Для чего используется сжатие без потерь

Сжатие без потерь: как это работает

Когда копия не отличается от оригинала.

Мы уже разобрались с тем, как оцифровывается звук. Одна из проблем — если качественно его оцифровывать, то нам нужно очень много данных, а это значит большие файлы, большой расход места на диске, дорогие флешки, много трафика в интернете. Хочется, чтобы файлики были поменьше.

Для этого используется сжатие — различные алгоритмы, которые творят с данными свою магию и на выходе получаются данные меньшего объёма.

Сжатие с потерями и без потерь

Есть два принципиальных вида сжатия — с потерями и без.

Сжатие с потерями означает, что в процессе мы лишились части информации. Алгоритмы сжатия с потерями стараются сделать так, чтобы мы потеряли только те данные, которые нам не слишком важны.

Представьте, что сжатие с потерями — это краткий пересказ произведения из школьной программы: школьнику не так важны описания природы и авторский стиль, ему главное сюжет. Краткий пересказ сохранил только важное, но передал это намного быстрее.

Сжатие без потерь — это когда мы уменьшаем размер файла, при этом не теряя в качестве. Для этого используются интересные математические приёмы и кодирование. Главная мысль — чтобы при раскодировании все данные остались на месте.

Алгоритмы сжатия без потерь

Есть два основных варианта: алгоритм Хаффмана или LZW. LZW используется повсеместно, но объяснить его довольно сложно, он неинтуитивный и требует целой лекции. Гораздо приятнее объяснить алгоритм Хаффмана.

Алгоритм Хаффмана берёт файл, разбивает его на фрагменты, с которыми ему удобно работать, а потом смотрит, насколько часто встречается каждый фрагмент. Самые частые слова этот алгоритм обозначает коротким кодом, а самые редкие — кодом подлиннее. Так как самые частые слова занимают теперь гораздо меньше места, то и готовый файл становится меньше.

Но есть и минус: иногда нужно хранить эту таблицу соответствий слов и кода прямо в этом же файле, а она может сама по себе получиться большой. Чаще всего алгоритм Хаффмана применяется для сжатия текстовых файлов и видео без потерь.

Вот пример: берём песню Beyonce — All The Single Ladies. Там есть два таких пассажа:

All the single ladies

All the single ladies

All the single ladies

Now put your hands up

If you like it then you shoulda put a ring on it

If you like it then you shoulda put a ring on it

Don’t be mad once you see that he want it

If you like it then you shoulda put a ring on it

Здесь 281 знак. Мы видим, что некоторые строчки повторяются. Закодируем их:

ТАБЛИЦА СЖАТИЯ

\a\ All the single ladies

\b\ Now put your hands up

\c\ If you like it then you shoulda put a ring on it

\d\ Don’t be mad once you see that he want it

ТЕКСТ ПЕСНИ

Вместе таблицей сжатия этот текст теперь занимает 187 знаков — мы сжали текст почти на треть благодаря тому, что он довольно монотонный.

Сжатие без потерь на примере аудио

В среднем минута несжатого аудио занимает 10 мегабайт. Это довольно много: если у вас, например, часовая запись концерта, то она будет занимать полгигабайта. С другой стороны, в этой записи захвачены все нюансы звука, есть много высоких частот и вообще красота.

Для таких ситуаций используют сжатие без потерь: оно уменьшает файл в 2–3 раза, не искажая звук. Алгоритмы, которые сжимают аудио, называются кодеками. FLAC и Apple Lossless — два популярных кодека для сжатия аудио без потерь.

Сравните сами размер и качество двухминутного аудио:

Оригинал — без сжатия, формат WAV, 23 мегабайта

Сжатие без потерь — формат FLAC с теми же параметрами, что и WAV, 10 мегабайт

Где ещё применяется сжатие без потерь

В архиваторах. Задача программ-архиваторов — упаковать выбранные файлы так, чтобы архив занимал как можно меньше места, при этом не повреждая то, что внутри. Например, текстовая версия «Войны и мира» может занимать 4 мегабайта, а заархивированная — 100 килобайт, в 40 раз меньше.

В программировании. Есть специальные упаковщики, которые берут готовую программу и оптимизируют код так, чтобы он занимал меньше места, но сохранил свою работоспособность. Например:

Что дальше

В следующей части разберём, как работает сжатие с потерями и почему благодаря этому у нас есть ТикТок и Ютуб.

Источник

Алгоритмы сжатия данных без потерь

Часть первая – историческая.

Введение

История

Иерархия алгоритмов:
Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь

Хотя сжатие данных получило широкое распространение вместе с интернетом и после изобретения алгоритмов Лемпелем и Зивом (алгоритмы LZ), можно привести несколько более ранних примеров сжатия. Морзе, изобретая свой код в 1838 году, разумно назначил самым часто используемым буквам в английском языке, “e” и “t”, самые короткие последовательности (точка и тире соотв.). Вскоре после появления мейнфреймов в 1949 году был придуман алгоритм Шеннона — Фано, который назначал символам в блоке данных коды, основываясь на вероятности их появления в блоке. Вероятность появления символа в блоке была обратно пропорциональна длине кода, что позволяло сжать представление данных.
Дэвид Хаффман был студентом в классе у Роберта Фано и в качестве учебной работы выбрал поиск улучшенного метода бинарного кодирования данных. В результате ему удалось улучшить алгоритм Шеннона-Фано.
Ранние версии алгоритмов Шеннона-Фано и Хаффмана использовали заранее определённые коды. Позже для этого стали использовать коды, созданные динамически на основе данных, предназначаемых для сжатия. В 1977 году Лемпель и Зив опубликовали свой алгоритм LZ77, основанный на использования динамически создаваемого словаря (его ещё называют «скользящим окном»). В 78 году они опубликовали алгоритм LZ78, который сначала парсит данные и создаёт словарь, вместо того, чтобы создавать его динамически.

Проблемы с правами

Рост популярности Deflate

Большие корпорации использовали алгоритмы сжатия для хранения всё увеличивавшихся массивов данных, но истинное распространение алгоритмов произошло с рождением интернета в конце 80-х. Пропускная способность каналов была чрезвычайно узкой. Для сжатия данных, передаваемых по сети, были придуманы форматы ZIP, GIF и PNG.
Том Хендерсон придумал и выпустил первый коммерчески успешный архиватор ARC в 1985 году (компания System Enhancement Associates). ARC была популярной среди пользователей BBS, т.к. она одна из первых могла сжимать несколько файлов в архив, к тому же исходники её были открыты. ARC использовала модифицированный алгоритм LZW.
Фил Катц, вдохновлённый популярностью ARC, выпустил программу PKARC в формате shareware, в которой улучшил алгоритмы сжатия, переписав их на Ассемблере. Однако, был засужен Хендерсоном и был признан виновным. PKARC настолько открыто копировала ARC, что иногда даже повторялись опечатки в комментариях к исходному коду.
Но Фил Катц не растерялся, и в 1989 году сильно изменил архиватор и выпустил PKZIP. После того, как его атаковали уже в связи с патентом на алгоритм LZW, он изменил и базовый алгоритм на новый, под названием IMPLODE. Вновь формат был заменён в 1993 году с выходом PKZIP 2.0, и заменой стал DEFLATE. Среди новых возможностей была функция разбиения архива на тома. Эта версия до сих пор повсеместно используется, несмотря на почтенный возраст.
Формат изображений GIF (Graphics Interchange Format) был создан компанией CompuServe в 1987. Как известно, формат поддерживает сжатие изображения без потерь, и ограничен палитрой в 256 цветов. Несмотря на все потуги Unisys, ей не удалось остановить распространение этого формата. Он до сих пор популярен, особенно в связи с поддержкой анимации.
Слегка взволнованная патентными проблемами, компания CompuServe в 1994 году выпустила формат Portable Network Graphics (PNG). Как и ZIP, она использовала новый модный алгоритм DEFLATE. Хотя DEFLATE был запатентован Катцем, он не стал предъявлять никаких претензий.
Сейчас это самый популярный алгоритм сжатия. Кроме PNG и ZIP он используется в gzip, HTTP, SSL и других технологиях передачи данных.

К сожалению Фил Катц не дожил до триумфа DEFLATE, он умер от алкоголизма в 2000 году в возрасте 37 лет. Граждане – чрезмерное употребление алкоголя опасно для вашего здоровья! Вы можете не дожить до своего триумфа!

Современные архиваторы

ZIP царствовал безраздельно до середины 90-х, однако в 1993 году простой русский гений Евгений Рошал придумал свой формат и алгоритм RAR. Последние его версии основаны на алгоритмах PPM и LZSS. Сейчас ZIP, пожалуй, самый распространённый из форматов, RAR – до недавнего времени был стандартом для распространения различного малолегального контента через интернет (благодаря увеличению пропускной способности всё чаще файлы распространяются без архивации), а 7zip используется как формат с наилучшим сжатием при приемлемом времени работы. В мире UNIX используется связка tar + gzip (gzip — архиватор, а tar объединяет несколько файлов в один, т.к. gzip этого не умеет).

Прим. перев. Лично я, кроме перечисленных, сталкивался ещё с архиватором ARJ (Archived by Robert Jung), который был популярен в 90-х в эру BBS. Он поддерживал многотомные архивы, и так же, как после него RAR, использовался для распространения игр и прочего вареза. Ещё был архиватор HA от Harri Hirvola, который использовал сжатие HSC (не нашёл внятных объяснений — только «модель ограниченного контекста и арифметическое кодирование»), который хорошо справлялся со сжатием длинных текстовых файлов.

В 1996 году появился вариант алгоритма BWT с открытыми исходниками bzip2, и быстро приобрёл популярность. В 1999 году появилась программа 7-zip с форматом 7z. По сжатию она соперничает с RAR, её преимуществом является открытость, а также возможность выбора между алгоритмами bzip2, LZMA, LZMA2 и PPMd.
В 2002 году появился ещё один архиватор, PAQ. Автор Мэтт Махоуни использовал улучшенную версию алгоритма PPM с использованием техники под названием «контекстное смешивание». Она позволяет использовать больше одной статистической модели, чтобы улучшить предсказание по частоте появления символов.

Будущее алгоритмов сжатия

Конечно, бог его знает, но судя по всему, алгоритм PAQ набирает популярность благодаря очень хорошей степени сжатия (хотя и работает он очень медленно). Но благодаря увеличению быстродействия компьютеров скорость работы становится менее критичной.
С другой стороны, алгоритм Лемпеля-Зива –Маркова LZMA представляет собой компромисс между скоростью и степенью сжатия и может породить много интересных ответвлений.
Ещё одна интересная технология «substring enumeration» или CSE, которая пока мало используется в программах.

В следующей части мы рассмотрим техническую сторону упомянутых алгоритмов и принципы их работы.

Источник

Сжатие информации без потерь. Часть первая

Доброго времени суток.
Сегодня я хочу коснуться темы сжатия данных без потерь. Несмотря на то, что на хабре уже были статьи, посвященные некоторым алгоритмам, мне захотелось рассказать об этом чуть более подробно.
Я постараюсь давать как математическое описание, так и описание в обычном виде, для того, чтобы каждый мог найти для себя что-то интересное.

В этой статье я коснусь фундаментальных моментов сжатия и основных типов алгоритмов.

Сжатие. Нужно ли оно в наше время?

Разумеется, да. Конечно, все мы понимаем, что сейчас нам доступны и носители информации большого объема, и высокоскоростные каналы передачи данных. Однако, одновременно с этим растут и объемы передаваемой информации. Если несколько лет назад мы смотрели 700-мегабайтные фильмы, умещающиеся на одну болванку, то сегодня фильмы в HD-качестве могут занимать десятки гигабайт.
Конечно, пользы от сжатия всего и вся не так много. Но все же существуют ситуации, в которых сжатие крайне полезно, если не необходимо.

Конечно, можно придумать еще множество различных ситуаций, в которых сжатие окажется полезным, но нам достаточно и этих нескольких примеров.

Все методы сжатия можно разделить на две большие группы: сжатие с потерями и сжатие без потерь. Сжатие без потерь применяется в тех случаях, когда информацию нужно восстановить с точностью до бита. Такой подход является единственно возможным при сжатии, например, текстовых данных.
В некоторых случаях, однако, не требуется точного восстановления информации и допускается использовать алгоритмы, реализующие сжатие с потерями, которое, в отличие от сжатия без потерь, обычно проще реализуется и обеспечивает более высокую степень архивации.

Сжатие с потерями
Лучшие степени сжатия, при сохранении «достаточно хорошего» качества данных. Применяются в основном для сжатия аналоговых данных — звука, изображений. В таких случаях распакованный файл может очень сильно отличаться от оригинала на уровне сравнения «бит в бит», но практически неотличим для человеческого уха или глаза в большинстве практических применений.
Сжатие без потерь
Данные восстанавливаются с точностью до бита, что не приводит к каким-либо потерям информации. Однако, сжатие без потерь показывает обычно худшие степени сжатия.

Итак, перейдем к рассмотрению алгоритмов сжатия без потерь.

Универсальные методы сжатия без потерь

В общем случае можно выделить три базовых варианта, на которых строятся алгоритмы сжатия.
Первая группа методов – преобразование потока. Это предполагает описание новых поступающих несжатых данных через уже обработанные. При этом не вычисляется никаких вероятностей, кодирование символов осуществляется только на основе тех данных, которые уже были обработаны, как например в LZ – методах (названных по имени Абрахама Лемпеля и Якоба Зива). В этом случае, второе и дальнейшие вхождения некой подстроки, уже известной кодировщику, заменяются ссылками на ее первое вхождение.

Вторая группа методов – это статистические методы сжатия. В свою очередь, эти методы делятся на адаптивные (или поточные), и блочные.
В первом (адаптивном) варианте, вычисление вероятностей для новых данных происходит по данным, уже обработанным при кодировании. К этим методам относятся адаптивные варианты алгоритмов Хаффмана и Шеннона-Фано.
Во втором (блочном) случае, статистика каждого блока данных высчитывается отдельно, и добавляется к самому сжатому блоку. Сюда можно отнести статические варианты методов Хаффмана, Шеннона-Фано, и арифметического кодирования.

Третья группа методов – это так называемые методы преобразования блока. Входящие данные разбиваются на блоки, которые затем трансформируются целиком. При этом некоторые методы, особенно основанные на перестановке блоков, могут не приводить к существенному (или вообще какому-либо) уменьшению объема данных. Однако после подобной обработки, структура данных значительно улучшается, и последующее сжатие другими алгоритмами проходит более успешно и быстро.

Общие принципы, на которых основано сжатие данных

Все методы сжатия данных основаны на простом логическом принципе. Если представить, что наиболее часто встречающиеся элементы закодированы более короткими кодами, а реже встречающиеся – более длинными, то для хранения всех данных потребуется меньше места, чем если бы все элементы представлялись кодами одинаковой длины.
Точная взаимосвязь между частотами появления элементов, и оптимальными длинами кодов описана в так называемой теореме Шеннона о источнике шифрования(Shannon’s source coding theorem), которая определяет предел максимального сжатия без потерь и энтропию Шеннона.

Немного математики

Если вероятность появления элемента si равна p(si), то наиболее выгодно будет представить этот элемент — log2p(si) битами. Если при кодировании удается добиться того, что длина всех элементов будет приведена к log2p(si) битам, то и длина всей кодируемой последовательности будет минимальной для всех возможных методов кодирования. При этом, если распределение вероятностей всех элементов F =i)> неизменно, и вероятности элементов взаимно независимы, то средняя длина кодов может быть рассчитана как
Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь

Это значение называют энтропией распределения вероятностей F, или энтропией источника в заданный момент времени.
Однако обычно вероятность появления элемента не может быть независимой, напротив, она находится в зависимости от каких-то факторов. В этом случае, для каждого нового кодируемого элемента si распределение вероятностей F примет некоторое значение Fk, то есть для каждого элемента F= Fk и H= Hk.

Иными словами, можно сказать, что источник находится в состоянии k, которому соответствует некий набор вероятностей pk(si) для всех элементов si.

Поэтому, учитывая эту поправку, можно выразить среднюю длину кодов как
Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь
Где Pk — вероятность нахождения источника в состоянии k.

Итак, на данном этапе мы знаем, что сжатие основано на замене часто встречающихся элементов короткими кодами, и наоборот, а так же знаем, как определить среднюю длину кодов. Но что же такое код, кодирование, и как оно происходит?

Кодирование без памяти

Коды без памяти являются простейшими кодами, на основе которых может быть осуществлено сжатие данных. В коде без памяти каждый символ в кодируемом векторе данных заменяется кодовым словом из префиксного множества двоичных последовательностей или слов.
На мой взгляд, не самое понятное определение. Рассмотрим эту тему чуть более подробно.

Пусть задан также другой алфавитДля чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь. Аналогично, обозначим слово в этом алфавите как B.

Введем еще два обозначения для множества всех непустых слов в алфавите. Пусть Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь— количество непустых слов в первом алфавите, а Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь— во втором.

Пусть также задано отображение F, которое ставит в соответствие каждому слову A из первого алфавита некоторое слово B=F(A) из второго. Тогда слово B будет называться кодом слова A, а переход от исходного слова к его коду будет называться кодированием.

Поскольку слово может состоять и из одной буквы, то мы можем выявить соответствие букв первого алфавита и соответствующих им слов из второго:
a1 B1
a2 B2

an Bn

Это соответствие называют схемой, и обозначают ∑.
В этом случае слова B1, B2,…, Bn называют элементарными кодами, а вид кодирования с их помощью — алфавитным кодированием. Конечно, большинство из нас сталкивались с таким видом кодирования, пусть даже и не зная всего того, что я описал выше.

Итак, мы определились с понятиями алфавит, слово, код, и кодирование. Теперь введем понятие префикс.

Пусть слово B имеет вид B=B’B». Тогда B’ называют началом, или префиксом слова B, а B» — его концом. Это довольно простое определение, но нужно отметить, что для любого слова B, и некое пустое слово ʌ («пробел»), и само слово B, могут считаться и началами и концами.

Итак, мы подошли вплотную к пониманию определения кодов без памяти. Последнее определение, которое нам осталось понять — это префиксное множество. Схема ∑ обладает свойством префикса, если для любых 1≤i, j≤r, i≠j, слово Bi не является префиксом слова Bj.
Проще говоря, префиксное множество – это такое конечное множество, в котором ни один элемент не является префиксом (или началом) любого другого элемента. Простым примером такого множества является, например, обычный алфавит.

Одним из канонических алгоритмов, которые иллюстрируют данный метод, является алгоритм Хаффмана.

Алгоритм Хаффмана

Алгоритм Хаффмана использует частоту появления одинаковых байт во входном блоке данных, и ставит в соответствие часто встречающимся блокам цепочки бит меньшей длины, и наоборот. Этот код является минимально – избыточным кодом. Рассмотрим случай, когда, не зависимо от входного потока, алфавит выходного потока состоит из всего 2 символов – нуля и единицы.

Для лучшей иллюстрации, рассмотрим небольшой пример.
Пусть у нас есть алфавит, состоящий из всего четырех символов — < a1, a2, a3, a4>. Предположим также, что вероятности появления этих символов равны соответственно p1=0.5; p2=0.24; p3=0.15; p4=0.11 (сумма всех вероятностей, очевидно, равна единице).

Итак, построим схему для данного алфавита.

Если сделать иллюстрацию этого процесса, получится примерно следующее:

Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь
Как вы видите, при каждом объединении мы присваиваем объединяемым символам коды 0 и 1.
Таким образом, когда дерево построено, мы можем легко получить код для каждого символа. В нашем случае коды будут выглядить так:

Поскольку ни один из данных кодов не является префиксом какого-нибудь другого (то есть, мы получили пресловутое префиксное множество), мы можем однозначно определить каждый код в выходном потоке.
Итак, мы добились того, что самый частый символ кодируется самым коротким кодом, и наоборот.
Если предположить, что изначально для хранения каждого символа использовался один байт, то можно посчитать, насколько нам удалось уменьшить данные.

Пусть на входу у нас была строка из 1000 символов, в которой символ a1 встречался 500 раз, a2 — 240, a3 — 150, и a4 — 110 раз.

Изначально данная строка занимала 8000 бит. После кодирования мы получим строку длинной в ∑pili = 500 * 1 + 240 * 2 + 150 * 3 + 110 * 3 = 1760 бит. Итак, нам удалось сжать данные в 4,54 раза, потратив в среднем 1,76 бита на кодирование каждого символа потока.

Напомню, что согласно Шеннону, средняя длина кодов составляет Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь. Подставив в это уравнение наши значения вероятностей, мы получим среднюю длину кодов равную 1.75496602732291, что весьма и весьма близко к полученному нами результату.
Тем не менее, следует учитывать, что помимо самих данных нам необходимо хранить таблицу кодировки, что слегка увеличит итоговый размер закодированных данных. Очевидно, что в разных случаях могут с использоваться разные вариации алгоритма – к примеру, иногда эффективнее использовать заранее заданную таблицу вероятностей, а иногда – необходимо составить ее динамически, путем прохода по сжимаемым данным.

Заключение

Итак, в этой статье я постарался рассказать об общих принципах, по которым происходит сжатие без потерь, а также рассмотрел один из канонических алгоритмов — кодирование по Хаффману.
Если статья придется по вкусу хабросообществу, то я с удовольствием напишу продолжение, так как есть еще множество интересных вещей, касающихся сжатия без потерь; это как классические алгоритмы, так и предварительные преобразования данных (например, преобразование Барроуза-Уилира), ну и, конечно, специфические алгоритмы для сжатия звука, видео и изображений (самая, на мой взгляд, интересная тема).

Источник

Алгоритмы сжатия данных без потерь, часть 2

Техники сжатия данных

Кодирование длин серий (RLE)

Это очень простой алгоритм. Он заменяет серии из двух или более одинаковых символов числом, обозначающим длину серии, за которым идёт сам символ. Полезен для сильно избыточных данных, типа картинок с большим количеством одинаковых пикселей, или в комбинации с алгоритмами типа BWT.

На входе: AAABBCCCCDEEEEEEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

На выходе: 3A2B4C1D6E38A

Преобразование Барроуза-Уилера (BWT)

Алгоритм, придуманный в 1994 году, обратимо трансформирует блок данных так, чтобы максимизировать повторения одинаковых символов. Сам он не сжимает данные, но подготавливает их для более эффективного сжатия через RLE или другой алгоритм сжатия.

— создаём массив строк
— создаём все возможные преобразования входящей строки данных, каждое из которых сохраняем в массиве
— сортируем массив
— возвращаем последний столбец

Алгоритм лучше всего работает с большими данными со множеством повторяющихся символов. Пример работы на подходящем массиве данных (& обозначает конец файла)

Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь

Благодаря чередованию одинаковых символов, вывод алгоритма оптимален для сжатия RLE, которое даёт «3H&3A». Но на реальных данных, к сожалению, настолько оптимальных результатов обычно не получается.

Энтропийное кодирование

Энтропия в данном случае означает минимальное количество бит, в среднем необходимое для представления символа. Простой ЭК комбинирует статистическую модель и сам кодировщик. Входной файл парсится для построения стат.модели, состоящей из вероятностей появления определённых символов. Затем кодировщик, используя модель, определяет, какие битовые или байтовые кодировки назначать каждому символу, чтобы самые часто встречающиеся были представлены самыми короткими кодировками, и наоборот.

Алгоритм Шеннона — Фано

Одна из самых ранних техник (1949 год). Создаёт двоичное дерево для представления вероятностей появления каждого из символов. Затем они сортируются так, чтобы самые часто встречающиеся находились наверху дерева, и наоборот.

Код для символа получается поиском по дереву, и добавлением 0 или 1, в зависимости от того, идём мы налево или направо. К примеру, путь к “А” – две ветки налево и одна направо, его код будет «110». Алгоритм не всегда даёт оптимальные коды из-за методики построения дерева снизу вверх. Поэтому сейчас используется алгоритм Хаффмана, подходящий для любых входных данных.

Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь

1. парсим ввод, считаем количество вхождений всех символов
2. определяем вероятность появления каждого из них
3. сортируем символы по вероятности появления
4. делим список пополам так, чтобы сумма вероятностей в левой ветке примерно равнялось сумме в правой
5. добавляем 0 или 1 для левых и правых узлов соответственно
6. повторяем шаги 4 и 5 для правых и левых поддеревьев до тех пор, пока каждый узел не будет «листом»

Кодирование Хаффмана

Это вариант энтропийного кодирования, работающий схожим с предыдущим алгоритмом методом, но двоичное дерево строится сверху вниз, для достижения оптимального результата.

1. Парсим ввод, считаем количество повторений символов
2. Определяем вероятность появления каждого символа
3. Сортируем список по вероятностям (самые частые вначале)
4. Создаём листы для каждого символа, и добавляем их в очередь
5. пока очередь состоит более, чем из одного символа:
— берём из очереди два листа с наименьшими вероятностями
— к коду первой прибавляем 0, к коду второй – 1
— создаём узел с вероятностью, равной сумме вероятностей двух нод
— первую ноду вешаем на левую сторону, вторую – на правую
— добавляем полученный узел в очередь
6. Последняя нода в очереди будет корнем двоичного дерева.

Арифметическое кодирование

Был разработан в 1979 году в IBM для использования в их мейнфреймах. Достигает очень хорошей степени сжатия, обычно большей, чем у Хаффмана, однако он сравнительно сложен по сравнению с предыдущими.

Вместо разбиения вероятностей по дереву, алгоритм преобразует входные данные в одно рациональное число от 0 до 1.

В общем алгоритм таков:

1. считаем количество уникальных символов на входе. Это количество будет представлять основание для счисления b (b=2 – двоичное, и т.п.).
2. подсчитываем общую длину входа
3. назначаем «коды» от 0 до b каждому из уникальных символов в порядке их появления
4. заменяем символы кодами, получая число в системе счисления с основанием b
5. преобразуем полученное число в двоичную систему

Пример. На входе строка «ABCDAABD»

1. 4 уникальных символа, основание = 4, длина данных = 8
2. назначаем коды: A=0, B=1, C=2, D=3
3. получаем число “0.01230013”
4. преобразуем «0.01231123» из четверичной в двоичную систему: 0.01101100000111

Если мы положим, что имеем дело с восьмибитными символами, то на входе у нас 8х8=64 бита, а на выходе – 15, то есть степень сжатия 24%.

Классификация алгоритмов

Алгоритмы, применяющие метод «скользящего окна»

Всё началось с алгоритма LZ77 (1977 год), который представил новую концепцию «скользящего окна», позволившую значительно улучшить сжатие данных. LZ77 использует словарь, содержащий тройки данных – смещение, длина серии и символ расхождения. Смещение – как далеко от начала файла находится фраза. Длина серии – сколько символов, считая от смещения, принадлежат фразе. Символ расхождения показывает, что найдена новая фраза, похожая на ту, что обозначена смещением и длиной, за исключением этого символа. Словарь меняется по мере парсинга файла при помощи скользящего окна. К примеру, размер окна может быть 64Мб, тогда словарь будет содержать данные из последних 64 мегабайт входных данных.

К примеру, для входных данных «abbadabba» результат будет «abb(0,1,’d’)(0,3,’a’)»

Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь

В данном случае результат получился длиннее входа, но обычно он конечно получается короче.

Модификация алгоритма LZ77, предложенная Майклом Роуде в 1981 году. В отличие от LZ77 работает за линейное время, однако требует большего объёма памяти. Обычно проигрывает LZ78 в сжатии.

DEFLATE

Придуман Филом Кацем в 1993 году, и используется в большинстве современных архиваторов. Является комбинацией LZ77 или LZSS с кодированием Хаффмана.

DEFLATE64

Патентованная вариация DEFLATE с увеличением словаря до 64 Кб. Сжимает лучше и быстрее, но не используется повсеместно, т.к. не является открытым.

Алгоритм Лемпеля-Зива-Сторера-Цимански был представлен в 1982 году. Улучшенная версия LZ77, которая просчитывает, не увеличит ли размер результата замена исходных данных кодированными.

До сих пор используется в популярных архиваторах, например RAR. Иногда – для сжатия данных при передаче по сети.

Был разработан в 1987 году, расшифровывается как «Лемпель-Зив-Хаффман». Вариация LZSS, использует кодирование Хаффмана для сжатия указателей. Сжимает чуть лучше, но ощутимо медленнее.

Разработан в 1987 году Тимоти Беллом, как вариант LZSS. Как и LZH, LZB уменьшает результирующий размер файлов, эффективно кодируя указатели. Достигается это путём постепенного увеличения размера указателей при увеличении размера скользящего окна. Сжатие получается выше, чем у LZSS и LZH, но скорость значительно меньше.

Расшифровывается как «Лемпель-Зив с уменьшенным смещением», улучшает алгоритм LZ77, уменьшая смещение, чтобы уменьшить количество данных, необходимого для кодирования пары смещение-длина. Впервые был представлен в 1991 году в алгоритме LZRW4 от Росса Вильямса. Другие вариации — BALZ, QUAD, и RZM. Хорошо оптимизированный ROLZ достигает почти таких же степеней сжатия, как и LZMA – но популярности он не снискал.

«Лемпель-Зив с предсказанием». Вариация ROLZ со смещением = 1. Есть несколько вариантов, одни направлены на скорость сжатия, другие – на степень. В алгоритме LZW4 используется арифметическое кодирование для наилучшего сжатия.

LZRW1

Алгоритм от Рона Вильямса 1991 года, где он впервые ввёл концепцию уменьшения смещения. Достигает высоких степеней сжатия при приличной скорости. Потом Вильямс сделал вариации LZRW1-A, 2, 3, 3-A, и 4

Вариант от Джеффа Бонвика (отсюда “JB”) от 1998 года, для использования в файловой системе Solaris Z File System (ZFS). Вариант алгоритма LZRW1, переработанный для высоких скоростей, как этого требует использование в файловой системе и скорость дисковых операций.

Lempel-Ziv-Stac, разработан в Stac Electronics в 1994 для использования в программах сжатия дисков. Модификация LZ77, различающая символы и пары длина-смещение, в дополнение к удалению следующего встреченного символа. Очень похож на LZSS.

Был разработан в 1995 году Дж. Форбсом и Т.Потаненом для Амиги. Форбс продал алгоритм компании Microsoft в 1996, и устроился туда работать над ним, в результате чего улучшенная его версия стала использоваться в файлах CAB, CHM, WIM и Xbox Live Avatars.

Разработан в 1996 Маркусом Оберхьюмером с прицелом на скорость сжатия и распаковки. Позволяет настраивать уровни компрессии, потребляет очень мало памяти. Похож на LZSS.

“Lempel-Ziv Markov chain Algorithm”, появился в 1998 году в архиваторе 7-zip, который демонстрировал сжатие лучше практически всех архиваторов. Алгоритм использует цепочку методов сжатия для достижения наилучшего результата. Вначале слегка изменённый LZ77, работающий на уровне битов (в отличие от обычного метода работы с байтами), парсит данные. Его вывод подвергается арифметическому кодированию. Затем могут быть применены другие алгоритмы. В результате получается наилучшая компрессия среди всех архиваторов.

LZMA2

Следующая версия LZMA, от 2009 года, использует многопоточность и чуть эффективнее хранит несжимаемые данные.

Статистический алгоритм Лемпеля-Зива

Концепция, созданная в 2001 году, предлагает проводить статистический анализ данных в комбинации с LZ77 для оптимизирования кодов, хранимых в словаре.

Алгоритмы с использованием словаря

Алгоритм 1978 года, авторы – Лемпель и Зив. Вместо использования скользящего окна для создания словаря, словарь составляется при парсинге данных из файла. Объём словаря обычно измеряется в нескольких мегабайтах. Отличия в вариантах этого алгоритма строятся на том, что делать, когда словарь заполнен.

При парсинге файла алгоритм добавляет каждый новый символ или их сочетание в словарь. Для каждого символа на входе создаётся словарная форма (индекс + неизвестный символ) на выходе. Если первый символ строки уже есть в словаре, ищем в словаре подстроки данной строки, и самая длинная используется для построения индекса. Данные, на которые указывает индекс, добавляются к последнему символу неизвестной подстроки. Если текущий символ не найден, индекс устанавливается в 0, показывая, что это вхождение одиночного символа в словарь. Записи формируют связанный список.

Входные данные «abbadabbaabaad» на выходе дадут «(0,a)(0,b)(2,a)(0,d)(1,b)(3,a)(6,d)»

An input such as «abbadabbaabaad» would generate the output «(0,a)(0,b)(2,a)(0,d)(1,b)(3,a)(6,d)». You can see how this was derived in the following example:

Для чего используется сжатие без потерь. Смотреть фото Для чего используется сжатие без потерь. Смотреть картинку Для чего используется сжатие без потерь. Картинка про Для чего используется сжатие без потерь. Фото Для чего используется сжатие без потерь

Лемпель-Зив-Велч, 1984 год. Самый популярный вариант LZ78, несмотря на запатентованность. Алгоритм избавляется от лишних символов на выходе и данные состоят только из указателей. Также он сохраняет все символы словаря перед сжатием и использует другие трюки, позволяющие улучшать сжатие – к примеру, кодирование последнего символа предыдущей фразы в качестве первого символа следующей. Используется в GIF, ранних версиях ZIP и других специальных приложениях. Очень быстр, но проигрывает в сжатии более новым алгоритмам.

Компрессия Лемпеля-Зива. Модификация LZW, использующаяся в утилитах UNIX. Следит за степенью сжатия, и как только она превышает заданный предел – словарь переделывается заново.

Лемпель-Зив-Тищер. Когда словарь заполняется, удаляет фразы, использовавшиеся реже всех, и заменяет их новыми. Не получил популярности.

Виктор Миллер и Марк Вегман, 1984 год. Действует, как LZT, но соединяет в словаре не похожие данные, а две последние фразы. В результате словарь растёт быстрее, и приходится чаще избавляться от редко используемых фраз. Также непопулярен.

Джеймс Сторер, 1988 год. Модификация LZMW. “AP” означает «все префиксы» — вместо того, чтобы сохранять при каждой итерации одну фразу, в словаре сохраняется каждое изменение. К примеру, если последняя фраза была “last”, а текущая – «next”, тогда в словаре сохраняются „lastn“, „lastne“, „lastnex“, „lastnext“.

Вариант LZW от 2006 года, работающий с сочетаниями символов, а не с отдельными символами. Успешно работает с наборами данных, в которых есть часто повторяющиеся сочетания символов, например XML. Обычно используется с препроцессором, разбивающим данные на сочетания.

1985 год, Матти Якобсон. Один из немногих вариантов LZ78, отличающихся от LZW. Сохраняет каждую уникальную строку в уже обработанных входных данных, и всем им назначает уникальные коды. При заполнении словаря из него удаляются единичные вхождения.

Алгоритмы, не использующие словарь

Предсказание по частичному совпадению – использует уже обработанные данные, чтобы предсказать, какой символ будет в последовательности следующим, таким образом уменьшая энтропию выходных данных. Обычно комбинируется с арифметическим кодировщиком или адаптивным кодированием Хаффмана. Вариация PPMd используется в RAR и 7-zip

bzip2

Реализация BWT с открытым исходным кодом. При простоте реализации достигает хорошего компромисса между скоростью и степенью сжатия, в связи с чем популярен в UNIX. Сначала данные обрабатываются при помощи RLE, затем BWT, потом данные особым образом сортируются, чтобы получить длинные последовательности одинаковых символов, после чего к ним снова применяется RLE. И, наконец, кодировщик Хаффмана завершает процесс.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *