Для чего используется модель osi

OSI Model

Содержание

Сетевая модель OSI [ править ]

Общая характеристика модели [ править ]

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

OSI состоит из двух основных частей:

Концепция семиуровневой модели была описана в работе Чарльза Бахмана. Данная модель подразделяет коммуникационную систему на уровни абстракции (англ. «abstraction layers»). В модели OSI средства взаимодействия делятся на семь уровней: прикладной, представления, сеансовый, транспортный, сетевой, канальный и физический. Каждый уровень:

Каждый из семи уровней характеризуется типом данных (PDU, сокращение от англ. protocol data units), которым данный уровень оперирует и функционалом, который он предоставляет слою, находящемуся выше него. Предполагается, что пользовательские приложения обращаются только к самому верхнему (прикладному) уровню, однако на практике это выполняется далеко не всегда.

Описание уровней модели OSI [ править ]

УровеньФункцииPDUПримеры
7. ПрикладнойНекоторое высокоуровневое APIДанныеHTTP, FTP
6. ПредставительскийПредставление данных между сетевым сервисом и приложениемДанныеASCII, EBCDIC, JPEG
5. СеансовыйУправление сеансами: продолжительный обмен информацией в виде множества передач между нодамиДанныеRPC, PAP
4. ТранспортныйНадёжная передача сегментов между двумя нодами в сетиСегменты/ДатаграммыTCP, UDP
3. СетевойСтруктуризация и управление множеством нод в сетиПакетыIPv4, IPv6
2. КанальныйНадёжная передача датафреймов между двумя нодами соединённых физическим уровнемФреймыPPP, IEEE 802.2, Ethernet
1. ФизическийПередача и приём потока байтов через физическое устройствоБитыUSB, витая пара

Прикладной уровень (Application layer) [ править ]

Самый верхний уровень модели, предоставляет набор интерфейсов для взаимодействия пользовательских процессов с сетью. Единицу информации, которой оперируют три верхних уровня модели OSI, принято называть сообщение (англ. message).

Прикладной уровень выполняет следующие функции:

К числу наиболее распространенных протоколов верхних трех уровней относятся:

Уровень представления (Presentation layer) [ править ]

Уровень представления занимается представлением данных, передаваемых прикладными процессами в нужной форме. Данные, полученные от приложений с прикладного уровня, на уровне представления преобразуются в формат подходящий для передачи их по сети, а полученные по сети данные преобразуются в формат приложений. Также кроме форматов и представления данных, данный уровень занимается конвертацией структур данных, используемых различными приложениями. Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от доступа несанкционированными получателями.

Как и прикладной уровень, уровень представления оперирует напрямую сообщениями. Уровень представления выполняет следующие основные функции:

Примеры протоколов данного уровня:

Сеансовый уровень (Session layer) [ править ]

Сеансовый уровень контролирует структуру проведения сеансов связи между пользователями. Он занимается установкой, поддержанием и прерыванием сеансов, фиксирует, какая из сторон является активной в данный момент, осуществляет синхронизацию обмена информацией между пользователями, что также позволяет устанавливать контрольные точки.

На сеансовом уровне определяется, какой будет передача между двумя прикладными процессами:

Как 2 уровня над ним, сеансовый уровень использует сообщения в качестве PDU.

Примеры протоколов сеансового уровня:

Транспортный уровень (Transport layer) [ править ]

Транспортный уровень предназначен для передачи надежной последовательностей данных произвольной длины через коммуникационную сеть от отправителя к получателю. Уровень надежности может варьироваться в зависимости от класса протокола транспортного уровня. Так например UDP гарантирует только целостность данных в рамках одной датаграммы и не исключает возможности потери/дублирования пакета или нарушения порядка получения данных; TCP обеспечивает передачу данных, исключающую потерю данных или нарушение порядка их поступления или дублирования, может перераспределять данные, разбивая большие порции данных на фрагменты и наоборот, склеивая фрагменты в один пакет.

Модель OSI определяет пять классов сервиса, предоставляемых транспортным уровнем. Эти виды сервиса отличаются качеством предоставляемых услуг: срочностью, возможностью восстановления прерванной связи, наличием средств мультиплексирования нескольких соединений между различными прикладными протоколами через общий транспортный протокол, а главное способностью к обнаружению и исправлению ошибок передачи, таких как искажение, потеря и дублирование пакетов. В функции транспортного уровня входят:

Транспортный уровень использует сегменты или датаграммы в качестве основного типа данных.

Сетевой уровень (Network layer) [ править ]

Сетевой уровень предоставляет функционал для определения пути передачи пакетов данных между клиентами, подключенными к одной коммуникационной сети. На данном уровне решается проблема маршрутизации (выбора оптимального пути передачи данных), трансляцией логических адресов в физические, отслеживанием неполадок в сети.

В рамках сетевого надежность доставки сообщений не гарантируется; сетевой уровень может реализовывать соответствующий функционал, но не обязан это делать. Роль PDU исполняют пакеты (англ. packet).

Сетевой уровень выполняет функции:

Наиболее часто на сетевом уровне используются протоколы:

Канальный уровень (Data link layer) [ править ]

Канальный уровень предназначен для передачи данных между двумя узлами, находящихся в одной локальной сети. Роль PDU исполняют фреймы (англ. frame). Фреймы канального уровня не пересекают границ локальной сети, что позволяет данному уровню сосредоточиться на локальной доставке (фактически межсетевой доставкой занимаются более высокие уровни).

Заголовок фрейма формируется из аппаратных адресов отправителя и получателя, что позволяет однозначно определить устройство, которое отправило данный фрейм и устройство, которому он предназначен. При этом никакая часть адреса не может быть использована, чтобы определить некую логическую/физическую группу к которой принадлежит устройство.

Канальный уровень состоит из двух подуровней: LLC и MAC.

Канальный уровень выполняет функции:

Наиболее часто на канальной уровне используются протоколы:

Физический уровень (Physical layer) [ править ]

Физический уровень описывает способы передачи потока бит через дата линк, соединяющий сетевые устройства. Поток байт может быть сгруппирован в слова и сконвертирован в физический сигнал, который посылается через некоторое устройство.

Здесь специфицируются такие низкоуровневые параметры как частота, амплитуда и модуляция.

Физический уровень выполняет функции:

Наиболее часто на физическом уровне используются протоколы:

Инкапсуляция [ править ]

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Физический уровень ответственен за физическую передачу данных. IP предоставляет глобальный способ адресации устройств. TCP добавляет возможность выбора приложения (порт).

Во время инкапсуляции каждый уровень собирает свой собственный PDU, добавляя некоторый заголовок с контрольной информацией к PDU с более высокого уровня.

Пример [ править ]

Предположим мы отправляем веб-страницу клиенту:

Источник

ИТ База знаний

Полезно

— Онлайн генератор устойчивых паролей

— Онлайн калькулятор подсетей

— Руководство администратора FreePBX на русском языке

— Руководство администратора Cisco UCM/CME на русском языке

— Руководство администратора по Linux/Unix

Навигация

Серверные решения

Телефония

FreePBX и Asterisk

Настройка программных телефонов

Корпоративные сети

Протоколы и стандарты

Модель OSI – это просто!

Модель Open Systems Interconnection (OSI) – это скелет, фундамент и база всех сетевых сущностей. Модель определяет сетевые протоколы, распределяя их на 7 логических уровней. Важно отметить, что в любом процессе, управление сетевой передачей переходит от уровня к уровню, последовательно подключая протоколы на каждом из уровней.

Полный курс по Сетевым Технологиям

В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Видео: модель OSI за 7 минут

Нижние уровни отвечают за физические параметры передачи, такие как электрические сигналы. Да – да, сигналы в проводах передаются с помощью представления в токи 🙂 Токи представляются в виде последовательности единиц и нулей (1 и 0), затем, данные декодируются и маршрутизируются по сети. Более высокие уровни охватывают запросы, связанные с представлением данных. Условно говоря, более высокие уровни отвечают за сетевые данные с точки зрения пользователя.

Модель OSI была изначально придумана как стандартный подход, архитектура или паттерн, который бы описывал сетевое взаимодействие любого сетевого приложения. Давайте разберемся поподробнее?

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

#01: Физический (physical) уровень

На первом уровне модели OSI происходит передача физических сигналов (токов, света, радио) от источника к получателю. На этом уровне мы оперируем кабелями, контактами в разъемах, кодированием единиц и нулей, модуляцией и так далее.

Отметим, что в качестве носителя данных могут выступать не только электрические токи. Радиочастоты, световые или инфракрасные волны используются также повсеместно в современных сетях.

Сетевые устройства, которые относят к первому уровню это концентраторы и репитеры – то есть «глупые» железки, которые могут просто работать с физическим сигналом, не вникая в его логику (не декодируя).

#02: Канальный (data Link) уровень

Представьте, мы получили физический сигнал с первого уровня – физического. Это набор напряжений разной амплитуды, волн или радиочастот. При получении, на втором уровне проверяются и исправляются ошибки передачи. На втором уровне мы оперируем понятием «фрейм», или как еще говорят «кадр». Тут появляются первые идентификаторы – MAC – адреса. Они состоят из 48 бит и выглядят примерно так: 00:16:52:00:1f:03.

Канальный уровень сложный. Поэтому, его условно говоря делят на два подуровня: управление логическим каналом (LLC, Logical Link Control) и управление доступом к среде (MAC, Media Access Control).

На этом уровне обитают такие устройства как коммутаторы и мосты. Кстати! Стандарт Ethernet тоже тут. Он уютно расположился на первом и втором (1 и 2) уровнях модели OSI.

#03: Сетевой (network) уровень

Идем вверх! Сетевой уровень вводит термин «маршрутизация» и, соответственно, IP – адрес. Кстати, для преобразования IP – адресов в MAC – адреса и обратно используется протокол ARP.

Именно на этом уровне происходит маршрутизация трафика, как таковая. Если мы хотим попасть на сайт wiki.merionet.ru, то мы отправляем DNS – запрос, получаем ответ в виде IP – адреса и подставляем его в пакет. Да – да, если на втором уровне мы используем термин фрейм/кадр, как мы говорили ранее, то здесь мы используем пакет.

Из устройств здесь живет его величество маршрутизатор 🙂

Процесс, когда данные передаются с верхних уровней на нижние называется инкапсуляцией данных, а когда наоборот, наверх, с первого, физического к седьмому, то этот процесс называется декапсуляцией данных

#04: Транспортный (transport) уровень

Транспортный уровень, как можно понять из названия, обеспечивает передачу данных по сети. Здесь две основных рок – звезды – TCP и UDP. Разница в том, что различный транспорт применяется для разной категории трафика. Принцип такой:

#05: Сеансовый (session) уровень

Попросите любого сетевого инженера объяснить вам сеансовый уровень. Ему будет трудно это сделать, инфа 100%. Дело в том, что в повседневной работе, сетевой инженер взаимодействует с первыми четырьмя уровнями – физическим, канальным, сетевым и транспортным. Остальные, или так называемые «верхние» уровни относятся больше к работе разработчиков софта 🙂 Но мы попробуем!

Сеансовый уровень занимается тем, что управляет соединениями, или попросту говоря, сессиями. Он их разрывает. Помните мем про «НЕ БЫЛО НИ ЕДИНОГО РАЗРЫВА»? Мы помним. Так вот, это пятый уровень постарался 🙂

#06 Уровень представления (presentation)

На шестом уровне творится преобразование форматов сообщений, такое как кодирование или сжатие. Тут живут JPEG и GIF, например. Так же уровень ответственен за передачу потока на четвертый (транспортный уровень).

#07 Уровень приложения (application)

На седьмом этаже, на самой верхушке айсберга, обитает уровень приложений! Тут находятся сетевые службы, которые позволяют нам, как конечным пользователям, серфить просторы интернета. Гляньте, по какому протоколу у вас открыта наша база знаний? Правильно, HTTPS. Этот парень с седьмого этажа. Еще тут живут простой HTTP, FTP и SMTP.

Онлайн курс по Кибербезопасности

Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии

Источник

Национальная библиотека им. Н. Э. Баумана
Bauman National Library

Персональные инструменты

Сетевая модель OSI

Модель OSI (Open Systems Interconnectton — взаимодействие открытых систем) не так проста, как кажется на первый взгляд. Она была первоначально предназначена для обеспечения разработки протоколов, не зависящих от конкретных поставщиков оборудования, и для получения возможности создания наборов протоколов вместо монолитных программ сетевой связи, но в настоящее время модель OSI фактически редко используется для таких целей. Но эта модель все еще имеет одно важное назначение: на данный момент она представляет собой одно из лучших инструментальных средств описания и классификации сложных последовательностей действий, которые происходят в сетях. Поскольку основная часть применяемых в наши дни наборов протоколов(например TCP/IP) была разработана с использованием другой модели, многие протоколы этих наборов не полностью соответствуют модели и это вызывает определенную путаницу. Например, в некоторых книгах утверждается, что протокол маршрутной информации (Routing Information Protocol — RIP) работает на сетевом уровне, в других указано, что он работает на прикладном уровне. Однако в действительности этот протокол не принадлежит полностью только к одному из этик уровней. Он, как и многие другие, включает функции, относящиеся к обоим уровням. Из этого можно сделать вывод, что устранить такую путаницу можно только с помощью модели OSI, которая позволяет изучать сетевые операции и определять, на каком уровне они выполняются.

Основная цель изучения модели OSI состоит в том, чтобы можно было понять, какие функции выполняются тем или иным устройством, просто узнав, к какому уровню относится данное устройство. Например, если известно, что физическая адресация или управление доступом к передающей среде (Media Access Control — MAC) осуществляется на уровне 2, а логическая (IP-адресация) — на уровне 3, то сразу же становится ясно, что коммутатор Ethernet, который отвечает за фильтрацию МAС-адресов (физических адресов), является прежде всего устройством уровня 2.

Содержание

Общее определение термина пакет

Для описания фрагментов информации, передаваемых по сети, применяются термины: пакет, дейтаграмма, фрейм, сообщение и сегмент. Все они по сути имеют один и тот же смысл, но относятся к разным уровням модели OSI. Например, пакет можно рассматривать как конверт с письмом. Чтобы отправить этот конверт по почте, необходимо выполнить ряд требований (рис.1), которые перечислены ниже.

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Передача сетевого пакета фактически происходит по таким же принципам, как и отправка обычного письма. Рассмотрим в качестве примера сообщение электронной почты, которое показано на рис.2. Для его доставки адресату необходимо такая же информация, как и для обычного письма (а также некоторые другие компоненты, которые рассматриваются в данной главе). эта информация описана ниже.

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Далее понятие пакета применяется для иллюстрации процесса прохождения данных сверху вниз по уровням модели OSI, затем по физическому кабелю, а после этого снизу вверх по уровням модели OSI. Пока они не поступят в виде нового сообщения во входной почтовый ящик дяди Джо.

Основы модели OSI

Модель OSI представляет собой один из способов многоуровневой организации сетей. В той или иной реализации набора протоколов некоторые из уровней модели могут даже не использоваться, но модель OSI разработана так, чтобы любую сетевую функцию можно было представить на одном из ее семи уровней. Описание уровней, начиная с уровня 7 и заканчивая уровнем 1, приведено в табл.1. Здесь принята именно такая последовательность описания уровней, поскольку она позволяет лучше понять устройство модели.

При передаче данных по сети с одного компьютера на другой осуществляется такой процесс: данные исходят из приложения, передаются вниз по уровням модели, проходят через передающую среду (чаще всего это медный или волоконно-оптический кабель) в виде электрического или оптического сигнала, представляющего отдельные логические нули и единицы, после чего поднимаются по уровням модели на другом конце соединения.

По мире выполнения этих действий на каждом уровне, который имеет соответствующий протокол, к пакету добавляется заголовок, указывающий способ обработки пакета на другом конце соединения с помощью такого же протокола. Этот процесс называется инкапсуляцией данных. Схема этого процесса приведена на рис.3. На этой схеме АН обозначает заголовок прикладного уровня (Application Header), РН — представительского (Presentation Нeаder), SH — сеансового (Session Header), — транспортного (Transport Header), NH — сетевого (Network Header), DH — канального (Datelink Header) и РН — физического (Рhysical Header). После прибытия к месту назначения пакет проходит вверх по уровням модели и на каждом уровне удаляются заголовки соответствующих протоколов. Ко времени поступления пакета в приложение в нем остаются только данные, которые принято также называть содержимым пакета (payload).

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Уровень 7

Прикладной уровень отвечает за взаимодействие с пользовательским приложением. Но следует отметить, что обычно он обменивается данными не с самим пользовательским приложением, а, скорее, с сетевыми приложениями, которые применяются в пользовательском приложении. Например, при присмотре ресурсов Web пользовательским приложением является программа браузера, такая как Microsoft Internet Explorer. А в качестве сетевого приложения в данном случае используется программное обеспечение протокола HTTP, которое применяется также во многих других пользовательских приложениях (таких как Netscape Navigator). В общем, можно считать, что прикладной уровень отвечает за создание первоначального пакета, поэтому, если создается впечатление, что программное обеспечение протокола создает пакеты, которых до сих пор не существовало, то оно обычно относится к протоколу прикладного уровня. Хотя такое правило не всегда соблюдается (поскольку собственные пакеты создаются также протоколами, которые существуют на других уровнях), это общее определение протокола прикладного уровня вполне приемлемо. К числу широко применяемых протоколов прикладного уровня относятся HTTP, FTP, Telnet, TFTP, SMTP, P0P3 и MAP.

Назначение представительского уровня понять проще всего, поскольку протокол этого уровня можно легко увидеть в действии. На представительском уровне происходит модификация формата данных. Например, к сообщению электронной почты может прилагаться изображение. Но простой протокол электронной почты (Simple Mail Transfer Protocol — SMTP) может обеспечить передачу только простого текста (состоящего из семибитовых символов в коде ASCII). Для обеспечения передачи изображения приложение должно воспользоваться протоколом представительского о уровня для преобразования изображения в обычный текст. В данном случае применяется протокол многоцелевых почтовых расширений Internet (Multiрurpose internet Mail Extensions — MIME). Этот протокол отвечает также за обратное преобразование текста в изображение после его прибытия к месту назначения. Если эта работа не будет выполнена, то содержимое сообщения будет выглядеть примерно так, как это показали ниже.

BCNHS r%CNE (37НС UHD»Y ЗсТШ! Ufc*?

Такая последовательность знаков, безусловно, не похожа на графическое изображение, и ее получение свидетельствует о наличии проблемы. Тем самым подтверждается сказанное выше, что обычно проще всего обнаружить наличие проблемы на представительском уровне. Кроме того, представительский уровень отвечает за сжатие и шифрование, а также за выполнение многих других действий (таких как эмуляция терминала), которые приводят к изменению формата длины. К числу наиболее широко применяемых форматов представления данных относятся ASCII, JPEG, MPEG и GIF.

В отличие от предыдущих, работу протоколов сеансового уровня понять сложнее всего. Эти протоколы отвечают за установление, поддержание и завершение сеансов. Но это определение является слишком общим и расплывчатый. Поскольку в установлении, поддержании и завершении сеансов в той или иной степени фактически участвуют и протоколы других уровней. Проще всего можно представить себе назначение сеансового уровня в том, что он выполняет функции посредника между двумя приложениями. К числу наиболее широко применяемых протоколов сеансового уровня относятся RРC, LDAP и служба сеансов NetBIOS.

На транспортном уровне выполняется целый ряд функций. Наиболее важными из них являются контроль ошибок, их исправление и управление потоком данных. Транспортный уровень отвечает за надежную работу служб межсетевой передачи данных, функции которой выполняются незаметно для программ более высокого уровня. Проще всего можно понять, как осуществляются функции контроля и исправления ошибок на транспортном уровне, изучив различия между связью с установлением и без установления логического соединения.

Связь с установлением и без установления логического соединения

Связь с установлением логического соединения получила такое название потому, что она предусматривает установление соединения между двумя компьютерами, подключенными к сети (называемыми также хостами), еще до начала передачи данных пользователем. Это позволяет обеспечить двухстороннюю связь. Иными словами, вначале протокол транспортного уровня предусматривает передачу получателю специальных пакетов, с помощью которых другой участник соединения может определить, что к нему вскоре поступят данные. Затем получатель передает специальный пакет отправителю, чтобы он мог узнать, что его предупреждающее сообщение получено. Такой предварительный обмен пакетами позволяет обоим участникам соединения убедиться в том, что связь между ними возможна.

В большинстве случаев связь с установлением логического соединения предусматривает также гарантии доставки. Иными словами, если при передаче пакета удаленному хосту происходит ошибка, то на транспортном уровне выполняется повторная передача этого же пакета, а если это невозможно, отправитель получает сообщение, что доставка пакета окончилась неудачей.

С другой стороны, связь без установления логического соединения обладает прямо противоположными свойствами. Во-первых первоначально не устанавливается какое-либо соединение. Во-вторых, в большинстве случаев (но не во всех) не применяются какие-либо средства исправления ошибок. Обязанности по исправлению ошибок должно взять на себя само приложение или программное обеспечение протокола одного из уровней, находящихся выше или ниже транспортного уровня. Специалисты по сетям часто называют связь без установления логического соединения связью по принципу отправить и забыть. По сути, протокол транспортного уровня отправляет пакет и «забывает» о нём.

В большинстве случаев уловить различие между протоколами с установлением и без установления логического соединения очень легко. Эти различия аналогичны тому, как отличаются друг от друга способы доставки обычного и заказного писем. Передав обычное письмо, отправитель может лишь надеяться, что оно поступит к адресату. У него нет возможности сразу же узнать, получено ли отправленное им сообщение. Это — связь без установления логического соединения. С другой стороны, при отправке заказного письма, сообщение либо доставляется правильно и отправитель получает уведомление о вручении, либо предпринимаются неоднократные попытки его доставить, пока это сообщение не устаревает, и почтовая служба отказывается от дальнейших попыток; но отправитель получает уведомление и в таком случае. Так или иначе, отправитель уверен в том, что он узнает обо всем, что произошло, и сможет принять соответствующие меры. Это — типичная связь с установлением логического соединения.

Управление потоком данных

В своей простейшей форме управление потоком данных представляет собой метод обеспечения того, чтобы чрезмерно интенсивный поток данных не захлестнул оконечную станцию. Например, предположим, что персональный компьютер А обрабатывает данные со скоростью 100 Мбит/с, а компьютер В — со скоростью 10 Мбит/с. Если компьютер А начнет передавать компьютеру В какие-то данные на полной скорости, то 90% этой информации будет потеряно, поскольку компьютер В не способен принимать информацию на скорости 100 Мбит/с. В предотвращении этой ситуации и состоит назначение средств управления потоком данных.

Применяемые в настоящее время методы управления потоком данных подразделяются на три типа, как описано в следующих разделах.

Буферизация
Уведомление о заторе

Метод с использованием уведомления о заторе является немного более сложным по сравнению с буферизацией и обычно используется в сочетании с буферизацией для устранения ее основных недостатков. При использовании метода с уведомлением о заторе после того, как буфера приемного устройства начинают заполняться (или явные проявления затора в сети обнаруживаются с помощью некоторых ИНЫХ методов), приемная станция отправляет передающей станции сообщение, которое по сути означает «замедлить передачу данных». После того как буфер немного разгрузится, приемная станция может отправить другое сообщение с указанием, что передача может быть возобновлена. Очевидным недостатком такого решения является то, что при наличии в цепочке промежуточных устройств (таких как маршрутизаторы) уведомления о заторе лишь усугубляют ситуацию, заполняя буфера на каждом маршрутизаторе вдоль этой цепочки.

Например, предположим, что маршрутизатор А передает пакеты маршрутизатору С Через маршрутизатор В (как показано на рис.4). А Как только буфер маршрутизатора С начинает заполняться, он передает уведомление о заторе маршрутизатору В. Это сообщение приводит к заполнению буфера маршрутизатора В. Затем маршрутизатор В отправляет уведомление о заторе маршрутизатору А. Это Приводит к заполнению буфера маршрутизатора А, что в конечном итоге вызывает потерю данных (безусловно, этого не произойдет, если передающая станция определит, в чем смысл уведомлений о заторе, и полностью прекратит передачу данных). В конечном итоге маршрутизатор С перешлет маршрутизатору В сообщение о том, что может быть возобновлена передача, но к этому времени часть пакетов уже будет потеряна.

Применение окон

Метод с применением окон представляет собой наиболее сложную и гибкую форму управления потоком данных и в настоящее время, вероятно, является одним из наиболее широко применяемых методов управления потоком данных. При передаче с применением окон разрешается передавать одновременно заранее согласованное количество пакетов (называемое окном) до получения подтверждения от приемной станции. Это означает, что возможность передачи одной станцией такого объема данных, который не может быть принят другой станцией, почти полностью исключена. Дело в том, что передающая станция, отправив разрешенное количество пакетов, должна дождаться ответа от удаленной приемной станции и только после этого отправить дополнительные данные. Метод передачи с применением окон используется не только для управления потоком данных, но и для устранения ошибок.

К числу наиболее широко применяемых протоколов транспортного уровня относятся TCP, UDP и SPX.

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Протоколы сетевого уровня обеспечивают логическую адресацию и определение маршрута (маршрутизацию). Методы логической адресации зависят от набора протоколов, но основные принципы остаются одинаковыми. Адреса сетевого уровня применяются в основном для указания местонахождения хоста. Эта задача обычно решается путем разделения адреса на две части: поле группы и поле хоста. Вместе эти поля полностью описывают хост, но лишь в контексте группы, к которой он относится. Такое разделение адреса позволяет каждому хосту учитывать только наличие других хостов в его группе и применять для передачи пакетов от одной группы к другой специализированные устройства, называемые маршрутизаторами.

К числу широко применяемых протоколов сетевого уровня относятся IP и IPX.

Канальный уровень предусматривает выполнение таких функций, как устранение коллизий, физическая адресация, распознавание ошибок и фреймирование, как описано в следующих разделах.

Устранение коллизий

Методы устранения коллизий позволяют определить, как должен быть организован доступ к одному каналу передачи данных, если к нему подключено несколько хостов, которые пытаются одновременно использовать его для передачи. При полудуплексной широкополосной передаче без устранения коллизий нельзя обойтись, поскольку в применяемой при этом сетевой среде в любой момент времени только одно устройство может успешно передавать электрический сигнал. А если в этой среде попытки передачи будут предприняты одновременно двумя устройствами, то сигналы от этих устройств смешаются и возникнет так называемая коллизия. Такое явление, вероятно, лучше всего проиллюстрировать на рисунке:

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Физическая адресация

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Обнаружение ошибок

Ещё одна функция канального уровня, обнаружение ошибок, позволяет определить, не произошло ли искажение пакета во время передачи. Для этого перед отправкой пакета на удаленный компьютер к нему добавляется концевик (так называется поле с контрольной суммой в конце пакета) с последовательностью FCS. Метод контроля с применением FCS предусматривает использование циклического избыточного кода (Cyclic Redundancy Check — CRC) для выработки цифрового значения и размещение этого значения в концевике пакета. После прибытия пакета к получателю извлекается значение поля FCS и снова применяется тот же алгоритм, с помощью которого было вычислено это первоначальное значение. Если пакет подвергся каким-либо изменениям, прежнее и новое значения FCS не совпадают, и пакет отбрасывается как ошибочный.

Примечание Контроль с помощью FCS обеспечивает только обнаружение ошибок, но не их устранение. За устранение ошибок отвечает протокол более высокого уровня, как правило, транспортного.

Фреймирование

Термин фреймирование используется для описания организации элементов в пакете (пакет, передаваемый по сети, оформляется в виде фрейма). Эта задача является очень важной. Чтобы понять, с чем это связано, необходимо рассмотреть, как происходит передача данных физическим устройством. Прежде всего следует учесть, что все данные, передаваемые по кабелям сети, являются просто комбинацией битов 0 и 1. Поэтому при получении устройством цепочки битов, такой как 0 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 и т.д., оно должно определить, какая часть этой цепочки соответствует МАС-адресу, данным или последовательности FCS. Для этого требуется ключ. Физический формат пакета показан на рис.7.

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

Кроме того, поскольку существуют разные типы фреймов, в протоколах канального уровня на обоих взаимодействующих компьютерах должны использоваться фреймы одинаковых типов, так как лишь при этом условии получатель сможет определить, что фактически содержит полученный им пакет. Пример искажения, возникающего при нарушении формата фрейма, показан на рис.8.

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

На этом рисунке значения длины полей принятого и фактически ожидаемого фрейма не совпадают. Данный пример показывает, что если один компьютер отправляет пакет в формате 802.3, а другой ожидает поступления пакета в формате протокола доступа к подсети (SUB-Network Access Protocol — SNAP), между ними невозможно установить взаимодействие, поскольку компьютеры безуспешно пытаются найти компоненты пакета, которые фактически представлены в другом формате.

К числу наиболее распространенных протоколов канального уровня относятся практически все протоколы 802 ( 802.2, 802.3, 802.5 и т.д.), LAPP, LAPD и LLC.

На физическом уровне выполняются наиболее важные функции передачи данных по сравнению со всеми другими уровнями. К физическому уровню относятся все соединители, кабели, спецификации частот, требования к расстояниям и задержкам при распространении сигналов, регламентируемые напряжения, короче говоря, все физические параметры.

К числу наиболее распространенных протоколов физического уровня относятся EIA/TIA 568А и 568В, RS232, 10BaseT, 10Base2, 1OBase5, 100BaseT и USB.

Одноранговая связь

Специалисты по сетям называют одноранговой связью процесс взаимодействия протокола каждого уровня на компьютере отправителя с соответствующим уровнем на компьютере получателя. Следует отметить, что одинаковые уровни не взаимодействуют непосредственно друг с другом, но обмен данными по сети организован так, как если бы они действительно напрямую связывались друг с другом. К пакету, передаваемому с одного хоста на другой, по мере прохождения по уровням сетевой модели добавляются все необходимые заголовки, а когда этот пакет после его приема снова проходит по уровням модели, но в противоположном направлении, информация в каждом заголовке пакета обрабатывается только тем уровнем, которому соответствует конкретный заголовок. Все остальное на этом уровне рассматривается как данные. Процесс снятия заголовков показан на рис.9 (для обозначения заголовков применяются такие же сокращения, как и на рис.3).

Необходимо еще раз подчеркнуть, что протоколом каждого уровня обрабатывается только заголовок, который относится точно к такому же уровню протокола на другом компьютере. Остальная часть пакета рассматривается им как данные (хотя фактически не является таковой). Поэтому можно считать, что каждый уровень протокола на одном компьютере взаимодействует с соответствующим ему уровнем на другом компьютере.

Общее описание взаимодействия по сети

Наконец, рассмотрим, как происходит обмен данными по сети между двумя компьютерами на каждом уровне (рис.9).

Для чего используется модель osi. Смотреть фото Для чего используется модель osi. Смотреть картинку Для чего используется модель osi. Картинка про Для чего используется модель osi. Фото Для чего используется модель osi

В данном примере передается электронная почта по протоколам TCP/IP. Передача сообщения начинается с уровня 7. К нему добавляется заголовок MAPI (Mail Application Programming Interface — интерфейс прикладного программирования для электронной почты). Затем пакет передается на представительские уровень, где происходит добавление заголовка MIME, с помощью которого получатель сможет определить формат сообщения. На сеансовом уровне происходит преобразование имен, и доменное имя techtrain.com преобразуется в IP-адрес 209.130.62.55. На транспортном уровне все это сообщение, которое имеет длину 256 Кбайт, разбивается на четыре фрагмента по 64 Кбайт и устанавливается сеанс TCP с использованием метода окон для управления потоком данных. На сетевом уровне выполняется маршрутизация и пакет передается на ближайший маршрутизатор (который здесь обозначен с помощью поля промежуточного адреса назначения).

Следует также отметить, что на сетевом уровне (логические) IP-адреса преобразуются в (физические) МАС-адреса, чтобы с ним мог работать протокол более низкого уровня. На канальном уровне пакет снова фрагментируется, но на этот раз преобразуется во фреймы, которые соответствует максимальной единице передачи данных (Maximum Transmission Unit — MTU) передающей среды. На физическом уровне данные передаются в виде электрических сигналов. Принятые данные снова проходят по уровням модели, но в обратном направлении. При этом выполняются действия, обратные тем, которые были выполнены на компьютере отправителя, и в конечном итоге пакет преобразуется в один фрагмент данных размером 256 кбайт в формате, приемлемом для соответствующего приложения.

Другие сетевые модели

Важное значение с точки зрения организации сетей имеет также модель DoD (Department of Defense — Министерство обороны США), так как в основе протоколов TCP/IP лежит не модель OSI, а именно эта модель. Поскольку модель DoD во многом совпадает с моделью OSI, тот факт, что она является фундаментом протоколов TCP/IP, может привести к некоторой путанице при изучении модели OSI. Верхние уровни модели DoD не совпадают с верхними уровнями модели OSI, поэтому в разных книгах можно встретить различные описания порядка расположения протоколов в модели OSI. Но здесь необходимо прежде всего учитывать, что фактически знание того, где должен быть указанный протокол модели OSI, необходимо в основном для успешной сдачи экзаменов; а на практике важнее всего понимание назначения каждого уровня модели.

Модели DoD и OSI

Модели OSI и DoD позволяют наглядно представить процесс сетевого взаимодействия, а компания Cisco применяет в своей работе иерархическую межсетевую модель, которая представляет собой многоуровневое отображение топологического проекта объединенной сети. Эта модель разработана в целях максимального повышения производительности; в то же время она обеспечивает оптимальную отказоустойчивость. Применение этой модели позволяет упростить конструкцию сети путем распределения функций по уровням сетевого проекта. Очевидным недостатком данной модели в сетях небольших и средних размеров является высокая стоимость проекта, но если задача состоит в создании высокопроизводительной, масштабируемой, резервируемой объединенной сети, то применение такого подхода является одним из наилучших способов реализации в проекте поставленных целей.

Иерархическая межсетевая модель Cisco состоит из трех уровней:

Пример практического применения этой модели приведен на рис.10.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *