Для чего необходим первичный ключ отношения

Первичный ключ

Из Википедии — свободной энциклопедии

Перви́чный ключ (англ. primary key ) — в реляционной модели данных один из потенциальных ключей отношения, выбранный в качестве основного ключа (или ключа по умолчанию).

Если в отношении имеется единственный потенциальный ключ, он является и первичным ключом. Если потенциальных ключей несколько, один из них выбирается в качестве первичного, а другие называют «альтернативными».

С точки зрения теории все потенциальные ключи отношения эквивалентны, то есть обладают одинаковыми свойствами уникальности и минимальности. Однако в качестве первичного обычно выбирается тот из потенциальных ключей, который наиболее удобен для тех или иных практических целей, например, для создания внешних ключей в других отношениях либо для создания кластерного индекса. Поэтому в качестве первичного ключа, как правило, выбирают тот, который имеет наименьший размер (физического хранения) и/или включает наименьшее количество атрибутов.

Другой критерий выбора первичного ключа — сохранение уникальности со временем. Всегда существует вероятность того, что некоторый потенциальный ключ перестанет быть таковым в долговременной перспективе или при изменении требований к системе. Например, если номер студенческой группы включает последнюю цифру года поступления, то номера групп для идентификации групп уникальны только в течение 10 лет. Поэтому в качестве первичного ключа стараются выбирать такой потенциальный ключ, который с наибольшей вероятностью не утратит уникальность.

Исторически термин «первичный ключ» появился и стал использоваться существенно ранее термина «потенциальный ключ». Вследствие этого множество определений в реляционной теории были изначально сформулированы с упоминанием первичного (а не потенциального) ключа, например, определения нормальных форм. Также термин «первичный ключ» вошёл в формулировку 12 правил Кодда как основной способ адресации любого значения отношения (таблицы) наряду с именем отношения (таблицы) и именем атрибута (столбца).

Источник

Для чего необходим первичный ключ отношения

Под базой данных (БД) понимают хранилище структурированных данных, при этом данные должны быть непротиворечивы, минимально избыточны и целостны.

Одно из важнейших достоинств реляционных баз данных состоит в том, что можно хранить логически сгруппированные данные в разных таблицах и задавать связи между ними, объединяя их в единую базу. Такая организация данных позволяет уменьшить избыточность хранимых данных, упрощает их ввод и организацию запросов и отчетов.

Понятие первичного ключа

В каждой таблице БД может существовать первичный ключ. Под первичным ключом понимают поле или набор полей, однозначно (уникально) идентифицирующих запись. Первичный ключ должен быть минимально достаточным: в нем не должно быть полей, удаление которых из первичного ключа не отразится на его уникальности.

Данные таблицы «Преподаватель»

В качестве первичного ключа в таблице «Преподаватель» может выступать только «Таб. №», значения других полей могут повторяться внутри данной таблицы.

Правила хорошего тона при разработке структур баз данных, и чисто практические соображения должны побудить разработчика всегда определять первичный ключ для таблицы базы данных.

Реляционные отношения (связи) между таблицами базы данных

Существует три разновидности связей между таблицами базы данных:

Отношение «один-ко-многим» имеет место, когда одной записи родительской таблицы может соответствовать несколько записей в дочерней таблице.

Связь «один-ко-многим» является самой распространенной для реляционных баз данных.

В широко распространенной нотации структуры баз данных IDEF 1 X отношение « один-ко-многим » изображается путем соединения таблиц линией, которая на стороне дочерней таблицы оканчивается кружком или иным символом. Поля, входящие в первичный ключ для данной ТБД, всегда расположены вверху и отчеркнуты от прочих полей линией.

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Отношение «один-к-одному» имеет место, когда одной записи в родительской таблице соответствует одна запись в дочерней таблице.

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Данное отношение используют, если не хотят, чтобы таблица БД «не распухала» от второстепенной информации.

Отношение «многие-ко-многим» имеет место, когда:

а) записи в родительской таблице может соответствовать больше одной записи в дочерней таблице;

б) записи в дочерней таблице может соответствовать больше одной записи в родительской таблице.

Например, каждой студент изучает несколько дисциплин. Каждая дисциплина изучается несколькими студентами.

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Многие СУБД (в частности Access ) не поддерживают связи «многие-ко-многим» на уровне индексов и ссылочной целостности. Считается, что всякую связь «многие-ко-многим» можно заменить на одну или более связей «один-ко-многим».

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Ссылочная целостность и каскадные воздействия

Рассмотрим наиболее часто встречающуюся в базах данных связь «один-ко-многим». Как можно заметить, дочерняя и родительская таблицы связаны между собой по общему полю «Шифр группы». Назовем это поле полем связи.

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Возможны два вида изменений, которые приведут к утере связей между записями в родительской и дочерней таблицах:

· изменение значения поля связи в записи родительской таблицы без изменения значений полей связи в соответствующих записях дочерней таблицы;

· изменение значения поля связи в одной из записей дочерней таблицы без соответствующего изменения значения полей связи в родительской и дочерней таблицах.

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Чтобы предотвратить потерю ссылочной целостности, используется механизм каскадных изменений. Он состоит в обеспечении следующих требований:

· необходимо запретить изменение поля связи в записи дочерней таблицы без синхронного изменения полей связи в родительской таблице;

· при изменении поля связи в записи родительской таблице, следует синхронно изменить значения полей связи в соответствующих записях дочерней таблицы;

· при удалении записи в родительской таблице, следует удалить соответствующие записи в дочерней таблице.

Необходимость разрешения или запрещения каскадных изменений обычно реализуется в СУБД при определении связей между таблицами. Собственно, таким образом, и происходит создание ссылочной целостности.

Понятие внешнего ключа

Для обеспечения ссылочной целостности в дочерней таблице создается внешний ключ. Во внешний ключ входят поля связи дочерней таблицы. Для связей типа «один-ко-многим» внешний ключ по составу полей должен совпадать с первичным ключом родительской таблицы.

Индексы и методы доступа

Индексы представляют собой механизмы быстрого доступа к данным в таблицах БД.

Сущность индексов состоит в том, что они хранят значения индексных поле (т.е. полей, по которым построен индекс) и указатель на запись в таблице.

При последовательном методе доступа для выполнения запроса к таблице БД просматриваются все записи таблицы, от первой до последней.

При индексно-последовательном методе доступа для выполнения запроса к таблице БД указатель в индексе устанавливается на первую строку, удовлетворяющую условию запроса (или его части), и считывается запись из таблицы по хранящемуся на нее в индексе указателю.

Определение первичных и внешних ключей таблиц БД приводят к созданию индексов по полям, объявленным в составе первичных или внешних ключей.

Нормализация таблиц при проектировании БД

На этом этапе процесс проектирования структур БД является процессом творческим, неоднозначным, с другой стороны, узловые его моменты могут быть формализованы.

Одной из таких формализаций является требование, согласно которому реляционная база данных должна быть нормализована. Процесс нормализации имеет своей целью устранение избыточности данных и заключается в приведении к третьей нормальной форме (3НФ).

Первая нормальная форма (1НФ) требует, чтобы каждое поле таблицы БД:

· не содержало повторяющихся групп.

Неделимость поля означает, что значение поля не должно делиться на более мелкие значения. Например, если в поле «Подразделение» содержится название факультета и название кафедры, требование неделимости не соблюдается и необходимо из данного поля выделить или название факультета, или кафедры в отдельное поле.

Повторяющимися являются поля, содержащие одинаковые по смыслу значения. Например, если требуется получить статистику сдачи экзаменов по предметам, можно создать поля для хранения данных об оценке по каждому предмету. Однако в этом случае мы имеем дело с повторяющимися группами.

Вторая нормальная форма (2НФ) требует, чтобы все поля таблицы зависели от первичного ключа, то есть, чтобы первичный ключ однозначно определял запись и не был избыточен. Те поля, которые зависят только от части первичного ключа, должны быть выделены в составе отдельных таблиц.

Третья нормальная форма (ЗНФ) требует, чтобы значение любого поля таблицы, не входящего в первичный ключ, не зависело от значения другого поля, не входящего в первичный ключ.

Пример логической модели базы данных «Сессия»

Источник

SQL ключи во всех подробностях

В Интернете полно догматических заповедей о том, как нужно выбирать и использовать ключи в реляционных базах данных. Иногда споры даже переходят в холивары: использовать естественные или искусственные ключи? Автоинкрементные целые или UUID?

Прочитав шестьдесят четыре статьи, пролистав разделы пяти книг и задав кучу вопросов в IRC и StackOverflow, я (автор оригинальной статьи Joe «begriffs» Nelson), как мне кажется, собрал куски паззла воедино и теперь смогу примирить противников. Многие споры относительно ключей возникают, на самом деле, из-за неправильного понимания чужой точки зрения.

Содержание

Что же такое «ключи»?

Забудем на минуту о первичных ключах, нас интересует более общая идея. Ключ — это колонка (column) или колонки, не имеющие в строках дублирующих значений. Кроме того, колонки должны быть неприводимо уникальными, то есть никакое подмножество колонок не обладает такой уникальностью.

Для примера рассмотрим таблицу для подсчёта карт в карточной игре:

Если мы отслеживаем одну колоду (то есть без повторяющихся карт), то сочетание рубашки и лица уникально и нам бы не хотелось вносить в таблицу одинаковые рубашку и лицо дважды, потому что это будет избыточно. Если карта есть в таблице, то мы видели её, в противном случае — не видели.

Мы можем и должны задать базе данных это ограничение, добавив следующее:

Сами по себе ни suit (рубашка), ни face (лицо) не являются уникальными, мы можем увидеть разные карты с одинаковыми рубашкой или лицом. Поскольку (suit, face) уникально, а отдельные колонки не уникальны, можно утверждать, что их сочетание неприводимо, а (suit, face) является ключом.

В более общей ситуации, когда нужно отслеживать несколько колод карт, можно добавить новое поле и записывать сколько раз мы видели карту:

Ограничения уникальности

В PostgreSQL предпочтительным способом добавления ограничения уникальности является его прямое объявление, как в нашем примере. Использование индексов для соблюдения ограничения уникальности может понадобится в отдельных случаях, но не стоит обращаться к ним напрямую. Нет необходимости в ручном создании индексов для колонок, уже объявленных уникальными; такие действия будут просто дублировать автоматическое создание индекса.

Также в таблице без проблем может быть несколько ключей, и мы должны объявить их все, чтобы соблюдать их уникальность в базе данных.

Вот два примера таблиц с несколькими ключами.

Ради краткости в примерах отсутствуют любые другие ограничения, которые были бы на практике. Например, у карт не должно быть отрицательное число просмотров, и значение NULL недопустимо для большинства рассмотренных колонок (за исключением колонки max_income для налоговых групп, в которой NULL может обозначать бесконечность).

Любопытный случай первичных ключей

То, что в предыдущем разделе мы назвали просто «ключами», обычно называется «потенциальными ключами» (candidate keys). Термин «candidate» подразумевает, что все такие ключи конкурируют за почётную роль «первичного ключа» (primary key), а оставшиеся назначаются «альтернативными ключами» (alternate keys).

Потребовалось какое-то время, чтобы в реализациях SQL пропало несоответствие ключей и реляционной модели, самые ранние базы данных были заточены под низкоуровневую концепцию первичного ключа. Первичные ключи в таких базах требовались для идентификации физического расположения строки на носителях с последовательным доступом к данным. Вот как это объясняет Джо Селко:

Термин «ключ» означал ключ сортировки файла, который был нужен для выполнения любых операций обработки в последовательной файловой системе. Набор перфокарт считывался в одном и только в одном порядке; невозможно было «вернуться назад». Первые накопители на магнитных лентах имитировали такое же поведение и не позволяли выполнять двунаправленный доступ. Т.е., первоначальный Sybase SQL Server для чтения предыдущей строки требовал «перемотки» таблицы на начало.

В современном SQL не нужно ориентироваться на физическое представление информации, таблицы моделируют связи и внутренний порядок строк вообще не важен. Однако, и сейчас SQL-сервер по умолчанию создаёт кластерный индекс для первичных ключей и, по старой традиции, физически выстраивает порядок строк.

В большинстве баз данных первичные ключи сохранились как пережиток прошлого, и едва ли обеспечивают что-то, кроме отражения или определения физического расположения. Например, в таблице PostgreSQL объявление первичного ключа автоматически накладывает ограничение NOT NULL и определяет внешний ключ по умолчанию. К тому же первичные ключи являются предпочтительными столбцами для оператора JOIN.

Первичный ключ не отменяет возможности объявления и других ключей. В то же время, если ни один ключ не назначен первичным, то таблица все равно будет нормально работать. Молния, во всяком случае, в вас не ударит.

Нахождение естественных ключей

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Рассмотренные выше ключи называются «естественными», потому что они являются свойствами моделируемого объекта интересными сами по себе, даже если никто не стремится сделать из них ключ.

Первое, что стоит помнить при исследовании таблицы на предмет возможных естественных ключей — нужно стараться не перемудрить. Пользователь sqlvogel на StackExchange даёт следующий совет:

У некоторых людей возникают сложности с выбором «естественного» ключа из-за того, что они придумывают гипотетические ситуации, в которых определённый ключ может и не быть уникальным. Они не понимают самого смысла задачи. Смысл ключа в том, чтобы определить правило, по которому атрибуты в любой момент времени должны быть и всегда будут уникальными в конкретной таблице. Таблица содержит данные в конкретном и хорошо понимаемом контексте (в «предметной области» или в «области дискурса») и единственное значение имеет применение ограничения в этой конкретной области.

Практика показывает, что нужно вводить ограничение по ключу, когда колонка уникальна при имеющихся значениях и будет оставаться такой при вероятных сценариях. А при необходимости ограничение можно устранить (если это вас беспокоит, то ниже мы расскажем о стабильности ключа.)

Например, база данных членов хобби-клуба может иметь уникальность в двух колонках — first_name, last_name. При небольшом объёме данных дубликаты маловероятны, и до возникновения реального конфликта использовать такой ключ вполне разумно.

С ростом базы данных и увеличением объёма информации, выбор естественного ключа может стать сложнее. Хранимые нами данные являются упрощением внешней реальности, и не содержат в себе некоторые аспекты, которыми различаются объекты в мире, такие как их изменяющиеся со временем координаты. Если у объекта отсутствует какой-либо код, то как различить две банки с напитком или две коробки с овсянкой, кроме как по их расположению в пространстве или по небольшим различиям в весе или упаковке?

Именно поэтому органы стандартизации создают и наносят на продукцию различительные метки. На автомобилях штампуется Vehicle Identification Number (VIN), в книгах печатается ISBN, на упаковке пищевых товаров есть UPC. Вы можете возразить, что эти числа не кажутся естественными. Так почему же я называю их естественными ключами?

Естественность или искусственность уникальных свойств в базе данных относительна к внешнему миру. Ключ, который при своём создании в органе стандартизации или государственном учреждении был искусственным, становится для нас естественным, потому что в целом мире он становится стандартом и/или печатается на объектах.
Существует множество отраслевых, общественных и международных стандартов для различных объектов, в том числе для валют, языков, финансовых инструментов, химических веществ и медицинских диагнозов. Вот некоторые из значений, которые часто используются в качестве естественных ключей:

Искусственные ключи

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

С учётом того, что ключ – это колонка, в каждой строке которой находятся уникальные значения, одним из способов его создания является жульничество – в каждую строку можно записать выдуманные уникальные значения. Это и есть искусственные ключи: придуманный код, используемый для ссылки на данные или объекты.

Очень важно то, что код генерируется из самой базы данных и неизвестен никому, кроме пользователей базы данных. Именно это отличает искусственные ключи от стандартизированных естественных ключей.

Преимущество естественных ключей заключается в защите от дублирования или противоречивости строк таблицы, искусственные же ключи полезны потому, что они позволяют людям или другим системам проще ссылаться на строку, а также повышают скорость операций поиска и объединения, так как не используют сравнения строковых (или многостолбцовых) ключей.

Суррогаты

Искусственные ключи используются в качестве привязки – вне зависимости от изменения правил и колонок, одну строку всегда можно идентифицировать одинаковым способом. Искусственный ключ, используемый для этой цели, называется «суррогатным ключом» и требует особого внимания. Суррогаты мы рассмотрим ниже.

Не являющиеся суррогатами искусственные ключи удобны для ссылок на строку снаружи базы данных. Искусственный ключ кратко идентифицирует данные или объект: он может быть указан как URL, прикреплён к счёту, продиктован по телефону, получен в банке или напечатан на номерном знаке. (Номерной знак автомобиля для нас является естественным ключом, но разработан государством как искусственный ключ.)

Искусственные ключи нужно выбирать, учитывая возможные способы их передачи, чтобы минимизировать опечатки и ошибки. Надо учесть, что ключ могут произносить, читать напечатанным, отправлять по SMS, читать написанным от руки, вводить с клавиатуры и встраивать в URL. Дополнительно, некоторые искусственные ключи, например, номера кредитных карт, содержат контрольную сумму, чтобы при возникновении определённых ошибок их можно было хотя бы распознать.

Эта функция является обратной самой себе (т.е. pseudo_encrypt(pseudo_encrypt(x)) = x ). Точное воспроизведение функции является своего рода безопасностью через неясность, и если кто-нибудь догадается, что вы использовали сеть Фейстеля из документации PostgreSQL, то ему будет легко получить исходную последовательность. Однако вместо (((1366 * r1 + 150889) % 714025) / 714025.0) можно использовать другую функцию с областью значений от 0 до 1, например, просто поэкспериментировать с числами в предыдущем выражении.

Вот, как использовать pseudo_encrypt:

В предыдущем примере для short_id использовались целые значения обычного размера, для bigint есть другие функции Фейстеля, например XTEA.

Ещё один способ запутать последовательность целых чисел заключается в преобразовании её в короткие строки. Попробуйте воспользоваться расширением pg_hashids:

Здесь снова будет быстрее хранить в таблице сами целые числа и преобразовывать их по запросу, но замерьте производительность и посмотрите, имеет ли это смысл на самом деле.

Теперь, чётко разграничив смысл искусственных и естественных ключей, мы видим, что споры «естественные против искусственных» являются ложной дихотомией. Искусственные и естественные ключи не исключают друг друга! В одной таблице могут быть и те, и другие. На самом деле, таблица с искусственным ключом должна обеспечивать и естественный ключ, за редким исключением, когда не существует естественного ключа (например, в таблице кодов купонов):

Если у вас есть искусственный ключ и вы не объявляете естественные ключи, когда они существуют, то оставляете последние незащищёнными:

Единственным аргументом против объявления дополнительных ключей является то, что каждый новый несёт за собой ещё один уникальный индекс и увеличивает затраты на запись в таблицу. Конечно, зависит от того, насколько вам важна корректность данных, но, скорее всего, ключи все же стоит объявлять.

Также стоит объявлять несколько искусственных ключей, если они есть. Например, у организации есть кандидаты на работу (Applicants) и сотрудники (Employees). Каждый сотрудник когда-то был кандидатом, и относится к кандидатам по своему собственному идентификатору, который также должен быть и ключом сотрудника. Ещё один пример, можно задать идентификатор сотрудника и имя логина как два ключа в Employees.

Суррогатные ключи

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

Как уже упоминалось, важный тип искусственного ключа называется «суррогатный ключ». Он не должен быть кратким и передаваемым, как другие искусственные ключи, а используется как внутренняя метка, всегда идентифицирующая строку. Он используется в SQL, но приложение не обращается к нему явным образом.

Если вам знакомы системные колонки (system columns) из PostgreSQL, то вы можете воспринимать суррогаты почти как параметр реализации базы данных (вроде ctid), который однако никогда не меняется. Значение суррогата выбирается один раз для каждой строки и потом никогда не изменяется.

Не делайте суррогатные ключи «естественными». Как только вы покажете значение суррогатного ключа конечным пользователям, или, что хуже, позволите им работать с этим значением (в частности через поиск), то фактически придадите ключу значимость. Потом показанный ключ из вашей базы данных может стать естественным ключом в чьей-то чужой БД.

Принуждение внешних систем к использованию других искусственных ключей, специально предназначенных для передачи, позволяет нам при необходимости изменять эти ключи в соответствии с меняющимися потребностями, в то же время поддерживая внутреннюю целостность ссылок с помощью суррогатов.

Автоинкрементные bigint

Однако, я считаю, что автоинкрементное целое плохой выбор для суррогатных ключей. Такое мнение непопулярно, поэтому позвольте мне объясниться.

Недостатки последовательных ключей:

Давайте рассмотрим другой вариант: использование больших целых чисел (128-битных), генерируемых в соответствии со случайным шаблоном. Алгоритмы генерации таких универсальных уникальных идентификаторов (universally unique identifier, UUID) имеют чрезвычайно малую вероятность выбора одного значения дважды, даже при одновременном выполнении на двух разных процессорах.

В таком случае, UUID кажутся естественным выбором для использования в качестве суррогатных ключей, не правда ли? Если вы хотите пометить строки уникальным образом, то ничто не сравнится с уникальной меткой!

Так почему же все не пользуются ими в PostgreSQL? На это есть несколько надуманных причин и одна логичная, которую можно обойти, и я представлю бенчмарки, чтобы проиллюстрировать свое мнение.

Для начала, расскажу о надуманных причинах. Некоторые люди думают, что UUID — это строки, потому что они записываются в традиционном шестнадцатеричном виде с дефисом: 5bd68e64-ff52-4f54-ace4-3cd9161c8b7f. Действительно, некоторые базы данных не имеют компактного (128-битного) типа uuid, но в PostgreSQL он есть и имеет размер двух bigint, т.е., по сравнению с объёмом прочей информации в базе данных, издержки незначительны.

Ещё UUID незаслуженно обвиняется в громоздкости, но кто будет их произносить, печатать или читать? Мы говорили, что это имеет смысл для показываемых искусственных ключей, но никто (по определению) не должен увидеть суррогатный UUID. Возможно, с UUID будет иметь дело разработчик, запускающий команды SQL в psql для отладки системы, но на этом всё. А разработчик может ссылаться на строки и с помощью более удобных ключей, если они заданы.

Реальная проблема с UUID в том, что сильно рандомизированные значения приводят к увеличению объёма записи (write amplification) из-за записей полных страниц в журнал с упреждающей записью (write-ahead log, WAL). Однако, на самом деле снижение производительности зависит от алгоритма генерации UUID.

Давайте измерим write amplification. По правде говоря, проблема в старых файловых системах. Когда PostgreSQL выполняет запись на диск, она изменяет «страницу» на диске. При отключении питания компьютера большинство файловых систем всё равно сообщит об успешной записи ещё до того, как данные безопасно сохранились на диске. Если PostgreSQL наивно воспримет такое действие завершённым, то при последующей загрузке системы база данных будет повреждена.

Раз PostgreSQL не может доверять большинству ОС/файловых систем/конфигураций дисков в вопросе обеспечения неразрывности, база данных сохраняет полное состояние изменённой дисковой страницы в журнал с упреждающей записью (write-ahead log), который можно будет использовать для восстановления после возможного сбоя. Индексирование сильно рандомизированных значений наподобие UUID обычно затрагивает кучу различных страниц диска и приводит к записи полного размера страницы (обычно 4 или 8 КБ) в WAL для каждой новой записи. Это так называемая полностраничная запись (full-page write, FPW).

Некоторые алгоритмы генерации UUID (такие, как «snowflake» от Twitter или uuid_generate_v1() в расширении uuid-ossp для PostgreSQL) создают на каждой машине монотонно увеличивающиеся значения. Такой подход консолидирует записи в меньшее количество страниц диска и снижает FPW.

Давайте измерим влияние FPW для различных алгоритмов генерации UUID, а также исследуем статистику WAL. Я использовал следующую конфигурацию для замера.

Перед тек, как добавить UUID в каждую таблицу, находим текущую позицию write-ahead log.

Я использовал такую позицию, чтобы получить статистику об использовании WAL после проведения бенчмарка. Так мы получим статистику событий, выполняемых последовательно после начальной позиции:

Я провёл тесты трёх сценариев:

И вот результаты замеров скорости:

Для чего необходим первичный ключ отношения. Смотреть фото Для чего необходим первичный ключ отношения. Смотреть картинку Для чего необходим первичный ключ отношения. Картинка про Для чего необходим первичный ключ отношения. Фото Для чего необходим первичный ключ отношения

График скорости вставки UUID

Вот статистика WAL для каждого из способов:

Результаты подтверждают, что gen_random_uuid создаёт существенную активность в WAL из-за полностраничных образов (full-page images, FPI), а другие способы этим не страдают. Конечно, в третьем методе я просто запретил базе данных делать это. Однако запрет FPW совсем не то, что стоило бы использовать в реальности, если только вы не полностью уверены в файловой системе и конфигурации дисков. В этой статье утверждается, что ZFS может быть безопасным для отключения FPW, но пользуйтесь им с осторожностью.

Явным победителем в моём бенчмарке оказался uuid_generate_v1() – он быстр и не замедляется при накоплении строк. Расширение uuid-ossp по умолчанию установлено в таких облачных базах данных, как RDS и Citus Cloud, и будет доступно без дополнительных усилий.

В документация есть предупреждение о uuid_generate_v1:

В нём используется MAC-адрес компьютера и метка времени. Учитывайте, что UUID такого типа раскрывают информацию о компьютере, который создал идентификатор, и время его создания, что может быть неприемлемым, когда требуется высокая безопасность.

Итоги и рекомендации

Теперь, когда мы познакомились с различными типами ключей и вариантами их использования, я хочу перечислить мои рекомендации по применению их в ваших базах данных.

Для каждой таблицы:

Такой подход обеспечивает стабильность внутренних ключей, в то же время допуская и даже защищая естественные ключи. К тому же, видимые искусственные ключи не становятся к чему-либо привязанными. Правильно во всем разобравшись, можно не зацикливаться только на «первичных ключах» и пользоваться всеми возможностями применения ключей.

Обсуждать подобные профессиональные вопросы мы предлагаем на наших конференциях. Если у вас за плечами большой опыт в ИТ-сфере, наболело, накипело и хочется высказаться, поделиться опытом или где-то попросить совета, то на майском фестивале конференций РИТ++ будут для этого все условия, 8 тематических направлений начиная от фронтенда и мобильной разработки, и заканчивая DevOps и управлением. Подать заявку на выступление можно здесь.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *