Для чего используется регрессия
Что такое регрессионный анализ?
Регрессионный анализ — это набор статистических методов оценки отношений между переменными. Его можно использовать для оценки степени взаимосвязи между переменными и для моделирования будущей зависимости. По сути, регрессионные методы показывают, как по изменениям «независимых переменных» можно зафиксировать изменение «зависимой переменной».
Зависимую переменную в бизнесе называют предиктором (характеристика, за изменением которой наблюдают). Это может быть уровень продаж, риски, ценообразование, производительность и так далее. Независимые переменные — те, которые могут объяснять поведение выше приведенных факторов (время года, покупательная способность населения, место продаж и многое другое).Регрессионный анализ включает несколько моделей. Наиболее распространенные из них: линейная, мультилинейная (или множественная линейная) и нелинейная.
Как видно из названий, модели отличаются типом зависимости переменных: линейная описывается линейной функцией; мультилинейная также представляет линейную функцию, но в нее входит больше параметров (независимых переменных); нелинейная модель — та, в которой экспериментальные данные характеризуются функцией, являющейся нелинейной (показательной, логарифмической, тригонометрической и так далее).
Чаще всего используются простые линейные и мультилинейные модели.
Регрессионный анализ предлагает множество приложений в различных дисциплинах, включая финансы.
Рассмотрим поподробнее принципы построения и адаптации результатов метода.
Линейный регрессионный анализ основан на шести фундаментальных предположениях:
Простая линейная модель выражается с помощью следующего уравнения:
Линейная регрессия
Линейная регрессия (Linear regression) — это это математическая модель, которая описывает связь нескольких переменных. Модели линейной регрессии представляют собой статистическую процедуру, помогающую прогнозировать будущее. Она применяется в научных сферах и в бизнесе, а в последние десятилетия используется в машинном обучении.
Для чего нужна линейная регрессия
Задача регрессии в машинном обучении — это предсказание одного параметра (Y) по известному параметру X, где X — набор параметров, характеризующий наблюдение.
Как работает линейная регрессия
Возьмем небольшой набор данных. Предположим, что это группа коттеджей, расположенных в одном районе. На оси Х обозначена их площадь, а на оси Y — рыночная стоимость. Чтобы увидеть, как стоимость дома зависит от его площади, построим регрессию.
Это будет простая линейная регрессия с одной переменной. Изменится площадь дома — изменится и стоимость. Для вычисления используем стандартное уравнение регрессии: f (x) = b + m⋅x, где m — это наклон линии, а b — ее сдвиг по оси Y. То есть изменение коэффициентов m и b будет влиять на расположение прямой:
Провести прямую линию через все точки на графике не получится, если они расположены в хаотичном порядке. Поэтому с помощью линейной регрессии определяется оптимальный вариант расположения этой прямой. Некоторые точки все равно останутся на расстоянии, но оно должно быть минимальным. Расчет этого минимального расстояния от прямой до каждой точки называется функцией потерь.
Для оценки точности регрессии используют разные метрики, например MSE (от англ. mean squared error — средняя квадратическая ошибка). Чем ниже MSE, тем лучше модель.
В первом случае MSE будет равна 0,17, во втором — 0,08, а в третьем — 0,02. Получается, что третья прямая лучше всего показывает зависимость цены дома от его площади.
Data Scientist с нуля
Получите востребованные IT-навыки за один год и станьте перспективным профессионалом. Мы поможем в трудоустройстве. Дополнительная скидка 5% по промокоду BLOG.
Расчет линейной регрессии в Python
Построим регрессию, чтобы узнать, как кассовые сборы фильма зависят от бюджета, который вложили в его производство.
Для расчета понадобится csv-файл, который содержит информацию о бюджетах и сборах 5 034 фильмов, которые когда-то выходили в прокат. Эти данные станут базой для исследования.
Построим модель линейной регрессии с помощью Python. Для этого нужно импортировать несколько библиотек:
Модель линейной регрессии, которую нужно будет обучить, импортируется с помощью библиотеки sklearn. В качестве X будет колонка production_budget_usd, а в качестве Y – колонка worldwide_gross_usd.
На основе этих данных определяется нужный наклон прямой и расположение относительно осей координат. Это и будет нужной линейной регрессией, по которой можно предсказать сборы собственного фильма, выбрав подходящий бюджет.
В итоге получится график того, как соотносятся бюджеты и кассы у фильмов в списке. Каждая точка — это отдельная кинолента. На оси Х показаны затраты на производство, а на оси У — сколько она заработала. Теперь через эти точки нужно провести прямую так, чтобы она была максимально близка ко всем точкам на графике.
Множественная линейная регрессия
В жизни кассовые сборы кино зависят не от одной переменной, а от совокупности разных факторов: популярности жанра, режиссера, каста актеров и затрат на промокампанию. Если рассчитать все факторы, влияющие на сборы, то уравнение изменится:
Стало f(x) = b + m1*x1 + … + mn*xn
Каждый коэффициент в нем показывает важность признаков. То есть множественная регрессия демонстрирует, как каждый параметр влияет на расположение прямой, и выбирает оптимальный вариант точно так же, как и линейная — с помощью функции потерь.
Data Scientist с нуля
Получите востребованные IT-навыки за один год и станьте перспективным профессионалом. Мы поможем в трудоустройстве. Дополнительная скидка 5% по промокоду BLOG.
R — значит регрессия
Статистика в последнее время получила мощную PR поддержку со стороны более новых и шумных дисциплин — Машинного Обучения и Больших Данных. Тем, кто стремится оседлать эту волну необходимо подружится с уравнениями регрессии. Желательно при этом не только усвоить 2-3 приемчика и сдать экзамен, а уметь решать проблемы из повседневной жизни: найти зависимость между переменными, а в идеале — уметь отличить сигнал от шума.
Для этой цели мы будем использовать язык программирования и среду разработки R, который как нельзя лучше приспособлен к таким задачам. Заодно, проверим от чего зависят рейтинг Хабрапоста на статистике собственных статей.
Введение в регрессионный анализ
Основу регрессионного анализа составляет метод наименьших квадратов (МНК), в соответствии с которым в качестве уравнения регресии берется функция такая, что сумма квадратов разностей
минимальна.
Карл Гаусс открыл, или точнее воссоздал, МНК в возрасте 18 лет, однако впервые результаты были опубликованы Лежандром в 1805 г. По непроверенным данным метод был известен еще в древнем Китае, откуда он перекочевал в Японию и только затем попал в Европу. Европейцы не стали делать из этого секрета и успешно запустили в производство, обнаружив с его помощью траекторию карликовой планеты Церес в 1801 г.
Вид функции , как правило, определен заранее, а с помощью МНК подбираются оптимальные значения неизвестных параметров. Метрикой рассеяния значений
вокруг регрессии
является дисперсия.
Линейная регрессия
Уравнения линейной регрессии можно записать в виде
В матричном виде это выгладит
Случайная величина может быть интерпретирована как сумма из двух слагаемых:
Ограничения линейной регрессии
Для того, чтобы использовать модель линейной регрессии необходимы некоторые допущения относительно распределения и свойств переменных.
Как обнаружить, что перечисленные выше условия не соблюдены? Ну, во первых довольно часто это видно невооруженным глазом на графике.
Неоднородность дисперсии
При возрастании дисперсии с ростом независимой переменной имеем график в форме воронки.
Нелинейную регрессии в некоторых случая также модно увидеть на графике довольно наглядно.
Тем не менее есть и вполне строгие формальные способы определить соблюдены ли условия линейной регрессии, или нарушены.
В этой формуле — коэффициент взаимной детерминации между
и остальными факторами. Если хотя бы один из VIF-ов > 10, вполне резонно предположить наличие мультиколлинеарности.
Почему нам так важно соблюдение всех выше перечисленных условий? Все дело в Теореме Гаусса-Маркова, согласно которой оценка МНК является точной и эффективной лишь при соблюдении этих ограничений.
Как преодолеть эти ограничения
Нарушения одной или нескольких ограничений еще не приговор.
К сожалению, не все нарушения условий и дефекты линейной регрессии можно устранить с помощью натурального логарифма. Если имеет место автокорреляция возмущений к примеру, то лучше отступить на шаг назад и построить новую и лучшую модель.
Линейная регрессия плюсов на Хабре
Итак, довольно теоретического багажа и можно строить саму модель.
Мне давно было любопытно от чего зависит та самая зелененькая цифра, что указывает на рейтинг поста на Хабре. Собрав всю доступную статистику собственных постов, я решил прогнать ее через модель линейно регрессии.
Загружает данные из tsv файла.
Вопреки моим ожиданиям наибольшая отдача не от количества просмотров статьи, а от комментариев и публикаций в социальных сетях. Я также полагал, что число просмотров и комментариев будет иметь более сильную корреляцию, однако зависимость вполне умеренная — нет надобности исключать ни одну из независимых переменных.
В первой строке мы задаем параметры линейной регрессии. Строка points
. определяет зависимую переменную points и все остальные переменные в качестве регрессоров. Можно определить одну единственную независимую переменную через points
Перейдем теперь к расшифровке полученных результатов.
Можно попытаться несколько улучшить модель, сглаживая нелинейные факторы: комментарии и посты в социальных сетях. Заменим значения переменных fb и comm их степенями.
Проверим значения параметров линейной регрессии.
Проверим, соблюдены ли условия применимости модели линейной регрессии? Тест Дарбина-Уотсона проверяет наличие автокорреляции возмущений.
И напоследок проверка неоднородности дисперсии с помощью теста Бройша-Пагана.
В заключение
Конечно наша модель линейной регрессии рейтинга Хабра-топиков получилось не самой удачной. Нам удалось объяснить не более, чем половину вариативности данных. Факторы надо чинить, чтобы избавляться от неоднородной дисперсии, с автокорреляцией тоже непонятно. Вообще данных маловато для сколь-нибудь серьезной оценки.
Но с другой стороны, это и хорошо. Иначе любой наспех написанный тролль-пост на Хабре автоматически набирал бы высокий рейтинг, а это к счастью не так.