, был получен однозначный ответ лишь 140 лет спустя. В качестве «вещественного доказательства» послужила прядь волос французского императора, которая была срезана у него 5 мая 1821 года на острове св. Елены, через день после его смерти. Она хранилась из поколения в поколение несколькими почитателями в качестве драгоценного сувенира.
В настоящее время уже не является загадкой происхождение античных мраморных статуй, поскольку стало известно, что для различных древних мраморных каменоломен характерно присутствие определенных примесных элементов. Исследования красящих пигментов картин с помощью активационного анализа оказались весьма ценными для их датирования. Следы посторонних примесей в свинцовых белилах — весьма распространенной краске — совершенно характерно изменяются с течением времени. Сходное поведение обнаружено также для других художественных красок. С тех пор, как появился нейтронно-активационный анализ, исчезли все возможности для подделки картин старых мастеров.
Неоценимое преимущество этого метода проявляется в особенности при исследовании ценных старинных произведений искусства, ибо испытание не связано абсолютно ни с каким разрушением. При других современных методах анализа, как, например, рентгенофлюоресцентном или спектральном, неизбежно хотя бы поверхностное повреждение изучаемого объекта.
Таким образом, в настоящее время вполне возможно определить состав или же подлинность исторических монет из благородных металлов без их разрушения. Теперь можно было бы изобличить даже фальшивомонетчиков древности. Когда папа Григорий IX отлучил от церкви римского императора и короля Сицилии Фридриха II, он кроме всего прочего обвинил его в подделке монет. Это легко было обнаружить для серебряных динаров, пущенных в обращение Фридрихом II, ибо они имели лишь посеребренную поверхность.
А как же обстояло дело с известными золотыми августалами (которые приказал чеканить Фридрих) — монетами большой нумизматической ценности? Обладали ли они предписанным содержанием благородного металла в 20,5 карата, что составляло 85,5% золота? На этот вопрос долгое время нельзя было ответить, ибо никто не решался пожертвовать немногими коллекционными монетами для традиционного анализа. Нейтронная активация без повреждения монет дала доказательство того, что августалы XIII века соответствовали требуемому составу, то есть являлись подлинными.
В прежние времена выпуск фальшивых монет был строго наказуем. В 1124 году английский король Генрих I приказал жестоко изувечить сто мастеров монетного двора по подозрению в подмене серебра в монетах на олово. В настоящее время, с 1971 года, эти мастера должны считаться реабилитированными, хотя и слишком поздно: активационный анализ безупречно доказал, что серебряные монеты, вызывавшие подозрения, содержат требуемые количества металла.
Нейтронно-активационный анализ помогает геологам при поисках месторождений золота и серебра. В Советском Союзе в Ташкентском институте ядерной физики разработаны методы гамма-спектроскопического определения содержания золота в скальных породах при помощи бурового зонда, снабженного Cf-источником. Благородные металлы, заключенные в руде или в горных породах, активируются нейтронами. При этом образуются радиоактивные изотопы серебра или золота, которые можно легко различить, зная их период полураспада, а также расположение линий их гамма-спектров. Интенсивность полос дает сведения о содержании металла: в природных породах можно таким путем определить 10-9% золота и серебра. Не остается незамеченной даже малейшая пылинка золота.
Самый дорогой металл
Когда речь заходит о самом дорогом металле на нашей планете, многие представляют себе платину, родий или титан. На самом же деле, это далеко от правды.
Самым дорогим металлом, полученным химическим путем, является металл под названием Калифорний. Сходством со многими драгоценными металлами у Калифорния является белый цвет и серебристый отблеск, не более того.
Увидеть Калифорний воочию не удастся- вес исчисляется атомами.
Немного истории
Этот необычный металл открыл в 50х годах 20 века Гленн Сиборг. Изначально, невидимый (лишь несколько атомов) Калифорний получили в реакторах, в которых под воздействием нейтронов осуществляли расщепление радиоактивных элементов. Логично, что и полученный металл тоже является радиоактивным и возник он в результате четко направленной ядерной реакции.
Через 8 лет удалось получить химическое соединение Калифорния в более твердом состоянии.
Что же представляет из себя Калифорний?
Критическая масса — в ядерной физике минимальная масса делящегося вещества, необходимая для начала самоподдерживающейся цепной реакции деления. Коэффициент размножения нейтронов в таком количестве вещества больше единицы или равен единице. Размеры, соответствующие критической массе, также называют критическими.
Величина критической массы зависит от свойств вещества (таких, как сечения деления и радиационного захвата), от плотности, количества примесей, формы изделия, а также от окружения. Например, наличие отражателей нейтронов может сильно уменьшить критическую массу.
252 изотоп Калифорния создают в лабораторных условиях, а точнее в защищенных ядерных реакторах, расщепляя продукты облученные радиоактивным плутонием, кюрием или нейтронами.
Калифорний-252 поддать распаду нереально. В результате преобразования, только 0,3% ядер плутония не распадается, поэтому для получения 1 грамма Калифорния требуется 10 кг плутония.
За год в мире получают до 100 микрограмм такого «концентрата энергии», как калифорний-252, а по некоторым оценкам, на нашей планете, его запас не превышает 5 грамм.
Калифорний-252 – самый дорогостоящий и научно важный металл. Его стоимость доходила до 27 миллионов долларов за 1 грамм.
Вопреки высокой стоимости, есть такие отрасли, в которых этот изотоп, а точнее его свойства являются во много раз ценней стоимости.
Где используют Калифорний?
Его активно применяют:
Кроме того, его излучение используют в таких сферах, как:
Применение в медицине
Несмотря на токсичность, его применяют в медицине, как источник целительного излучения, убивающего зараженные и больные ткани тела.
При введении малейшего его количества в ткани тела, разрушаются все атипичные клетки, при этом здоровые клетки облучению не поддаются.
Благодаря этим открытиям нейтронная радиохирургия стала реальным и опробованным способом лечения распространенных заболевания.
Драгоценные металлы вовсе не являются такими дорогими, если сравнивать их с некоторыми искусственно полученными металлами. Например, радиоактивный элемент Калифорний-252 стоит неимоверных 27 миллионов долларов за 1 грамм (дороже только антиматерия, которая оценивается в 60 триллионов долларов за 1 грамм). Ежегодно в мире производят лишь 40 миллиграмм этого материала, поэтому мировой запас Калифорния составляет ничтожных 8 грамм. Регулярно Калифорний производят в Окриджской национальной лаборатории в США и в Димитровграде Ульяновской области. Далее предлагаем взглянуть на процесс производства почти самого дорогого в мире материала.
Далее слова автора:
В 80 километрах от Ульяновска, на реке Черемшан, находится город Димитровград с населением около 100 000 человек. Его главное предприятие – Научно-исследовательский институт атомных реакторов (НИИАР), который был создан в 1956 году по иницитиве Курчатова. Изначально он был опытной станцией для испытаний ядерных реакторов, но в настоящее время спектр направлений деятельности значительно расширился. Сейчас в НИИАР испытывают различные материалы, чтобы определить, как они себя ведут в условиях продолжительного радиактивного излучения, создают радионуклидные источники и препараты, которые применяют в медицине и исследованиях, решают технические вопросы экологически чистых технологий и просто ведут научную деятельность. В НИИАР работает около 3500 сотрудников и 6 реакторов.
Светят, но не греют
Ни один из шести «нииаровских» реактора не используется как источник энергии и не отапливает город – тут вы не увидите гигантских установок на тысячи МВт. Главная задача этих «малышей» – создать максимальный по плотности поток нейтронов, которыми учёные института и бомбардируют различные мишени, создавая то, чего нет в природе. Реакторы НИИАР работают по схеме «10/10″ – десять дней работы и 10 день отдыха, профилактики и перегрузки топлива. При таком режиме просто невозможно использовать их для нагрева воды. Да и максимальная температура теплоносителя, получаемая на выходе – всего 98 С, воду быстро охлаждают в небольших градирнях и пускают по кругу.
Из 6 реакторов есть один, самый любимый учёными НИИАР. Он же и самый первый. Он же и Самый Мощный, что и дало ему имя – СМ. В 1961 году это был СМ-1, мощностью в 50 МВт, в 1965 после модернизации он стал СМ-2, в 1992 – СМ-3, эксплуатация которого рассчитана до 2017 года. Это уникальный реактор и в мире он один такой. Его уникальность – в очень высокой плотности потока нейтронов, который он способен создавать. Именно нейтроны и являются основной продукцией НИИАР. С помощью нейтронов можно решать много задач по исследованию материалов и созданию полезных изотопов. И даже воплощать в жизнь мечту средневековых алхимиков – превращать свинец в золото (теоретически).
Если не вдаваться в подробности, то процесс очень прост – берётся одно вещество и обстреливается со всех сторон нейтронами. Так, к примеру, из урана путём дробления его ядер нейтронами можно получить более лёгкие элементы: йод, стронций, молибден, ксенон и другие.
Ввод реактора СМ-1 в эксплуатацию и его успешная работа вызвали большой резонанс в научном мире, стимулировав, в частности, сооружение в США высокопоточных реакторов с жестким спектром нейтронов – HFBR (1964 год) и HFIR (1967 год). В НИИАР неоднократно приезжали светила ядерной физики, включая отца ядерной химии Гленна Сиборга, и перенимали опыт. Но всё же такой же по элегантности и простоте реактор так никто больше и не создал.
К примеру, совсем недавно из реактора вытащили колбу с иридием, из которого получили нужный изотоп. Теперь она висит и остывает.
После этого, маленькую ёмкость с теперь уже радиоактивным иридием погрузят в специальный защитный свинцовый контейнер, весом в несколько тонн и отправят на автомобиле заказчику.
Отработанное топливо (всего несколько грамм) потом тоже остудят, законсервируют в свинцовую бочку и отправят в радиоактивное хранилище на территории института на длительное хранение.
В этом зале не один реактор. Рядом с СМ находится и другой – РБТ – реактор бассейнового типа, который работает с ним в паре. Дело в том что в реакторе СМ топливо «выгорает» всего наполовину. Поэтому его нужно «дожечь» в РБТ.
Вообще, РБТ удивительный ректор, внутрь которого можно даже заглянуть (нам не дали). Он не имеет привычного толстого стального и бетонного корпуса, а для защиты от радиации он просто помещен в огромный бассейн с водой (отсюда и название). Толща воды удерживает активные частицы, тормозя их. При этом частицы, движущиеся со скоростью, превышающей фазовую скорость света в среде, вызывают знакомое многим по фильмам голубоватое свечение. Этот эффект носит название учёных, которые его описали – Вавилова — Черенкова.
Запах реакторного зала не спутать ни с чем. Здесь сильно пахнет озоном, как после грозы. Воздух ионизируется при перегрузке, когда отработавшие сборки достают и перемещают в бассейн для охлаждения. Молекула кислорода О2 превращается в О3. Кстати, озон пахнет совсем не свежестью, а больше похож на хлор и такой же едкий. При высокой концентрации озона вы будете чихать и кашлять, а потом умрёте. Он отнесён к первому, самому высокому классу опасности вредных веществ.
Радиационный фон в зале в этот момент повышается, но и людей здесь нет – все автоматизировано и оператор наблюдает за процессом через специальное окно. Однако, даже после этого к перилам в зале без перчаток прикасаться не стоит – можно подхватить радиоактивную грязь.
Но уйти домой с ней вам не дадут – на выходе из «грязной зоны» всех обязательно проверяют детектором бэта-излучения и в случае обнаружения вы вместе со своей одеждой отправитесь в реактор в качестве топлива. Шутка.
Но руки в любом случае нужно мыть с мылом после посещения любых подобных зон.
Коридоры и лестницы в реакторном корпусе застелены специальным толстым линолеумом, края которого загнуты на стены. Это нужно для того, чтобы в случае радиоактивного загрязнения можно было бы не утилизировать всё здание целиком, а просто скатать линолеум и постелить новый. Чистота тут почти как в операционной, ведь наибольшую опасность представляет здесь пыль и грязь, которая может попасть на одежду, кожу и внутрь организма – альфа и бэта-частицы не могут улететь далеко, но при ближнем воздействии они как пушечные ядра, и живым клеткам точно не поздоровится.
Пульт с красной кнопкой
Зал управления реактором.
Сам пульт производит впечатление глубоко устаревшего, но зачем менять то, что спроектировано на долгие годы работы? Важнее всего то, что за щитами, а там все новое. Всё же многие датчики были переведены с самописцев на электронные табло, и даже программные системы, которые, кстати, в НИИАР и разрабатываются.
Каждый реактор имеет множество независимых степеней защиты, поэтому «фукусимы» тут не может быть в принципе. А что касается «чернобыля» – не те мощности, тут работают «карманные» реакторы. Наибольшую опасность представляют выбросы некоторых лёгких изотопов в атмосферу, но и этому не дадут случиться, как нас уверяют.
Если за пределами НИИАР вы будете заправлять штаны в носки, то, скорее всего, вас кто-то сфотографирует и выложит в сеть, чтобы посмеяться. Однако здесь это необходимость. Попробуйте сами догадаться, почему.
Теперь о Калифорнии-252 и зачем он нужен. Теперь представьте, что та энергия, которую вырабатывает целый реактор СМ, может дать всего лишь один грамм (!) Калифорния.
Калифорний-252 – мощный источник нейтронов, что позволяет использовать его для обработки злокачественных опухолей, где другая лучевая терапия бездейственна. Уникальный металл позволяет просвечивать части реакторов, детали самолетов, и обнаруживать повреждения, которые обычно тщательно скрываются от рентгеновских лучей. С его помощью удается находить запасы золота, серебра и месторождения нефти в недрах земли. Потребность в нём в мире очень велика, и заказчики порою вынуждены стоять годами в очереди за вожделённым микрограммом Калифорния! А всё потому, что производство этого металла занимает…. годы. Для производства одного грамма Калифорния-252, плутоний или кюрий подвергают длительному нейтронному облучению в ядерном реакторе, в течение 8 и 1.5 лет соответственно, последовательными превращениями проходя практически всю линейку трансурановых элементов таблицы Менделеева. На этом процесс не заканчивается – из получившихся продуктов облучения химическим путем долгими месяцами выделяют сам калифорний. Это очень и очень кропотливая работа, которая не прощает спешки. Микрограммы металла собирают буквально по атомам. Этим и объясняется такая высокая цена.
Вы не задумывались, почему «калифорний-252» стоит так дорого? (3 фото)
Ядерная реакция.
Ядерная реакция это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, который может сопровождаться изменением состава и строения ядра. Последствием взаимодействия может стать деление ядра, испускание элементарных частиц или фотонов. Кинетическая энергия вновь образованных частиц может быть гораздо выше первоначальной, при этом говорят о выделении энергии ядерной реакцией.
Впервые ядерную реакцию наблюдал Резерфорд в 1919 году, бомбардируя α-частицами ядра атомов азота. Она была зафиксирована по появлению вторичных ионизирующих частиц, имеющих пробег в газе больше пробега α-частиц и идентифицированных как протоны. Впоследствии с помощью камеры Вильсона были получены фотографии этого процесса.
По механизму взаимодействия ядерные реакции делятся на два вида:
1.
Драгоценные металлы вовсе не являются такими дорогими, если сравнивать их с некоторыми искусственно полученными металлами. Например, радиоактивный элемент Калифорний-252 стоит неимоверных 27 миллионов долларов за 1 грамм (дороже только антиматерия, которая оценивается в 60 триллионов долларов за 1 грамм). Ежегодно в мире производят лишь 40 миллиграмм этого материала, поэтому мировой запас Калифорния составляет ничтожных 8 грамм. Регулярно Калифорний производят в Окриджской национальной лаборатории в США и в Димитровграде Ульяновской области. Далее предлагаем взглянуть на процесс производства почти самого дорогого в мире материала.
2.
В 80 километрах от Ульяновска, на реке Черемшан, находится город Димитровград с населением около 100 000 человек. Его главное предприятие – Научно-исследовательский институт атомных реакторов (НИИАР), который был создан в 1956 году по иницитиве Курчатова. Изначально он был опытной станцией для испытаний ядерных реакторов, но в настоящее время спектр направлений деятельности значительно расширился. Сейчас в НИИАР испытывают различные материалы, чтобы определить, как они себя ведут в условиях продолжительного радиактивного излучения, создают радионуклидные источники и препараты, которые применяют в медицине и исследованиях, решают технические вопросы экологически чистых технологий и просто ведут научную деятельность. В НИИАР работает около 3500 сотрудников и 6 реакторов.
Известны 20 изотопов, наиболее ценным из них является калифорний-252 с периодом полураспада в 2,6 года.
Температура плавления металла 900 градусов Цельсия, температура кипения оценивается в 1300-1500 градусов Цельсия. Калифорний радиоактивен, является мощным источником нейтронов и токсичен. Ежегодно производят не больше нескольких сот миллиграммов 252-го изотопа.
P.S.
И лечит и колечит. Но, при этом не доступен, обычному «Смертному».
Калифорний назван в честь Калифорнийского университета в Беркли, где в 1950 году его получила группа ученых под руководством обладателя Нобелевской премии по химии и участника Манхэттенского проекта Гленна Сиборга.
Создатель калифорния и один из основоположников ядерной химии Гленн Сиборг причастен к открытию десяти новых элементов таблицы Менделеева, один из которых в его честь получил название сиборгий.
С калифорнием работают только Научно-исследовательский институт атомных реакторов (НИИАР) в Димитровграде и Национальная лаборатория Оук-Ридж в США.
Калифорний относится к числу самых дорогих веществ в мире. По некоторым оценкам, один грамм этого вещества стоит 26 миллионов долларов.