Для чего используется углепластик
Где применяется углепластик
Содержание статьи
Карбон одновременно очень легкий и чрезвычайно прочный материал, из него можно изготавливать детали любого размера и конфигурации. Углепластик обладает прекрасными аэродинамическими показателями, он способен выдерживать любые критические температуры. Нити углерода очень устойчивы к растяжению, наравне со сталью. Однако при сжатии или точечных ударах они могут поломаться, поэтому их переплетают под определенным углом и добавляют резиновые нити.
Строительная отрасль
В строительстве углеродопластики используют в системах внешнего армирования, например, при возведении или ремонте мостов, промышленных или складских зданий. Это позволяет проводить реконструкцию со значительно меньшими трудозатратами в сравнении с традиционными способами и в более сжатые сроки. При этом срок службы несущей конструкции увеличивается в несколько раз.
Авиация
В авиации из углепластиков создают цельные композитные детали. Алюминиевые сплавы проигрывают в сравнении углепластиковым. Композитные детали имеют в 5 раз меньший вес и гораздо большую прочность и гибкость, а также устойчивость к давлению и некоррозийность. Даже их высокая стоимость не является критичной, так как масштабы применения карбонов в этой области не столь велики. Количество углеродных волокон здесь составляет около 10 процентов общего объема их производства.
Космическая отрасль
В ракетостроении композиционные материалы используются очень широко. Высокие нагрузки космических полетов предъявляют соответствующие требования к материалам, используемым при производстве деталей. Углеродные материалы могут работать в условиях высоких и низких температур, при огромных вибрационных нагрузках, в вакууме и в условиях радиационного воздействия.
Атомная промышленность
Атомная промышленность использует углепластики при создании энергетических реакторов, стойким к высоким температурам, радиации и большому давлению. Кроме этого, в этой отрасли особое внимание придается общей прочности внешних конструкций, и система внешнего армирования тоже имеет обширное применение.
Автомобильная отрасль
Судостроение
В судостроении высокая прочность, коррозионная стойкость, высокая ударостойкость и низкая теплопроводность делают углепластики лучшим материалом для изготовления конструкций корпусов подводных лодок.
Ветроэнергетика
Железнодорожная промышленность
Эти же показатели углепластиков востребованы и в железнодорожной отрасли. Применение этих материалов позволяет облегчить конструкцию вагонов, снизив этим общий вес составов, что позволяет увеличивать их длину и улучшать скоростные характеристики. Кроме того, углепластики могут использоваться при строительстве железнодорожного полотна.
Товары народного потребления
Применение углепластика в различных отраслях промышленности
Углепластик (карбон) имеет невероятно широкую сферу применения. Углеродные материалы и изделия из них можно встретить в самых разнообразных отраслях промышленности.
В строительстве, например, углеродные ткани применяются в Системе внешнего армирования. Использование углеродной ткани и эпоксидного связующего при ремонте несущих конструкций (мостов, промышленных, складских, жилых зданий) позволяет проводить реконструкцию в сжатые сроки и со значительно меньшими трудозатратами по сравнению с традиционными способами. При этом, хотя срок ремонта снижается в разы, срок службы конструкции увеличивается также в несколько раз. Несущая способность конструкции не просто восстанавливается, но и увеличивается в несколько раз.
В авиации углеродные материалы используются для создания цельных композитных деталей. Сочетание легкости и прочности получаемых изделий позволяет заменить алюминиевые сплавы углепластиковыми. Композитные детали, при их весе в 5 раз меньшем, чем аналогичных алюминиевых, обладают большей прочностью, гибкостью, устойчивостью к давлению и некоррозийностью.
В атомной промышленности углепластики используются при создании энергетических реакторов, где основным требованием к используемым материалам является их стойкость к высоким температурам, высокому давлению и радиационная стойкость. Кроме этого, в атомной отрасли особое внимание отдается общей прочности внешних конструкций, поэтому Система внешнего армирования также имеет обширное применение.
В автомобилестроении карбон (или углепластик) используется для производства как отдельных деталей и узлов, так и для автомобильных корпусов целиком. Высокое отношение прочности к весу позволяет создавать безопасные, и в то же время экономичные автомобили: снижение веса автомобиля за счет углепластиков на 30 % позволяет снизить выброс CO2 в атмосферу на 16% (!), благодаря снижению расхода топлива в несколько раз.
В гражданской аэрокосмической отрасти композиционные материалы занимают очень прочные позиции. Высокие нагрузки космических полетов ставят соответствующие требования и материалам, которые используются при производстве деталей и узлов. Углеродные волокна и материалы из них, а также из карбидов работают в условиях высоких температур и давления, при высоких вибрационных нагрузках, низких температурах космического пространства, в вакууме, в условиях радиационного воздействия, а также воздействия микрочастиц и т.п.
В судостроении высокая удельная прочность, коррозионная стойкость, низкая теплопроводность, немагнитность и высокая ударостойкость делают углепластики лучшим материалом для проектирования и создания новых материалов и конструкций из них. Возможность сочетать в одном материале высокую прочность и химическую инертность, а также вибро-, звуко- и радиопоглощение обуславливает выбор именно этого материала для изготовления конструкций различных видов гражданских судов.
Одной из наиболее значимых областей применения углеродных материалов в мировой практике является ветроэнергетика. В нашей стране эта отрасль находится, по сути, в стадии зарождения, в то время как во всем мире ветряки появляются и в незаселенных районах, и в прибрежных зонах, и на морских платформах. Легкость и непревзойденные показатели прочности на изгиб углепластиков позволяют создавать более длинные лопасти, которые, в свою очередь, обладают большей энергопроизводительностью.
В железнодорожной отрасли углепластики имеют широкое применение. Легкость и прочность материала позволяет облегчить конструкцию железнодорожных вагонов, снизив тем самым общий вес составов, что позволяет в дальнейшем как увеличивать их длину, так и улучшать скоростные характеристики. В то же время углепластики могут использоваться и при строительстве железнодорожного полотна и прокладке железнодорожных проводов: высокие показатели прочности на изгиб позволяют увеличивать длину проводов, сокращая необходимое количество опор и в то же время снижая риск их провисания.
Композиционные материалы интенсивно входят в привычный мир каждого человека. Из них создаются многие товары народного потребления: предметы интерьера, детали бытовых приборов, спортивная экипировка и инвентарь, детали ЭВМ и многое другое.
Композитная система внешнего армирования на основе углеволокна применяется для усиления несущих конструкций и увеличения прочности сооружений. Использование композиционного усиления позволяет сократить сроки и трудозатраты на производство работ по сравнению с традиционными методами и имеет ряд других преимуществ.
Выполним расчет усиления конструкций!
По вашему заданию произведем расчет и подбор материалов для усиления, выполним техническое решение или проект, подготовим смету на выполнение работ.
Карбон — что это такое
Что такое углепластик
Международное наименование Carbon — это углерод, из которого и получаются карбоновые волокна carbon fiber.
Но в настоящее время к карбонам относят все композитные материалы, в которых несущей основой являются углеродные волокна, а вот связующее может быть разным. Карбон и углепластик объединились в один термин, привнеся путаницу в головы потребителей. То есть карбон или углепластик — это одно и то же.
Это инновационный материал, высокая стоимость которого обусловлена трудоемким технологическим процессом и большой долей ручного труда при этом. По мере совершенствования и автоматизации процессов изготовления цена карбона будет снижаться. Для примера: стоимость 1 кг стали — менее 1 доллара, 1 кг карбона европейского производства стоит около 20 долларов. Удешевление возможно только за счет полной автоматизации процесса и сокращения времени его производства.
Применение карбона
Изначально карбон был разработан для спортивного автомобилестроения и космической техники, но благодаря своим отличным эксплуатационным свойствам, таким как малый вес и высокая прочность, получил широкое распространение и в других отраслях промышленности:
Гибкость углеродного полотна, возможность его удобного раскроя и резки, последующей пропитки эпоксидной смолой позволяют формовать карбоновые изделия любой формы и размеров, в том числе и самостоятельно. Полученные заготовки можно шлифовать, полировать, красить и наносить флексопечать.
Технические характеристики и свойства карбона
Популярность углепластика объясняется его уникальными эксплуатационными характеристиками, которые получаются в результате сочетания в одном композите совершенно разных по своим свойствам материалов — углеродного полотна в качестве несущей основы и эпоксидных компаундов в качестве связующего.
Армирующий элемент, общий для всех видов углепластика — углеродные волокна толщиной 0,005-0,010 мм, которые прекрасно работают на растяжение, но имеют низкую прочность на изгиб, то есть они анизотропны, прочны только в одном направлении, поэтому их использование оправдано только в виде полотна.
Дополнительно армирование может проводиться каучуком, придающим серый оттенок карбону.
Карбон или углепластик характеризуются высокой прочностью, износостойкостью, жёсткостью и малой, по сравнению со сталью, массой. Его плотность — от 1450 кг/м³ до 2000 кг/м³. Технические характеристики углеволокна можно посмотреть в с равнительной таблице плотности, температуры плавления и прочностных характеристик.
Кевлар—это американская торговая марка класса полимеров арамидов, родственных полиамидам, лавсанам. Это название уже стало нарицательным для всех волокон этого класса. Армирование повышает сопротивление изгибающим нагрузкам, поэтому его широко используют в комбинации с углепластиком.
Как делают карбоновые нити
Волокна, состоящие из тончайших нитей углерода, получают термической обработкой на воздухе, то есть окислением, полимерных или органических нитей (полиакрилонитрильных, фенольных, лигниновых, вискозных) при температуре 250 °C в течение 24 часов, то есть практически их обугливанием. Вот так выглядит под микроскопом углеродная нить после обугливания.
После окисления проходит карбонизация — нагрев волокна в среде азота или аргона при температурах от 800 до 1500 °C для выстраивания структур, подобных молекулам графита.
Затем проводится графитизация (насыщение углеродом) в этой же среде при температуре 1300-3000 °C. Этот процесс может повторяться несколько раз, очищая графитовое волокно от азота, повышая концентрацию углерода и делая его прочнее. Чем выше температура, тем прочнее получается волокно. Этой обработкой концентрация углерода в волокне увеличивается до 99%.
Виды волокон карбона. Полотно
Волокна могут быть короткими, резаными, их называют «штапелированными», а могут быть непрерывные нити на бобинах. Это могут быть жгуты, пряжа, ровинг, которые затем используются для изготовления тканого и нетканого полотна и лент. Иногда волокна укладываются в полимерную матрицу без переплетения (UD).
Так как волокна отлично работают на растяжение, но плохо на изгиб и сжатие, то идеальным вариантом использования углеволокна является применение его в виде полотна Carbon Fabric.
Оно получается различными видами плетения: елочкой, рогожкой и пр., имеющими международные названия Plain, Twill, Satin. Иногда волокна просто перехвачены поперек крупными стежками до заливки смолой. Правильный выбор полотна для углепластика по техническим характеристикам волокна и виду плетения очень важен для получения качественного карбона.
В качестве несущей основы чаще всего используются эпоксидные смолы, в которых полотно укладывается послойно, со сменой направления плетения, для равномерного распределения механических свойств ориентированных волокон. Чаще всего в 1 мм толщины листа карбона содержится 3-4 слоя.
Достоинства и недостатки карбона
Более высокая цена карбона по сравнению со стеклопластиком и стекловолокном объясняется более сложной, энергоемкой многоэтапной технологией, дорогими смолами и более дорогостоящим оборудованием (автоклав). Но и прочность с эластичностью при этом получаются выше наряду со множеством других неоспоримых достоинств:
Но по сравнению с металлическими и деталями из стекловолокна карбоновые детали имеют недостатки:
Как делают карбон
Существуют следующие основные методы изготовления изделий из углеткани.
1. Прессование или «мокрый» способ
Полотно выкладывается в форму и пропитывается эпоксидной или полиэфирной смолой. Излишки смолы удаляются или вакуумформованием, или давлением. Изделие извлекается после полимеризации смолы. Этот процесс может проходить как естественным путем, так и при нагреве. Как правило, в результате такого процесса получается листовой углепластик.
2. Формование
Изготавливается модель изделия (матрица) из гипса, алебастра, монтажной пены, на которую выкладывается пропитанная смолой ткань. При прокатке валиками композит уплотняется и удаляются излишки воздуха. Затем проводится либо ускоренная полимеризация и отверждение в печи, либо естественная. Этот способ называют «сухим» и изделия из него прочнее и легче, чем изготовленные «мокрым» способом. Поверхность изделия, изготовленного «сухим» способом, ребристая (если его не покрывали лаком).
К этой же категории можно отнести формование из листовых заготовок — метод препрегов.
Смолы по своей способности полимеризоваться при повышении температуры разделяются на «холодные» и «горячие». Последние используют в технологии препрегов, когда изготавливают полуфабрикаты в виде нескольких слоев углеткани с нанесенной смолой. Они в зависимости от марки смолы могут храниться до нескольких недель в неполимеризованном состоянии, прослоенные полиэтиленовой пленкой и пропущенные между валками для удаления пузырьков воздуха и лишней смолы. Иногда препреги хранят в холодильных камерах. Перед формованием изделия заготовку разогревают, и смола опять становится жидкой.
3. Намотка
Нить, ленту, ткань наматывают на цилиндрическую заготовку для изготовления карбоновых труб. Кистью или валиком наносят послойно смолу и сушат преимущественно в печи.
Во всех случаях поверхность нанесения смазывается разделительными смазками для простого снятия получившегося изделия после застывания.
Можно ли сделать углепластик своими руками
Где брать углеткань
Тайвань, Китай, Россия. Но в России это относится к «конструкционным тканям повышенной прочности на основе углеволокна». Если найдете выход на предприятие, то вам очень повезло. Много компаний предлагают готовые наборы для отделки автомобилей и мотоциклов карбоном «Сделай сам», включающих фрагменты углеткани и смолу.
70% мирового рынка углеткани производят тайваньские и японские крупные бренды: Mitsubishi, TORAY, TOHO, CYTEC, Zoltec и пр.
Надеемся, вы нашли исчерпывающий ответ на вопрос «Что такое карбон»?
Применение изделий и деталей из углепластика / карбона
Где используются карбоновые детали?
Углепластик, или карбон, — композиционный материал, углеродные нити в составе которого крепятся между собой с помощью полимерных смол. Карбон — очень легкий и в то же время прочный композит, при его использовании добиваются снижения массы спортивных болидов с сохранением безопасности пилотов. Впоследствии карбоновые детали стали очень популярны в тюнинге автомобилей: из него изготавливаются капот, спойлеры, крылья, бампера и другие элементы машин.
Разумеется, такой высокотехнологичный материал применяется в авиакосмической отрасли. Углепластиковые детали используются в гражданской, государственной и экспериментальной авиации. Применяются они и при строительстве различных летательных аппаратов. Композитные материалы, в частности карбон, зарекомендовали себя в малой авиации только с положительной стороны.
Отметим ряд преимуществ карбона, выделяющих его среди других материалов:
Однако не так давно использование углепластика / карбона в строительстве и ремонте бетонных конструкций показало превосходные результаты. В настоящее время встретить композиционные материалы можно практически в любой отрасли. Из явных недостатков углеволокна можно сразу отметить лишь его относительно высокую стоимость. Связано это в том числе с и тем, что производители карбона вынуждены покупать дорогостоящее оборудование, а также во многих случаях применять ручной труд.
Многочисленные преимущества карбона делают возможным его применение в различных отраслях промышленности:
Если вы захотели карбон на машину
Следует заметить, что при тюнинге автомобилей нередко применяют не оригинальный дорогостоящий материал, а используют имитацию карбона. Такая имитация может быть выполнена либо с помощью специальной карбоновой ПВХ-пленки, либо аквапечатью, либо нанесением аэрографии «под карбон».
Однако тюнинг с использованием настоящих композитных материалов на сегодня не теряет популярности, так как, кроме преобразования внешнего вида автомобиля, он позволяет сохранить жесткость и прочность деталей. Иными словами, композиционные материалы, и карбон в том числе, вовсе не просто так всё интенсивнее входят в привычный мир окружающих нас вещей (с их использованием уже изготавливаются предметы интерьера, компьютерные составляющие, детали бытовых приборов и многое другое). И, конечно, применение углепластика в автоспорте является незаменимой частью. Гоночные болиды практически полностью строятся из карбона, арамида и других композитных материалов. На сегодняшний день спортивные автомобили и карбон неразлучны.
Если вас также заинтересовал данный материал, для заказа изделий из карбона на машину вы можете связаться с представителями компании Carbon Composites. Вам обязательно ответят и проконсультируют по вопросам выбора и приобретения продукции.
Углепластики: изготовление, свойства и применение
Углепластики (карбопластики, углеродопласты) — это композиты, содержащие в качестве наполнителя углеродные волокна. Этот сравнительно новый класс ПКМ получил в последние годы наиболее интенсивное развитие благодаря своим уникальным свойствам, а именно:
Важным фактором, определяющим в некоторой степени перспективность углепластиков, является их хорошая технологичность, позволяющая перерабатывать углепластики в изделия на стандартном технологическом оборудовании с минимальными трудовыми и энергетическими затратами.
В зависимости от вида углеродного армирующего наполнителя, его текстурной формы и геометрических размеров углепластики можно разделить на три группы:
Углепластики на основе непрерывных ориентированных углеродных нитей, жгутов и ровниц составляют группу углеволокнитов. Наиболее представительная группа углепластиков — углетекстолиты, в которых в качестве армирующего наполнителя используют тканые ленты и ткани различных текстурных форм. Углепластики на основе дискретных волокон составляют группу углеволокнитов.
Армирующие наполнители
Процесс изготовления углеродных волокон заключается в последовательном температурном и механическом воздействиях на исходные органические волокна, приводящих к их карбонизации, графитации и совершенствованию структуры.
На первом этапе нагрев исходных растянутых волокон до температуры 220 °С приводит к образованию поперечных химических связей между макромолекулами полимера.
На втором этапе нагрев до температуры 1000 °С позволяет получить так называемые карбонизованные волокна, на 80…95 % состоящие из элементарного углерода и обладающие достаточно высокой прочностью.
На третьем этапе (термообработка до температуры 1500…2000 °С) получают конечный продукт — графитизированное углеродное волокно с кристаллической структурой, близкой к структуре графита. В зависимости от условий получения и типа исходного сырья предел прочности и модуль упругости углеродных волокон находятся соответственно в пределах 2…3,5 ГПа и 220…700 ГПа. Наибольшей прочностью обладают волокна, которые при нагреве на последнем этапе (Т = 1600 °С) имеют мелкокристаллическую структуру. Высокомодульные материалы получают в результате растяжения волокна при температуре 2700 °С.
В качестве армирующих элементов углеродные волокна применяют в виде жгутов, лент и тканей. Они являются более хрупкими и менее технологичными, чем стеклянные, отличаются химической инертностью, низкой поверхностной энергией, обусловливающей плохое смачивание волокон растворами и расплавами матричных материалов, что в итоге приводит к низкой прочности сцепления на границе «волокно-матрица». Основное достоинство — высокая жесткость. Механические характеристики остаются постоянными до температуры 450 °С, что позволяет применять углеродные волокна с полимерной и металлической матрицами. Волокна характеризуются отрицательным коэффициентом линейного расширения, что в совокупности с положительным коэффициентом у матрицы позволяет синтезировать композиции для конструкций, сохраняющих свои размеры при температурном воздействии. Углеродные волокна используют для изготовления элементов, необходимая жесткость которых является условием, снижающим эффективность применения материалов, армированных стеклянными волокнами. Стоимость углеродных волокон на два порядка выше, чем стеклянных.
Полимерные матрицы
Полимерная матрица определяет эксплуатационные и технологические свойства углепластика. Для углепластиков используют как термореактивные, так и термопластичные матрицы. Из термореактивных матриц наибольшее рас-пространение получили эпоксидные связующие: эпоксидно-анилинофенолформальдегидное марки 5-211-Б, эпоксинаволачное — УНДФ, эпоксидное модифицированное диапластом — УП-2227, на основе тетрафункциональной эпоксидной смолы связующее — ВС-2526к, на основе смеси трех эпоксидных смол связующее — ЭДТ-69Н. Применение эпоксидных матриц обеспечивает получение углепластиков с высокими прочностными характеристиками, водостойкостью и химической стойкостью, хорошей эксплуатационной надежностью и ресурсом.
Из термопластичных матриц нашли применение полиимидная СП-97, полиамидоимидная ПАИС-104 и полисульфон, обеспечивающие работоспособность углепластиков при более высоких температурах (особенно полиимидная матрица — до 200…300 °С). Основной недостаток этих матриц — трудность изготовления на их основе полуфабрикатов (пропитанных лент — препрегов) и высокие температуры их отверждения.
Длительное тепловое воздействие может вызвать неотвратимое изменение химической структуры полимеров вследствие протекания термодеструкции. При длительном воздействии переменной механической нагрузки и недостаточном теплоотводе может произойти переход от механического разрушения материала к тепловому за счет диссипации механической энергии в тепловую.
Объемное содержание волокон, %
Прочность при растяжении, МПа: вдоль волокон поперек волокон
Предел прочности при сжатии, МПа:
вдоль волокон поперек волокон
Прочность при сдвиге вдоль волокон, МПа
Модуль упругости при растяжении, ГПа: вдоль ВОЛОКОН Еу поперек волокон Е-,
Модуль сдвига G]->, ГПа
Коэффициент Пуассона Мц
Физико-механические свойства углепластиков
Уровень свойств углепластиков зависит от характеристик применяемых углеродных волокон, вида и текстурной формы армирующего наполнителя, упругопрочностных свойств полимерной матрицы, качества раздела «волокно-матрица», от технологии переработки и структуры армирования материала. Накоплен значительный объем информации о физико-механических свойствах эпоксидных углепластиков, их поведении при различных видах нагружения (статика, повторная статика, динамика) и деформировании (растяжение, сжатие, сдвиг, срез, смятие), а также о ресурсе и сроке их эксплуатации в различных изделиях. В таблице представлены данные о свойствах однонаправленных углепластиков.
Углепластики обладают достаточно высокой длительной прочностью и низкой ползучестью благодаря высокой жесткости и низкой деформагивности углеродных волокон. Коэффициент длительного сопротивления Rt углепластиков в диапазоне рабочих температур t = 80…200 °С и при длительности нагружения r = 500… 1000 ч при растяжении и сжатии составляет 0,5…0,9 % от величины кратковременной прочности материала. Ползучесть углепластиков при длительном нагружении нагрузкой, составляющей (0,4 — 0,5) GВ, как правило, не превышает 0,1…0,5 %. Указанные характеристики благоприятно влияют на работоспособность материала при длительном нагружении с высоким уровнем действующих напряжений.
Углепластики обладают наибольшей среди известных КМ усталостной прочностью. Коэффициент усталостного сопротивления в зависимости от вида и степени асимметрии цикла равен (0.5…0,7) GВ, т. е. в 2-3 раза выше, чем у стеклопластиков, что связано также с высокими значениями модуля упругости углеродных волокон и как следствие более низким уровнем напряжений и меньшей повреждаемостью полимерной матрицы.
Выносливость углепластика может быть оценена через свойства и состав его компонентов следующим образом:
Из уравнения следует, что усталостная прочность композита прямо пропорциональна прочности матрицы GМ и модуля упругости армирующих волокон ЕВ и обратно пропорциональна модулю упругости матрицы ЕМ. Коэффициент К характеризует степень использования прочности матрицы при циклическом нагружении и учитывает наряду с природой матрицы влияние технологии изготовления композита и уровень внутренних остаточных напряжений.
По сравнению с другими ПКМ углепластики обладают меньшей удельной ударной вязкостью, трещиностойкостью и остаточ- ностью к концентрации напряжений. Значительное влияние на чувствительность углепластиков к концентрации напряжений оказывает структура армирования и направление приложения нагрузки по отношению к ориентации волокон.
Так, при растяжении под углом ±45° к направлению армирования прочность углепластика очень мало зависит от размера концентратора. Мелкие дефекты, например, отверстия диаметром, не превышающим 4 мм, тоже почти не влияют на прочность углепластика квазиизотропной структуры как при кратковременном, так и при длительном статическом и усталостном нагружении.
Повышение остаточной прочности и вязкости разрушения углепластиков возможно путем создания гибридного (поливолокнистого) материала в виде чередования сплошных слоев углеродных и стеклянных, углеродных и органических наполнителей либо в виде периодически расположенных высокомодульных (борных) или низкомодульных (стеклянных с армированием ±45°) стопоров трещин. Применение высокомодульных стопоров приводит к перераспределению большей части нагрузки на стопоры в вершине трещины, а эффективность низкомодульных стопоров заключается в создании зоны низких напряжений с повышенной вязкостью разрушения, которая препятствует распространению трещины.
Ударную вязкость материала, пренебрегая прочностью матрицы, определяют параметром ((Ga)^2/2Е)*VВ (где Ga — реализованная прочность волокна в композите), поэтому для повышения ударной вязкости углепластиков целесообразно вводить в них высокопрочные, но низкомодульные волокна, какими являются стеклянные или органические волокна. Ударную вязкость поливолокнистого материала, содержащего низкомодульные волокна в количестве V2 с модулем упругости Е2 при реализации прочности волокон в композите G2 и высокомодульные волокна в количестве V1 с модулем упругости Е1 и реализованной прочностью углеродного волокнита в композите G1, можно определить по выражению:
Демпфирующая способность углепластика определяется в основном рассеиванием энергии в матрице, сопровождающимся переходом механической энергии в тепловую, химическую и электрическую, и существенно зависит от уровня нагружения, структуры армирования материала и рабочей температуры. Если однонаправленные углепластики имеют уровень демпфирующей способности вдоль волокон 0,5… 1,0 %, то в диагонально-армированном углепластике она возрастает в 5-7 раз.
Рост механических потерь с увеличением температуры объясняется снижением модуля сдвига углепластика, что связано со значительными физическими изменениями, происходящими в полимерных связующих при повышении температуры. С уменьшением модуля сдвига наблюдается монотонное повышение коэффициента механических потерь.
Рис. Зависимость предела прочности (1) и модуля упругости при растяжении (2), логарифмического декремента затухания (3) от структуры армирования углепластика КМУ-4э
Рис. Зависимость логарифмического декремента от модуля сдвига полимерной матрицы для углепластиков КМУ-Зл, КМУ-1лм, КМУ-4э при температуре: 20 °С (7), 100 °С (2), 150 °С (5), 180 °С (4), 200 °С (5)
Теплофизические характеристики углепластиков зависят от типа волокон, типа и объемного содержания матрицы, содержания пор в матрице, температуры испытаний. Для различных углепластиков они существенно не различаются и находятся в следующих диапазонах:
Имеющиеся сведения о поведении углепластиков под влиянием различных факторов внешней среды и в условиях, близких к эксплуатационным, могут быть использованы для прогнозирования их ресурсных характеристик.
Среди разнообразных видов воздействия наиболее опасным и отрицательно влияющим на структуру и свойства для всех ПКМ является климатическое термовлажностное циклирование, чередующееся или сочетающееся с рабочими тепловыми или механическими нагрузками. Свойства углепластиков в сухом состоянии при комнатной и повышенной температурах и после длительного термостарения изменяются незначительно. При совместном действии влаги и температуры наблюдаются структурные превращения в матрице и на границах раздела «волокно-матрица», вызывающие ухудшение характеристик. Механизм изменения свойств, обусловленный сорбцией влаги, связан с двумя основными процессами: потерями температурной прочности и жесткости вследствие пластификации матрицы в объеме и в приграничном слое и потерями из-за микро- и макрорастрескивания матрицы. В зависимости от типа материала их предельное влагопоглощение различается в 1,5—2 раза и составляет для наиболее влагостойких материалов 1 %.
Технологические приемы переработки углепластиков аналогичны технологии переработки СП. В зависимости от формы и геометрических размеров детали применяются соответствующие методы формования: прессование, автоклавное формование, намотка, пултрузия, вакуумное или пресскамерное формование, пропитка под давлением. Главное в технологическом процессе — обеспечить выполнение требований к основным технологическим параметрам проведения режима формования (температура формования и скорость подъема температуры, величина и время приложения давления формования, время выдержки на отдельных режимах формования, скорость и температура охлаждения).
Области эффективного применения углепластиков
По комплексу свойств углепластики существенно превосходят традиционные стали, алюминиевые и титановые сплавы, обладая повышенными удельной прочностью и жесткостью, высокой усталостной и длительной прочностью, возможностью регулирования анизотропии свойств, широким комплексом тепло- и электрофизических характеристик, многофункциональностью назначения. Углепластики находят все более широкое применение в различных отраслях промышленности.
В технике объем внедрения углепластиков в 70-90-е годы XX века увеличивался интенсивно: от 2…4 % (от веса конструкции) до 25…60%.
В конструктивных решениях выполнения деталей из углепластиков можно выделить три направления:
В каждом конкретном случае необходимо оценивать весовую, техническую и эксплуатационную эффективность конструкции.
Основная тенденция применения углепластиков — создание крупногабаритных элементов конструкций. При этом резко со-кращается количество входящих деталей, появляется дополнительное снижение массы конструкции за счет уменьшения количества узлов соединений. Применение углепластиков в авиационных конструкциях позволяет снизить их массу на 20…40 %, повысить жесткость элементов конструкций на 30…50 %, выносливость — в 3-4 раза, а в некоторых случаях увеличить и прочность конструкций. В космической технике с применением углепластиков изготовляются высоконаправленные антенны, микроволновые фильтры и волноводы, оптические телескопы, рамы солнечных батарей, корпуса ракетных двигателей, различные ферменные конструкции, корпуса ракет и транспортных контейнеров.
Зарубежная и отечественная практика показала целесообразность использования углепластиков:
Благодаря высокой устойчивости к действию химически агрессивных жидкостей и газов углепластики успешно применяются в химическом машиностроении для изготовления реакторов, трубопроводов центрифуг, лопастей насосов, осадительных ванн, выхлопных труб. В конструкции ткацких станков из углепластиков изготовляют подборочные и направляющие стержни, ремизные рамы, рапиры, спицы, тяги, что позволяет увеличить срок службы деталей, повысить износостойкость, уменьшить величину усилий, поднять производительность станков, уменьшить энергозатраты.
Высокая радиационная стойкость углепластиков делает их применение весьма эффективным в нейтронном оборудовании, для изготовления контейнеров и перевозки радиоактивных материалов, для захоронения радиоактивных отходов.
Благодаря хорошей электропроводности углеродных волокон углепластики на их основе успешно применяются в качестве нагревательных элементов для обогрева помещений, одежды, животноводческих ферм.
Высокая биологическая и механическая совместимость углеродных волокон с тканями живого организма определяют перспективу их применения в медицинской технике.
Низкий коэффициент линейного термического расширения углепластиков позволяет их использовать в криогенной технике при изготовлении баллонов для хранения сжиженных газов, а также для трубопроводов, клапанов.
Углепластики с высокой термостойкостью находят применение в металлургии в качестве арматуры и футеровки печей, деталей приборов, погруженных в жидкие металлы, деталей и узлов металлургических станков. Все чаще углепластики используются в строительстве для изготовления панелей жилых домов, балок, пролетов мостов, кранов.
В электротехнической промышленности углепластики эффективны для создания лопастей ветроэнергетических установок различной мощности, в электродвигателях, приборных панелях, для изготовления опор линии электропередач, в изоляторах для линий высоковольтных передач, для защиты от электромагнитных волн, в антеннах средств связи, радиоприборах, диффузорах громкоговорителей.
В железнодорожном транспорте эффективно применение углепластиков для изготовления вагонов, контейнеров, узлов подвески.
В нефтяной и газовой промышленности углепластики находят применение в трубах для бурения глубоких скважин, в газопроводах.
Углепластики широко используются при изготовлении спортивного инвентаря, спортивных самолетов. Они существенно позволяют снизить массу, повысить жесткость и летные качества самолетов и планеров, ходовые качества гоночных судов, яхт, байдарок, каноэ. Из них изготовляют гоночные велосипеды, мотоциклы, шесты, весла, ракетки для гольфа, тенниса, луки, стрелы, удочки, хоккейные клюшки, лыжи, лыжные палки и пр.