Для чего могут применяться лазеры в науке и технике

Лазеры применяются в различных сферах

Применение лазеров как оптического квантового генератора стало возможным с момента его открытия американским физиком Теодор Харальд (Тед) Майманом в 1960 году. Устройство стало незаменимым инструментом в нашей повседневной жизни.
Многие используют лазеры обусловленные его уникальными свойствами, например, способность достичь высокой мощности в точке, делая оптический генератор идеальным инструментом, как точность скальпеля в медицине или в качестве средства для резки толстолистовой стали.Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Способы применения

Большинство устройств этого типа формируют луч света размером с карандаш и меньше и поддерживая его размер и направление на очень больших расстояниях. Это резко фокусированный луч когерентного света подходит для широкого спектра приложений.

Применение лазеров имеет комплексные решения в широком спектре приложений от научных исследований, биомедицины и окружающей среды до обработки промышленных материалов, микроэлектроники, авионики и развлечений.Применения включают лазероптогенетику и неврологию, лазерную сканирующую микроскопию и так далее.

Лазеры для лечения

Узкий когерентный поток света используемый в медицине, является наиболее важной высокотехнологичной медицинской технологией в этом столетии. Применение лазеров относится ко всем клиническим дисциплинам, таким как офтальмология, дерматология, хирургия, стоматология, онкология, рак и т. д. Лазер имеет революционный прорыв в лечении, и различные длины волны подходят для различных терапевтических областей. Например, эффективно лазерное лечение пародонтита.

В медицине они используются при хирургических операциях. Например, как глаукома глаза.Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Применение в оптогенетике и нейробиологии

Оптогенетика — это быстро развивающаяся междисциплинарная биотехнологическая технология. Для этой технологии необходима высокая пространственно-временная разрешающая способность в связи со специфичностью изучения клеток. Применение лазеров преодолевает недостатки традиционных методов контроля активности клеток и организма, а также обеспечивает революционный метод исследования нейробиологии. Области исследований включают фундаментальные исследования нервной системы, исследования и исследования памяти, исследования привыкания, дискинезию, расстройства сна, паркинсонизм, депрессивное расстройство, тревожное расстройство и т. д.

Нейронаука — это научное исследование нервной системы. В настоящее время это междисциплинарная наука, которая сотрудничает с другими областями, такими как химия, информатика, инженерия, лингвистика, математика, медицина, генетика и смежные дисциплины, включая философию, физику и психологию. Сфера нейробиологии с помощью узкого луча расширилась и теперь включает различные подходы, используемые для изучения молекулярных, клеточных, эволюционных, структурных, функциональных, эволюционных, вычислительных и медицинских аспектов нервной системы.

Область применения лазера в исследованиях включает наблюдение за жизнеспособной клеточной структурой и специфическими молекулярными, ионными биологическими изменениями, фармакологией, генетикой, спектроскопией и связанными с ними субъектами.

Связь и передача данных

Лазерная связь — это беспроводное соединение в атмосфере. Теперь он может передавать информацию со скоростью передачи данных до нескольких Гбит/с и на расстоянии тысяч километров друг от друга.

Информация отправляется на модулятор света, который связан с лазером. Модулятор обрабатывает информацию о лазере, регулируя амплитуду, частоту или фазу. Затем информация передается по оптической антенне. На приемном конце генератор и сигнал смешиваются и затем преобразуются в исходную информацию с помощью детектора фотоэлектрического баланса и петлевого фильтра после усиления и демодуляции.

Лазерная связь имеет достоинства, связанные с небольшими потерями при передаче, большим расстоянием передачи, высоким качеством связи, большой пропускной способностью, надежной конфиденциальностью и структурой освещения. Она используется для наземной связи, глобальной связи и межзвездной связи.

В радиолокационных системах

Применяется также в радиолокационных системах, которые состоят из устройства лазерного излучения, устройства приема и устройства анализа сигналов. В качестве одной из технологий активного дистанционного зондирования применяется во многих областях, таких как мониторинг наземной растительности, атмосферная лазерная передача, глобальное прогнозирование климата и мониторинг морской среды. С развитием лазерной технологии и технологии оптического мониторинга достигается высокая точность, высокое пространственное разрешение с применением в автомобиле, воздухе и в космосе.

В промышленности и технике

Оптические генераторы используются в промышленности для резки и бурения металлов и прочих материалов, для сварки и пайки, а также для проверки оптического оборудования.

Компакт-диски и DVD-диски, Blu-ray диски чтение и запись производится с помощью применения лазеров, принтеры и сканеры штрих кода. Они используются в волоконной оптике и в некотором пространстве, открытой связи, по аналогии с радиопередачей передаваемого луча света модулированного сигнала и получение и демодуляция на некотором расстоянии. Явление голографии состоит в том, что фактические фронты узоров, захвачены в фотографическое изображение объекта, освещается светом, может быть реконструировано и производит трехмерное изображение объекта.

В научных исследованиях

Применение лазеров важно в ряде областей научных исследований, которые открывают новое поле научных исследований, как нелинейная оптика, которая связана с изучением таких явлений, как удвоение частоты когерентного света некоторых кристаллов.
Одним из важных результатов исследований оптического генератора является развитие устройств, которые могут быть настроены для испускания света в диапазоне частот, вместо формирования света только одной частоты.

В военном деле для наведения на цель

Узкий поток света применяется в оптической когерентной томографии, как метод представляющий отображение в полупрозрачных или непрозрачных материалах, таких как человеческие ткани. Луч проникает в материал, а затем отражается. Глубина и интенсивность отраженных лучей записывается и из изображения строятся данные. Если луч сканирует по области получается 3-D изображение.

Помимо того, что этот метод безопаснее чем рентген, снимки получаются гораздо менее мутными. Когда луч отражается обратно в направлении, отличном от его происхождения, изменение фазы улавливается приемником и отфильтровывается из конечного изображения, что дает гораздо более четкое изображение и более точную картину.

Применение лазеров нашло отражение во многих областях технологий как развитие науки.

Источник

Лазерный мир

Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Что такое лазер? И зачем он нужен?

Лазер – одно из наиболее ярких и полезных изобретений XX века, открывшее перед человечеством огромное количество новых направлений деятельности.

Сегодня лазеры получили такое широкое распространение в нашей жизни, что тяжело представить, что с момента их изобретения прошло всего 50 лет!

А если быть точнее, то первый лазер был создан 16 мая 1960 года физиком из Калифорнии Теодором Мейнманом (Theodore H. Maiman). Этот лазер работал на кристалле рубина с резонатором Фабри-Перо, а в качестве источника накачки использовалась лампа-вспышка. Лазер работал в импульсном режиме на длине волны 694,3 нм.

В основу этого изобретения легла теория вынужденного излучения, выдвинутая Эйнштейном в 1917 г. Согласно теории, кроме процессов спонтанного поглощения и излучения света существует возможность вынужденного (или стимулированного) излучения, когда можно «заставить» электроны излучить свет определенной длины волны одновременно.

Так что же такое лазер?

Ла́зер (от англ. LASER — Light Amplification by Stimulated Emission of Radiation, что в переводе на русский означает «усиление света посредством вынужденного излучения»), или опти́ческий ква́нтовый генера́тор — это устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

То есть, это луч света, испускаемый синхронными источниками, в узком направленном диапазоне. Такой чрезвычайно сконцентрированный световой поток.

Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Как работает лазер?

Принцип работы лазера основан на явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Типы лазеров:

Лазеры могут определяться на основе множества признаков, но чаще всего используется классификация

по принципу агрегатного состояния лазерного вещества:

По способу возбуждения лазерного вещества:

Применение лазеров.

С момента своего изобретения лазеры зарекомендовали себя как «готовые решения ещё неизвестных проблем». В силу уникальных свойств излучения лазеров, они широко применяются во многих отраслях науки и техники, а также в быту.

Источник

Лазерный мир

Лазерные технологии в науке и технике

Сюй А.В. // Журнал: Бюллетень научных сообщений,
Издательство: Дальневосточный государственный университет путей сообщения (Хабаровск), номер: 20, год: 2015, с: 55-64, УДК : 621.373.826

АННОТАЦИЯ:
Статья представляет собой краткий литературный обзор о применении лазерного излучения в различных областях науки и техники. Рассмотрены лазерные технологии в вооружении и их перспективы развития в будущем.

Описание на английском языке:
Syuy a.V. // Laser technology in science and technology
The article presents a brief literature review on the use of laser radiation in various areas of science and technology. We consider laser technology in weaponry, and their development prospects in the future.

В 1960 году 16 мая Т. Мейман впервые продемонстрировал работу первого оптического квантового генератора – лазера (англ. laser, акроним от light amplification by stimulated emission of radiation «усиление света по средством вынужденного излучения») [1].

В качестве активной среды использовался кристалл искусственного рубина (оксид алюминия Al2O3 с небольшой примесью хрома Cr), а вместо объёмного резонатора служил резонатор Фабри-Перо, который представлял из себя кристалл, на торцах которого нанесены серебряные зеркальные покрытия. Такой лазер работал в импульсном режиме на длине волны 694,3 нм. В декабре того же года был создан гелий-неоновый лазер, излучающий в непрерывном режиме [2]. Изначально лазер работал в инфракрасном диапазоне, затем был модифицирован для излучения видимого красного света с длиной волны 632,8 нм.

С момента изобретения лазера научно-технический прогресс испытал мощный скачок. Лазерное излучение обладает рядом уникальных свойств, таких как высокая степень когерентности излучения, крайне низкий уровень расходимости излучения, высокая плотность мощности излучения и т.д.

Лазеры можно классифицировать [3–6]:

Благодаря своим свойствам лазеры стали использоваться в различных областях науки и техники в зависимости от длительности импульса, мощности излучения и диапазона частот.

1. Наука.

2. Вооружение.

3. Промышленность.

4. Медицина [18].

В медицине лазерное излучение все больше и больше используется в таких областях как терапия и хирургия. Лазерное излучение имеет неоспоримое преимущество перед полосковыми операциями и с точки зрения экономии времени реабилитации и с точки зрения эстетики.

5. В связи и информационных технологиях.

Основной задачей является хранение, обработка и передача информации. Хранение информации на оптических носителях (компакт-диск, DVD и т. д.); Оптический диск (англ. optical disc) – собирательное название для носителей информации, выполненных в виде дисков, чтение с которых ведётся с помо-щью оптического излучения. Диск обычно плоский, его основа сделана из поликарбоната, на который нанесён специальный слой, который и служит для хранения информации. Для считывания информации используется обычно луч лазера, который направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками «питами» (от англ. pit – «ямка», «углубление») на специальном слое, на основании декодирования этих изменений устройством чтения восстанавливается записанная на диск информация.

В настоящее время мы наблюдаем рождение четвертого поколения оптических дисков. К первому поколению можно отнести: Лазерный диск; Компакт-диск; MiniDisc. Ко второму поколению: DVD; Digital Multilayer Disk; DataPlay; Fluorescent Multilayer Disc; GD-ROM; Universal Media Disc.

К третьему поколению:
Blu-ray Disc, BD (англ. blue ray – синий луч и disc – диск) – формат оптиче-ского носителя, используемый для записи с повышенной плотностью хранения цифровых данных, включая видео высокой чёткости. Коммерческий запуск формата Blu-ray прошёл весной 2006 г. Blu-ray (букв. «синий луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера.
HD DVD (англ. High-Definition/Density DVD – «DVD высокой чётко-сти/ёмкости») – технология записи оптических дисков, разработанная компа-ниями Toshiba, NEC и Sanyo. HD DVD (как и Blu-ray Disc) использует диски стандартного размера (120 миллиметров в диаметре) и сине-фиолетовый лазер с длиной волны 405 нм. 19 февраля 2008 г. компания Toshiba объявила о пре-кращении поддержки технологии HD DVD в связи с решением положить ко-нец войне форматов.
– Forward Versatile Disc;
– Ultra Density Optical;
– Professional Disc for DATA;
– Versatile Multilayer Disc.
А к четвертому поколению:
Голографический многоцелевой диск (Holographic Versatile Disc) – перспек-тивная технология производства оптических дисков, которая предполагает значительно увеличить объём хранимых на диске данных по сравнению с Blu-Ray и HD DVD. Она использует технологию, известную как голография, кото-рая использует два лазера: один – красный, а второй – зелёный, сведённые в один параллельный луч. Зелёный лазер читает данные, закодированные в виде сетки с голографического слоя близкого к поверхности диска, в то время как красный лазер используется для чтения вспомогательных сигналов с обыч-ного компакт-дискового слоя в глубине диска. Вспомогательная информация используется для отслеживания позиции чтения, наподобие системы CHS в обычном жёстком диске. На CD или DVD эта информация внедрена в данные.
Super Rens Disc;
Optical Disc Archive Advisory Group Волоконнооптическая связь – способ передачи информации, использующий в качестве носителя информационного сигнала электромагнитное излучение оптического (ближнего инфракрасного) диапазона, а в качестве направляющих систем – волоконнооптические кабели. Благодаря высокой несущей частоте и широким возможностям мультиплексирования пропускная способность волоконнооптических линий многократно превышает пропускную способность всех других систем связи и может измеряться терабитами в секунду. Малое затухание света в оптическом волокне позволяет применять волоконно-оптическую связь на значительных расстояниях без использования усилителей. Волоконнооптическая связь свободна от электромагнитных помех и трудно-доступна для несанкционированного использования: незаметно перехватить сигнал, передаваемый по оптическому кабелю, технически крайне сложно.

Оптические компьютеры. Оптические или фотонные вычисления – вычисления, которые производятся с помощью фотонов, сгенерированных лазерами или диодами. Используя фотоны, возможно достигнуть более высокой скорости передачи сигнала, чем у электронов, которые используются в современных компьютерах. Большинство исследований фокусируется на замене обычных (электронных) компонентов компьютера на их оптические эквиваленты. Результатом станет новая цифровая компьютерная система для обработки двоичных данных. Такой подход дает возможность в краткосрочной перспективе раз-работать технологии для коммерческого применения, поскольку оптические компоненты могут быть внедрены в стандартные компьютеры, сначала создавая гибридные системы, а впоследствии и полностью фотонные. Однако оптоэлектронные приборы теряют 30% энергии на конвертацию электронов в фотоны и обратно. Это также замедляет передачу информации. В полностью оптическом компьютере надобность преобразования сигнала из оптического в электронный и обратно в оптический полностью исчезает. Голография – набор технологий для точной записи, воспроизведения и пе-реформирования волновых полей оптического электромагнитного излучения, особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные.

Лазерный принтер – один из видов принтеров, позволяющий быстро изготавливать высококачественные отпечатки текста и графики на обычной (не специальной) бумаге. Подобно фотокопировальным аппаратам лазерные принтеры используют в работе процесс ксерографической печати, однако отличие состоит в том, что формирование изображения происходит путём непосредственной экспозиции (освещения) лазерным лучом фоточувствительных элементов принтера. Отпечатки, сделанные таким способом, не боятся влаги, устойчивы к истиранию и выцветанию. Качество такого изображения очень высокое. Минифотолаборатория, Минилаб – комплекс из нескольких устройств, предназначенный для массового изготовления фотографий на светочувстви-тельной цветной фотобумаге, автоматизирующее все этапы обработки фотома-териалов, начиная от проявления фотоплёнки и заканчивая печатью готового фотоотпечатка.
Считыватели штрих-кодов.
В связи и информационных технологиях за счет лазерного излучения мы перешли на новый уровень обработки, хранения и передачи информации.

6. В культуре.

7. В быту.

Список литературы

1. Maiman, T.H. Stimulated optical radiation in ruby / T.H. Maiman // Nature. – 1960. – Vol. 187. – P. 493–494.
2. Javan, A. Population Inversion and Continuous Optical Maser Oscillation in a Gas Discharge Containing a He-Ne Mixture / A. Javan, D.R. Herriott and W.R. Bennett // Physical Review Letters – 1961. – Vol. 6. – Issue 1. – P. 106–110.
3. Тарасов, Л.В. Физика процессов в генераторах когерентного оптического излучения / Л.В. Тарасов. – М. : Радио и связь, 1981. – 440 с.
4. Звелто, О. Принципы лазеров / О. Звелто. – М. : Мир, 1990. – 558 с.
5. Мэйтленд, А. Введение в физику лазеров / А. Мэйтленд, М. Дан. – М. : Наука, 1978. – 407 с.
6. Борн, М. Основы оптики / М. Борн, Э. Вольф. – М. : Наука, 1973. – 720 с.
7. Зайдель, А.Н. Техника и практика спектроскопии / А.Н. Зайдель, Островская, Ю.И. Островский. – М. : Наука, 1972. – 376 с.
8. Турро Н. Молекулярная фотохимия / Н. Турро. – М. : Мир, 1967.
9. Handy D.E., Loscalzo J. Redox Regulation of Mitochondrial Function Antioxidants & Re-dox signaling. – 2012. – Vol. 16. – № 11. – Р. 1323–1367.
10. Burkard Hillebrands, Kamel Ounadjela Spin Dynamics in Confined Magnetic Structures II. Topics in Applied Physics. Volume 87, 2003. DOI 10.1007/3-540-46097-7
11. Gilbert S.L. and Wieman C.E. Laser Cooling and Trapping for the Masses // Optics and Photonics News. – 1993. – № 4. – Р. 8–14.
12. Goebel D.M., Campbell G. and Conn R.W. / Plasma surface interaction experimental facili-ty (PISCES) for materials and edge physics studies // Nucl. Mater. – 1984. – № 121. – Р. 277–282.
13. Hocheng H., Tseng C. Mechanical and optical design for assembly of vascular endothelial cells using laser guidance and tweezers // Optics Communications. – 2008. – № 281. – Р. 4435–4441.
14. Kikuchi M. The Influence of Laser Heat Treatment Technique on Mechanical Properties // Proceedings of the Materials Processing Conference-ICALEO, LIA, 1981.
15. Kah, P., Salminen, A., Martikainen, J. The effect of the relative location of laser beam with arc in different hybrid welding processes // Mechanika. – 2010. – № 3(83). – Р. 68–74.
16. Cary, Howard B. and Scott C. Helzer. Modern Welding Technology. Upper Saddle River, New Jersey: Pearson Education, 2005.
17. Stribling J. B. & Davie S.R. Design of an environmental monitoring programme for the Lake Allatoona // Upper Etowah river watershed.» Proceedings of the 2005 Georgia Water Re-sources Conference, April 25–27, 2005.
18. http://www.laserinmedicine.com/

Источник

Что такое лазер?

статьи | Jun 11, 2019 | Наука и Образование | Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике50254

Лазеры вызывают восторг и неизменно ассоциируются с фантастическими фильмами и наукой будущего. Эти устройства кажутся сверхъестественными, что умело использовали создатели таких популярных блокбастеров, как «Люди X» или «Звездные войны», где джедаи эффектно сражаются на лазерных мечах.

Тем не менее лазеры — это уже давно не фантастика, а рабочий инструмент во многих областях современной науки. Эти устройства, будучи очень функциональными, окружают современного человека в повседневной жизни.

Как расшифровывается?

Английское выражение Light Amplification by Stimulated Emission of Radiation переводится как «Усиление света посредством вынужденного излучения». По первым буквам этого выражения образована аббревиатура LASER.

Попросту говоря, лазер производит поток света, обладающий чрезвычайной концентрацией.

Кто изобрел лазер?

Первые открытия, подарившие человечеству лазер, были сделаны еще на заре XX века.

Эйнштейн

Еще в 1917 году Альберт Эйнштейн написал революционную работу, в которой заложил основы квантово-механического принципа действия лазера. Революционность заключалась в том, что автор предсказал абсолютно новое явление в физике — вынужденное излучение. Из теории Эйнштейна следует, что свет может излучаться и поглощаться не только спонтанно. Существует также возможность вынужденного (или стимулированного) излучения. Это значит, что возможно «принудить» электроны излучать свет необходимой длины волны в одно и то же время.

Майман

Реализовать эту идею на практике удалось только в 60-е годы двадцатого века. Самый первый лазер создал калифорнийский физик Теодор Майман 16 мая 1960 года. В работе этого лазера использовались кристалл рубина и резонатор Фабри — Перо. Лампа-вспышка являлась источником накачки. Работа лазера была импульсной, волна имела длину 694,3 нм.

Басов, Прохоров и Таунс

В 1952 году академики из СССР Николай Басов и Александр Прохоров рассказали всему миру, что возможно создание микроволнового лазера, работающего на аммиаке. Эта же идея параллельно и независимо развивалась физиком из Америки Чарлзом Таунсом. Он создал и показал, как работает такой лазер, в 1954 году. Спустя десятилетие, в 1964 году, все трое удостоились за эти достижения Нобелевской премии по физике.

Наши дни

Сегодня мы можем наблюдать очень интенсивное развитие лазеров. Практически ежегодно изобретаются новые их виды — химические, эксимерные, полупроводниковые, лазеры на свободных электронах.

ПРинцип работы лазера

Чтобы понять, как работает лазер, посмотрим на его структуру. Типичный лазер выглядит так: трубка, внутри которой размещен твердый кристалл, чаще всего рубин. С обоих торцов она закрыта зеркалами: прозрачным и не полностью прозрачным. Под воздействием электрической обмотки атомы кристалла генерируют световые волны. Эти волны перемещаются от одного зеркала к другому до того момента, пока не наберут интенсивность, достаточную для прохождения через не полностью прозрачное зеркало.

Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Как создается лазерный луч?

Электроны всех атомов (на картинке — черные точки на внутренних окружностях) занимают основной энергетический уровень.

Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Под действием энергии из разрядной трубки электроны перемещаются на более высокие энергетические орбиты (на картинке — внешние окружности).

Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Электроны начинают покидать высокие энергетические орбиты и спускаться к основному уровню. При этом они начинают испускать свет и побуждают к этому остальные электроны. Образуется общий результирующий пучок света с одинаковой длиной волны у каждого источника. Чем больше новых электронов вернется к низким орбитам, тем мощнее свет лазера.

Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Резкость фокусировки

Длина световой волны в лазерном пучке только одна, следовательно, и цвет также один. Этот свет четко фокусируется линзой почти что полностью в одной точке.

(См. рисунок: слева — свет лазера, справа — естественный свет). Если сравнить свет лазера с естественным светом, то будет видно, что последний не способен иметь настолько резкий фокус. Благодаря концентрации в узком луче огромной энергии лазер способен передать этот луч на гигантские расстояния, избегая рассеяния и ослабления, присущих многоцветному свету — естественному. Эти качества лазера превращают его в незаменимый инструмент для человека.

Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Физическое обоснование

Разберем вышеописанный механизм работы лазера подробнее. Выясним, какие именно физические законы делают возможным его функционирование.

Активная среда

Энергетические уровни атомов

Важный момент: состав активной среды таков, что у каждого ее атома есть как минимум три энергетических уровня. В спокойном состоянии атомы активной среды располагаются на низшем энергетическом уровне Е0. Как только включается лампа, атомы поглощают энергию ее света, поднимаются на уровень Е1 и довольно долго пребывают в таким возбужденном состоянии. Именно это и обеспечивает лазерный импульс.

Инверсная заселенность

Инверсная заселенность — фундаментальное физическое понятие. Это такое состояние среды, когда число частиц на каком-то верхнем энергетическом уровне атома (любом из существующих) больше, чем на нижнем. Собственно, активной и называется та среда, в которой уровни являются инверсно заселенными.

Фотоны и световой пучок

Электроны атома не располагаются хаотично. Они занимают определенные орбиты, окружающие ядро. Атом, получающий квант энергии, с огромной вероятностью переходит в состояние возбуждения, характеризующееся сменой орбиты электронами — с самой низкой (метастабильной или основной) на обладающую более высоким уровнем энергии. На такой орбите длительное нахождение электронов невозможно, поэтому происходит их самопроизвольное возвращение к основному уровню. В момент возвращения каждый электрон испускает волну света, называемую фотоном. Одним атомом запускается цепная реакция, и электроны многих других атомов также перемещаются на орбиты с более низкой энергией. Одинаковые световые волны движутся огромным потоком. Изменения этих волн согласованы во времени и в результате формируют общий мощный световой пучок. Этот пучок света и зовется лазерным лучом. Мощность луча у каких-то лазеров настолько огромна, что им можно разрезать камень или металл.

Классификация лазеров

Существует несколько видов лазера, отличающихся друг от друга по принципу агрегатного состояния активной среды и по способу ее возбуждения. Перечислим основные.

Твердотельные лазеры

С этих лазеров все начиналось. Активная среда в них была твердой и состояла из кристаллов рубина и небольшого количества ионов хрома. Накачка осуществлялась при помощи импульсной лампы. Самый первый рубиновый лазер собрал американец Т. Майман в 1960 году. Твердотельные лазеры также изготавливают из стекла с примесью неодима Nd, алюмоиттриевого граната Y2Al5O12 с примесью хрома и неодима — все это также вещества для активной среды твердотельного лазера.

Газовые лазеры

В газовых лазерах активная среда формируется из газов с очень низким давлением или из их смесей. Газы заполняют стеклянную трубку, в которую впаяны электроды. Американцы А. Джаван, У. Беннетт и Д. Эрриот стали первыми создателями газового лазера в 1960 году. В качестве накачки такого лазера обычно применяют разряд электричества, производимый генератором высоких частот. Излучение газового лазера отличается своей непрерывностью. Плотность газов невысока, так что требуется довольно длинный стержень активной среды. Интенсивность излучения обеспечивается в этом случае за счет массы активного вещества.

Газодинамические, химические и эксимерные лазеры

По большому счету эти три вида можно классифицировать как газовые лазеры.

Жидкостные лазеры

Первые жидкостные лазеры появились почти тогда же, когда и твердотельные — в 60-х годах XX века. Для создания активной среды в них используются разнообразные растворы органических соединений. Плотность такого вещества выше, чем у газа, хотя и ниже, чем у твердых тел. Поэтому такие лазеры способны генерировать достаточно сильное излучение (до 20 Вт), при том что объем их активного вещества сравнительно невелик. Работать они могут и в импульсном, и в непрерывном режимах. В качестве накачки используются импульсные лампы и другие лазеры.

Полупроводниковые лазеры

В 1962 году появились и первые полупроводниковые лазеры — в результате параллельной работы нескольких ученых из США: Р. Холла, М.И. Нейтена, Т. Квиста и их групп. Теоретически работа этого лазера была обоснована ранее, в 1958 году, русским физиком Н.Г. Басовым.

В полупроводниковом лазере в качестве активной среды используется кристалл-полупроводник, например арсенид галлия GaAs. Поэтому на первый взгляд его можно было бы отнести к твердотельным лазерам. Однако он принципиально отличается тем, что излучательные переходы в нем происходят не между энергетическими уровнями атомов, а между энергетическими зонами или подзонами кристалла.

Накачка такого лазера производится постоянным электрическим током. Грани кристалла-полупроводника тщательно полируются, и из них получается отличный резонатор.

Лазеры в природе

В нашей Вселенной учеными были найдены лазеры с естественным происхождением. Существуют гигантские межзвездные облака, созданные конденсированными газами. В них инверсная заселенность образуется естественным образом. Свет ближних звезд или другие излучения в космосе выполняют роль накачки, а газовые облака сами по себе являются превосходной активной средой протяженностью в несколько сотен миллионов километров. Возникает естественный астрофизический лазер, который не нуждается в резонаторе, — вынужденное электромагнитное излучение образуется в них самопроизвольно, как только проходит волна света.

Свойства лазерного излучения

Свет от лазера имеет особенные и очень ценные свойства, выгодно отличающие его от света обычных, тепловых источников.

Применение лазеров

Свойства лазерного излучения уникальны. Это превратило лазеры в незаменимый для самых различных областей науки и техники инструмент. Кроме этого, лазеры широко используются в медицине, в быту, в индустрии развлечений, в сфере транспорта.

Технологические лазеры

Лазерная связь

Появившиеся лазеры вывели на принципиально новый уровень технику связи и записи информации.

Радиосвязь, развиваясь, постепенно переходила на все более короткие длины волн, поскольку было доказано, что высокие частоты (с наименьшей длиной волны) предоставляют каналу связи наибольшую пропускную способность. Настоящим прорывом стало понимание того, что свет — это такая же электромагнитная волна, просто короче во множество десятков тысяч раз. Следовательно, через лазерный луч возможно передавать объем информации, в десятки тысяч раз превосходящий объем, передаваемый высокочастотными радиоканалами. В результате этого были усовершенствованы различные виды связи по всему миру.

Также при помощи луча лазера записываются и воспроизводятся компакт-диски со звуками — музыкой, и изображениями — фото и фильмами. Индустрия звукозаписи, получив такой инструмент, сделала гигантский шаг вперед.

Применение лазеров в медицине

Лазерные технологии широко применяются как в хирургии, так и в терапевтических целях.

Современные научные исследования

Военные лазеры

Лазеры в индустрии развлечений

Лазеры нашли широкое применение в индустрии развлечений. Многие знакомы с лазерным шоу: такие представления часто сопровождают фестивали, концерты, праздничные мероприятия. Лазерное шоу может быть создано как внутри помещения, так и на свежем воздухе. Организатор способен выбрать оборудование под свои задачи и проецировать изображение любой сложности в любом цветовом диапазоне.

Так, одним из самых ярких и масштабных событий, которое сопровождалось лазерным шоу, стал концерт знаменитого музыканта Jean-Michel Jarre на Воробьевых горах в 1995 году. Он был приглашен Юрием Лужковым по случаю празднования 850-летия Москвы.

Музыкант выступал перед зданием МГУ, во время мероприятия на фасад университета проецировались фрагменты истории города.

Но в наше время лазерным шоу никого не удивишь. В Нью-Йорке в ноябре 2012-го появилась кратковременная лазерная установка с названием Global Rainbows — 35-километровым лазерным лучом в небо. Установка представляла собой

пучок из семи мощных лазерных лучей всех цветов радуги, которые могли быть направлены как в одну сторону, так и в разные. Конструкция была установлена после того, как на город обрушился ураган «Сэнди» в октябре 2012 года. Гигантская радуга показывала: город пережил катастрофу, и его жизнь продолжается.

Еще одним интересным примером применения лазера в индустрии развлечений стал лазерный костюм для вечеринок, разработанный тайваньским дизайнером по имени Wei-Chieh Shih. Одежда представляет собой лазерную установку и способна освещать все вокруг красным светом, генерируя лучи, направленные в разные стороны.

Лазеры в сфере транспорта

Лазеры могут быть полезны и в сфере транспорта. Так, например, в Нидерландах планируют внедрить установку лазерных излучателей на локомотивах поездов: это позволит убирать мусор и опавшие листья с путей прямо во время движения. Ведь все посторонние предметы, прилипшие к колесам, увеличивают тормозной путь и повышают риск катастрофы.

Лазер может быть использован и при езде на велосипеде. Велосипедными дорожками оснащены далеко не все улицы. А в темное время суток автомобилисты могут не увидеть разметку. В «умных» байках появилась необычная функция: они могут проецировать велосипедную дорожку при помощи лазерной установки. Такой подход повышает безопасность: велосипедист становится видимым и для других участников дорожного движения в темное время суток.

Еще один схожий способ применения лазера предложили создатели инновационной системы уличной безопасности Guardian. Смысл разработки — в установке специальных излучателей на столбах возле светофоров. Когда горит красный свет для пешеходов, проход закрыт лазерным лучом. Как только загорается зеленый, красный свет закрывает путь автомобилистам. Система направлена на повышение безопасности на дорогах: она работает как сдерживающий психологический фактор.

Лазерные гаджеты

Лазер встроен в некоторые современные гаджеты. Так, например, устройство Magic Cube способно проецировать виртуальную клавиатуру на рабочий стол или другую поверхность. Гаджет ориентирован на пользователей планшетов и смартфонов.

Применение лазеров в спорте

Интересное применение лазера придумала компания Nike. Разработка представляет собой мобильную установку, которая может проецировать поля для игры в футбол при помощи лазерных лучей. Площадку можно создать на любой ровной поверхности — как в городе, так и за его пределами.

Выводы

Мы нисколько не преувеличиваем, когда говорим, что, появившись в середине XX века, лазеры сыграли в нашей жизни такую же значимую роль, как электричество и радио. Лазер проник практически во все области деятельности человека, и если вдруг изъять его, то мир перестанет быть таким привычным и комфортным. Даже текст этой статьи, читаемый вами сегодня с компьютера или смартфона, доступен благодаря полупроводниковым лазерам, активно используемым в новейших оптических средствах связи. Без лазеров невозможно представить компьютеры, а значит, и огромный пласт современной жизни человека. Будучи очень интересно устроенным, лазер открывает перед современной наукой новые перспективы развития. Свойства его невероятно многогранны, и можно смело сказать, что лазерный луч « высвечивает » себе путь абсолютно во всех сферах человеческой жизни, делая ее качественнее и счастливее!

Поделитесь этим с друзьями!

Для чего могут применяться лазеры в науке и технике. Смотреть фото Для чего могут применяться лазеры в науке и технике. Смотреть картинку Для чего могут применяться лазеры в науке и технике. Картинка про Для чего могут применяться лазеры в науке и технике. Фото Для чего могут применяться лазеры в науке и технике

Автор HiTecher с 2019 года, редактор, педагог. Имеет степень бакалавра с отличием по английской литературе, сертификат PGCE в квалификации преподавателя PCET. Живет в Саутгемптоне (Великобритания).

Будьте первым, кто оставит комментарий

Пожалуйста, авторизируйтесь для возможности комментировать

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *