Для чего необходима система счисления

Для чего необходима система счисления

Для чего необходима система счисления. Смотреть фото Для чего необходима система счисления. Смотреть картинку Для чего необходима система счисления. Картинка про Для чего необходима система счисления. Фото Для чего необходима система счисления

Для чего необходима система счисления. Смотреть фото Для чего необходима система счисления. Смотреть картинку Для чего необходима система счисления. Картинка про Для чего необходима система счисления. Фото Для чего необходима система счисления

Для чего необходима система счисления. Смотреть фото Для чего необходима система счисления. Смотреть картинку Для чего необходима система счисления. Картинка про Для чего необходима система счисления. Фото Для чего необходима система счисления

Для чего необходима система счисления. Смотреть фото Для чего необходима система счисления. Смотреть картинку Для чего необходима система счисления. Картинка про Для чего необходима система счисления. Фото Для чего необходима система счисления

Для чего необходима система счисления. Смотреть фото Для чего необходима система счисления. Смотреть картинку Для чего необходима система счисления. Картинка про Для чего необходима система счисления. Фото Для чего необходима система счисления

МАТЕМАТИЧЕСКИЕ ОСНОВЫ И ИСПОЛЬЗОВАНИЕ СИСТЕМ СЧИСЛЕНИЯ

Для чего необходима система счисления. Смотреть фото Для чего необходима система счисления. Смотреть картинку Для чего необходима система счисления. Картинка про Для чего необходима система счисления. Фото Для чего необходима система счисления

Автор работы награжден дипломом победителя II степени

На современном этапе границы счета мы определяем термином «бесконечность». Числа и цифры окружают нас везде. Различные системы счисления используются постоянно: начиная числовыми расчетами в школе и заканчивая вычислениями на суперкомпьютерах. Таким образом, изучение применения систем счисления очень актуальная на сегодняшний день тема.

Цель нашего исследования: изучить основные сферы применения систем счисления в современной жизни.

Для достижения цели нашего исследования были поставлены следующие задачи:

Рассмотреть основные определения, связанные с системами счисления, и дать краткие исторические справки по их появлению

Изучить применение систем счисления в информатике и математике

Исследовать возможности применения систем счисления для решения прикладных задач.

Необходимо отметить, что в математике системы счисления изучаются подразделом «Теория чисел» и системы счисления изучены обширно.

Методологической основой исследования явились следующие источники: методическое пособие по теоретическим основам информатики Кубрякова Е.А. и книга Г.Б. Гашкова «Применение систем счисления».

§ 1. Основные понятия и история развития систем счисления

Для записи и выполнения математических операций над величинами необходима некоторая система обозначений. Такая система обозначений и называется системой счисления.

Все ныне существующие системы счисления традиционно делятся на две группы:

Непозиционные. Цифра всегда обозначает одну и ту же величину вне зависимости от того, в каком месте числа при записи она встречается. Величина, обозначаемая числом, получается в результате сложения или вычитания цифр, образующих запись этого числа. Типичным примером является римская система счисления.

Римская система использует для записи чисел следующие цифры I (1), V (5), X (10), L (50), C (100), D (500), M (1000). Кроме того, при записи чисел необходимо учитывать следующие правила:

Цифры I, X, C, M можно использовать в записи числа не более 3 раз подряд, а V, L, D не более одного раза.

Если цифра с меньшим значением встречается слева от цифры с большим значение, то из большей цифры вычитается меньшая, в противном случае они складываются.

Цифры должны записываться только по убыванию этого порядка. Нарушение этого порядка возможна только в соседних цифрах (см. предыдущее правило)

Таким образом, данные правила ограничивают возможное максимальное число, которое можно записать в римской системе счисления. Таким числом является MMMCMXCIX (1000+1000+1000-100+1000-10+100-1+10=3999). Судя по всему, этой величины вполне хватало для практических нужд древних римлян [2].

Примером непозиционной системы счисления может послужить славянская система счисления. В этой системе счисления нумерации для записи чисел использовались все буквы алфавита, правда, с некоторым нарушением алфавитного порядка. Буквам старой славянской азбуки были присвоены цифровые значения: от 1 до 10, затем через 10 до 100 и через 100 до 1000. Используя не более трех букв можно было записать любое натуральное число от 1 до 1110 (Таблица 1) [4].

Таблица 1. Славянская система счисления

Позиционные. Величина, обозначаемая цифрой, зависит от позиции этой цифры в записи числа. При получении величины числа выполняются операции сложения и умножения над цифрами, входящими в состав числа. Типичным примером является арабская система счисления, используемая всеми математиками. В позиционной системе число, записанное из двух единиц (11), обозначает величину одиннадцать, т.е. одна единица обозначает единицу, а вторая обозначает десять. В римской же системе счисления такое число (II) обозначало бы величину два. Несмотря на ограниченное количество цифр, позиционные системы позволяют записать любые величины, т.к. нет ограничений на количество использований цифр и разрядов числа. Кроме того, благодаря математику аль Хорезми существуют универсальные алгоритмы выполнения арифметических действий над любыми числами в арабской системе счисления, т.к. они сводятся к манипуляциям над отдельными разрядами числа.

Рассматривая произвольную систему счисления с основанием n>1, отметим, что число позиционных систем бесконечно. Для систем с основанием, не превышающем число 10, алфавит системы счисления будет состоять из соответствующих первых n цифр десятичной системы счисления начиная с 0. Для систем с основаниями, превышающимися 10, необходимо предложить способ записи каждой цифры в виде одного знака. Как правило, для этого используют букву латинского алфавита. В математическом отношении давно найден простой выход – каждая цифра, занимающая больше одного разряда, просто записывается в скобках. Например число A4F в шестнадцатеричной системе может быть записано как (10)4(15).

Для умножения числа на основание системы достаточно в целом числе справа дописать 0, в дробном – передвинуть разделитель на одну позицию вправо.

Для деления числа на основание системы нужно отбросить последнюю цифру (целочисленное деление) или же перенести разделитель на одну позицию влево [2].

§ 2. Перевод чисел из одной позиционной системы в другую.

Уже достаточно давно разработаны алгоритмы перевода чисел из одной позиционной системы счисления в другую. Но прежде чем мы поговорим о них, дадим определение развернутой формы числа.

Возьмем для примера число 257,45 в десятичной система счисления и представим его в следующем виде:

Такая форма записи числа называется его развернутой формой. Вообще любое число в любой позиционной системе счисления можно записать в виде:

Запись расширенной формы числа в своей основе имеет так называемую схему Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена p(x) на х−a.

Перевод числа из n-ричной системы счисления в десятичную осуществляется записью и вычислением развернутой формы числа. Например, для перевода числа 403,155 в десятичную записываем развернутую форму числа:

Обратный перевод (из десятичной системы в любую другую) осуществляется для целой и дробной части отдельно.

Перевод целой части осуществляется путем деления по правилам десятичной системы счисления переводимого числа на основание системы, в которую осуществляется перевод. Перевод продолжается до получения неполного частного меньшего, чем основание системы. Результат записывается как последнее неполное частное, и все остатки, получаемые при делении в обратном порядке.

Заметим, что при переводе чисел в системы, основание которых превышает 10, каждая цифра очередного остатка или последнее неполное частное должно быть записано в один разряд.

Перевод дробной части осуществляется путем последовательного выполнения операций: умножения числа на основание системы, в которую выполняется перевод, и выделения в полученном результате целой части. Процесс продолжается до тех пор, пока после выделения целой части не останется число 0. Если процесс невозможно завершить, то говорят о том, что он выполнен с определенной степенью точности [2].

§ 3. Использование систем счисления в технике и жизни.

По мере нашего исследования было замечено, что наиболее распространенной является десятичная система счисления. Это обусловлено силой традиции, которая, вероятно, основывается на том, что число пальцев на обеих руках равно обычно 10. Как писал Паскаль, десятичная система ничем не лучше систем с другими основаниями. С некоторых точек зрения более удобны другие системы. На сегодняшний момент также очень часто в практической деятельности используется и двоичная система счисления.

Некоторые идеи, лежащие в основе двоичной системы, по существу были известны в Древнем Китае и Древней Индии. Пропагандистом двоичной системы был знаменитый Г. В. Лейбниц. Он отмечал особую простоту алгоритмов арифметических действий в двоичной арифметике в сравнении с другими системами и придавал ей определённый философский смысл. Известный современный математик Т. Данциг о нынешнем положении дел сказал: «Увы! То, что некогда возвышалось как монумент, очутилось в чреве компьютера». Причина такой метаморфозы не только уникальная простота таблицы умножения в двоичной системе, но и особенности физических принципов, на основе которых работает элементная база современных ЭВМ.

Примерами практического применения двоичной системы счисления в современной технике могут послужить пленочные фотокамеры и шрих-коды.

Как автоматические фотоаппараты узнают светочувствительность заправленной в них плёнки? Её измеряют в некоторых единицах, и вся выпускаемая сейчас в мире плёнка имеет одно из 24 стандартных значений светочувствительности. Эти значения кодируются некоторым стандартным образом наборами из нулей и единиц, естественно, длины 5. На поверхности кассеты для плёнки нанесены 12 квадратиков чёрного или серебристого цвета, образующих прямоугольник 2×6. Квадратики его верхней части мысленно занумеруем от 1 до 6, начиная слева. Квадратики нижней части аналогично занумеруем от 7 до 12. Серебристые квадратики — это просто металлическая поверхность кассеты, она проводит ток, который с контакта внутри аппарата подаётся на первый квадрат (он всегда серебристый). Чёрные квадраты покрыты краской, не проводящей ток.

Когда плёнка вставляется в фотоаппарат, шесть его контактов соприкасаются с шестью первыми квадратиками, и с квадратиков со 2-го по 6-й снимается информация — нуль, если квадратик чёрный и ток по соответствующему контакту не идёт, и единица в противном случае. Вся информация о светочувствительности плёнки заключена в квадратиках со 2-го по 6-й. В остальных квадратиках заключена информация о числе кадров в плёнке и т. п.

Ещё на поверхности кассеты можно увидеть штрих-код. Это так называемый универсальный код продукта, он сейчас ставится на всех продаваемых товарах.

Нужен он только для автоматического занесения информации в кассовый аппарат. Сам штрих-код состоит из тридцати чёрных полос переменной толщины, разделённой промежутками тоже переменной толщины. Толщина полос может принимать четыре значения от самой тонкой до самой толстой. Такую же толщину могут иметь и промежутки. Когда по сканеру проводят штрих-кодом, он воспринимает каждую чёрную полоску как последовательность единиц длины от одной до четырёх, и также воспринимает промежутки между полосами, но при этом вместо единиц сканер видит нули. Полностью весь штрих-код сканер воспринимает как последовательность из 95 цифр 0 или 1 (их давно уже принято называть битами). Что же содержит этот код? Он кодирует 13-разряд-ное десятичное число, совершенно открыто написанное под самим штрих-кодом. Если сканер не смог распознать штрих-код, то это число кассир вводит в аппарат вручную. Штрих-код нужен лишь для облегчения распознавания сканером изображения. Распознавать цифры, к тому же повёрнутые боком, может только сложная программа распознавания на универсальном компьютере, а не кассовый аппарат.

Какую же информацию содержит это 13-значное число? Этот вопрос к математике никакого отношения не имеет. Первая цифра задаёт тип товара, например, у товаров переменного веса она равна 2.Следующие пять цифр — это код производителя, а следующие пять цифр — код самого продукта в принятой этим производителем кодировке. Последняя цифра — это код проверки. Он однозначно вычисляется по предыдущим 12 цифрам следующим образом. Нужно сложить все цифры с нечётными номерами, утроить сумму, к ней прибавить сумму оставшихся цифр, а полученный результат вычесть из ближайшего (большего) кратного 10 числа.

А вот 95-битный код, соответствующий штрих-коду, более интересен. Он содержит в себе только указанное 12-значное число (контрольная цифра в самом штрих-коде не содержится), но с большой избыточностью. Первые три бита в нём, так же, как и последние — это всегда 101. Они нужны только для того, чтобы сканер смог определить ширину полосы, соответствующей одному биту (ведь размеры штрих-кода на разных упаковках могут быть разными) и настроиться на распознавание. В центре кода всегда стоит комбинация 01010, а левая и правая части кода состоят каждая из шести блоков по семь битов и содержат информацию о левых шести и правых шести из данных 12 десятичных цифр. Центральная комбинация позволяет, в частности, отличать поддельные или плохо напечатанные коды. Цифры 13-значного кода кодируются в левой и правой частях штрих-кода по-разному. В левой половине каждая цифра кодируется семёркой битов, начинающейся с 0 и заканчивающейся 1.

Цифры 13-значного кода кодируются в левой и правой частях штрих-кода по-разному. В левой половине каждая цифра кодируется семёркой битов, начинающейся с 0 и заканчивающейся 1, согласно таблице, представленной ниже.

В правой половине каждая цифра кодируется семёркой битов, начинающейся с 1 и заканчивающейся 0, которая получается из вышеприведённой, если в ней нули заменить на единицы и единицы на нули (это переход к дополнительному коду). Можно заметить, что каждый из кодов в таблице содержит нечётное число единиц и ровно две группы рядом стоящих единиц и ровно две группы рядом стоящих нулей. Это означает, что каждая цифра соответствует двум соседним полосам на штрих-коде. Но более важно то обстоятельство, что все десять кодов таблицы, будучи прочитанными не слева направо, а справа налево, будут отличаться от любого из кодов таблицы, прочитанного правильным образом. Очевидно, таблица для правой половины кода обладает теми же свойствами, только число единиц в каждом коде чётное. Такая избыточная (не четырёхбитовая, а семибитовая) таблица кодов нужна для того, чтобы сканер мог правильно прочитать штрих-код и в случае, когда код направляют в него «вверх ногами». Как сканер может отличать одно направление от другого? По чётности или нечётности числа единиц в первом же прочитанном семибитовом блоке, идущем после комбинации 101. При правильном направлении оно будет нечётным, а при обратном направлении — чётным. Перепутать же коды, прочитанные слева, и коды, прочитанные справа, согласно свойству таблицы, невозможно. Если же в каком-то из семибитовых блоков нарушено правильное чередование нулей и единиц в первом и последнем битах или ему не соответствует чётность числа единиц, то штрих-код признаётся поддельным или плохо пропечатанным [1].

Отметим также и тот факт, что в основе таких известных вещей как шрифт Брайля и азбука Морзе также лежит двоичная система счисления.

Шрифт Брайля был создан двенадцатилетним слепым мальчиком по имени Луи. В нём символы языка (буквы, знаки препинания и цифры) кодируются комбинациями от одной до шести выпуклых точек, расположенных в виде таблицы стандартного размера с тремя строчками и двумя столбцами. Элементы (точки) таблицы нумеруются числами 1, 2, 3 в первом столбце сверху вниз и 4, 5, 6 во втором столбце сверху вниз. Каждая точка либо продавливается специальной машинкой (или даже шилом) или остаётся целой. Всего различных способов продавить выпуклые точки в этой таблице 64 (в том числе и тот, в котором ни одна из точек не вдавлена).

Азбука Морзе изобретена Сэмюэлем Морзе. Она сопоставляет каждой букве алфавита последовательность из точек и тире. Естественней всего использовать такие последовательности длины 6, их всего 64 и хватит даже на русский алфавит. Но Морзе понимал, что длину сообщения желательно уменьшить, насколько возможно, поэтому он решил использовать последовательности длины не более 4, их всего 2+4+8+16=30. В русском алфавите пришлось не использовать буквы «э» и «ё» и отождествить мягкий и твёрдый знаки. Кроме того, наиболее часто используемым буквам он предложил давать самые короткие коды, чтобы уменьшить среднюю длину передаваемого сообщения [1].

Рассказывая о системах счисления, нельзя обойти вниманием признаки делимости. Напомним широко известные признаки делимости в случае использования десятичной системы счисления.

Подобный же признак можно предложить и для делимости на число 9. 9, состоящее из n девяток: надо разбить испытуемое число на n-разрядные блоки, начиная с младших разрядов, и всех их сложить (блок, образованный старшими разрядами, может быть короче); у полученного числа будет тот же остаток от деления, что и у исходного. Так как 99 делится на 11, то таким способом можно найти и остаток от деления на 11. Учитывая, что 999 делится на 111 и, следовательно, на 37, получаем признаки делимости на эти числа. Но есть более эффективный признак делимости на 11: надо складывать цифры числа, начиная с младших, чередуя знаки (первая цифра берётся со знаком плюс) — полученное число имеет тот же остаток от деления на 11, что и исходное.

Аналогичный признак делимости имеется и для числа 10. 01, запись которого, кроме двух единиц, содержит n нулей. Испытуемое число разбивается на (n+1)-разрядные блоки, начиная с младших разрядов (блок, образованный старшими разрядами, может быть короче), и все они складываются с чередующимися знаками (первое число берётся со знаком плюс). Полученный результат имеет тот же остаток от деления, что и испытуемое число. Поскольку 1001=11·7·13, мы попутно получаем таким путём признаки делимости на 7, 13, 91, 77, 143.

При применении рассмотренных признаков к большим числам получаются меньшие, но всё же достаточно большие числа, имеющие те же остатки от деления, что и исходные. К ним нужно применить ещё раз тот же признак делимости и т. д. Часто эффективность этих признаков при применении к большим числам всё же ненамного выше простого деления.

Есть, однако, случаи, когда только применение признаков делимости позволяет найти остаток, так как непосредственное деление практически невозможно ввиду колоссальной вычислительной сложности.

Заключение

Различные системы счисления используются всегда, когда появляется потребность в числовых расчетах.

Системой счисления называется некая знаковая система, которая используется для записи цифр. Исторически сложилось, что все существующие системы счисления делятся на позиционные и непозиционные. Чаще всего используются позиционные системы счисления.

В нашей работе были приведены алгоритмы перевода чисел из одной позиционной системы в другую и обратно.

Как уже говорилось выше, системы счисления используются при возникновении потребности в расчетах. Но одной лишь математикой их применение не ограничено. В ходе исследования было выявлено, что числа в двоичной системе используются, например, в фотокамерах и штрих-коде. Также на основе двоичных чисел были созданы азбука Морзе и шрифт Брайля.

Но все-таки это понятие математическое. В ходе нашей работы было изучено использование систем счисления для формулирования признаков делимости.

Список использованной литературы

Гашков С.Б. Применение систем счисления. / С.Б. Гашков. – Москва : Издательство Московского центра непрерывного математического образования, 2004. – 54 с.

Кубряков Е.А. Элементы теории информации и ее представления в памяти компьютера: учебно-методическое пособие по курсу «Теоретические основы информатики» Е.А. Кубряков. – Воронеж : ВГПУ, 2009. – 71 с.

Источник

Cистемы счисления — история, виды, отличия

Со школы люди хорошо знакомы с римскими и арабскими цифрами и привыкли к обозначению чисел с их помощью. Однако такие системы счета образовались не сразу, и мало кто знает, что они были не единственными в истории человечества. С появлением электроники, системы счисления и вовсе преобразовались; подстроились под нужны людей, раскрыв многогранность подходов к применению чисел.

Немного истории

Что такое система счисления?

Например, в римской системе узловыми считаются числа 1, 5, 10, 50, 100, 500 и 1000. И, чтобы составить алгоритмическое число 121, необходимо вспомнить правила записи римских чисел. Так, чтобы получить 121, требуется составить следующее выражение:

100 + 10 + 10 + 1 = M + X + X +I = MXXI

Виды систем счисления

Унарная. Это самая простая система счисления, так как ее алфавит состоит всего из одного символа — единицы. Поэтому она и называется унарной или единичной.

В Древние времена именно ее использовали люди при отображении количества предметов палочками, камушками и зарубками. Длина записи числа при этом была напрямую связана с его величиной.

Непозиционные. Непозиционные системы счисления основаны на том, что условный вес цифры не связан с ее положением в записи числа.

Примерами таких систем являются древнегреческая, древнеримская и древнеегипетская. В них значение разряда может состоять из нескольких цифр, которые, стоящие в разных местах, имеют разный вес для числа в целом.

Чем позиционная система отличается от непозиционной?

Если рассмотреть одно и то же число в двух этих системах, то можно увидеть, как меняется его вес в зависимости от места цифры в его записи.

Например, цифры 1 и 5 в десятичной системе счисления для римской будут иметь следующий вид: I и V. Но записав их в одном и том же порядке мы получим различные числа для разных видов счисления:

Соответственно, для непозиционной системы счисления положение цифры в записи не имеет значения, а учитываются только правила построения чисел.

Системы счисления в информатике

В информатике принято выделять четыре основных системы счисления: двоичная, восьмеричная, десятичная, шестнадцатеричная. Связано это, в первую очередь, с их использованием в различных отраслях программирования.

Так, восьмеричная система требуется для перевода в двоичные числа на цифровых устройствах и в компьютерной документации. Позднее ей на смену пришла шестнадцатеричная, которую используют для записи символов Юникода. Однако восьмеричный код до сих пор применяется в системе Linux. Наиболее же распространенной системой является двоичная, которая используется в программировании практически всех ЭВМ.

Источник

Системы счисления и их практическое применение

Память человечества не сохранила, не донесла до нас имя изобретателя колеса или гончарного круга. Это и неудивительно: более 10 тысяч лет прошло с тех пор, как люди всерьез занялись земледелием, скотоводством и производством простейших товаров. Назвать же имя гения, впервые задавшего вопрос «Сколько?», тем более невозможно.

В каменном веке, когда люди собирали плоды, ловили рыбу и охотились на животных, потребность в счете возникла так же естественно, как и потребность в добывании огня. Об этом свидетельствуют находки археологов на стоянках первобытных людей. Например, в 1937 году в Вестонице (Моравия) на месте одной из таких стоянок найдена волчья кость с 55 глубокими зарубками. Позже в других местах ученые находили столь же древние каменные предметы с точками и черточками, сгруппированными по три или по пять.

Развитие чисел тесно связано с потребностями общества в измерениях, контроле, особенно в областях аграрной, промышленной и налогообложения. Первые области применения чисел были связаны с созерцанием звезд и земледелием. Изучение звездного неба позволило проложить торговые морские пути, караванные дороги в новые районы и резко увеличить эффект торговли между государствами. Обмен товарами приводил к обмену культурными ценностями, к развитию толерантности как явления, лежащего в основе мирного сосуществования различных рас и народов. Понятие числа всегда сопровождалось и нечисловыми понятиями. Например, один, два, много. Эти нечисловые понятия всегда ограждали числа. Числа придавали законченный вид всем наукам, где они применялись.

Язык чисел, как и обычный язык, имеет свой алфавит. В том языке чисел, которым сейчас пользуются практически на всём земном шаре, алфавитом служат десять цифр от 0 до 9. Этот язык называется десятичной системой счисления. Однако не во все времена и не везде люди пользовались десятичной системой счисления. С точки зрения чисто математической она не имеет специальных преимуществ перед другими возможными системами счисления, и своим повсеместным распространением эта система обязана вовсе не общим законам математики, а причинам совсем иного характера. О свойствах, истории возникновения и применения различных систем счисления будет рассказано в нашей работе.

Потребность в записи числа появилась в очень древние времена, как только люди начали считать.

Представим себе то далекое время, когда люди только начали изобретать числа. В те времена для счета человеку хватало четырех слов: один, два три и много. Именно так считают и сейчас некоторые племена, живущие в джунглях Южной Америки. С развитием человечества этих слов стало не хватать. Земледельцу надо было подсчитать урожай, скотоводу животных, строителю количество бревен Умение считать и производить операции с числами высоко ценилось. Числа вызывали удивление, потому что они могли обозначать количество любых предметов, например, два пальца, две руки, два человека или два камня.

Поштучно считать предметы удобно тогда, когда их не очень много, т. к. чем большее число надо записать, тем длиннее будет строка из палочек.

Со времени их происхождение сформировалось большое количество отличных систем счисления: пятеричная, десятичная, мультипликативная

Машинная группа систем счисления

Перед математиками и конструкторами 50-х годов встала проблема отыскания таких систем счисления, которые отвечали бы требованиям, как разработчиков ЭВМ, так и создателей программного обеспечении. Одним из итогов этих исследований стало значительное изменение представлений о системах счисления и о методах вычислений. Оказалось, что арифметический счет, которым человечество пользуется с древнейших времен, может совершенствоваться, подчас весьма неожиданно и на удивление эффективно.

Специалисты выделили так называемую «машинную» группу систем счисления и разработали способы преобразования чисел этой группы. К «машинной» группе систем счисления относятся: двоичная, восьмеричная, шестнадцатеричная. Однако на начальном этапе развития информационных технологий использовалась троичная система счисления.

Двоичная система проста, так как для представления информации в ней используются всего два состояния или две цифры. Такое представление информации принято называть двоичным кодированием. Представление информации в двоичной системе использовалось человеком с давних времен. Так, жители островов Полинезии передавали необходимую информацию при помощи барабанов: чередование звонких и глухих ударов. Звук над поверхностью воды распространялся на достаточно большое расстояние, таким образом «работал» полинезийский телеграф. В телеграфе в Х1Х-ХХ веках информация передавалась с помощью азбуки Морзе — в виде последовательности из точек и тире.

В конце XX века, века компьютеризации, Человечество пользуется двоичной системой ежедневно, так как вся информация, обрабатываемая современными ЭВМ, хранится в них в двоичном виде. Каким же образом осуществляется это хранение? Каждый регистр арифметического устройства ЭВМ, каждая ячейка памяти представляет собой физическую систему, состоящую из некоторого числа однородных элементов. Каждый такой элемент способен находиться в нескольких состояниях и служит для изображения одного из разрядов числа. Именно поэтому каждый элемент ячейки называют разрядом. Нумерацию разрядов в ячейке принято вести справа налево, самый левый разряд имеет порядковый номер 0. Если при записи чисел в ЭВМ мы хотим использовать обычную десятичную систему счисления, то мы должны получать 10 устойчивых состояний для каждого разряда, как на счетах при помощи костяшек. Такие машины существуют. Однако конструкция элементов такой машины чрезвычайно сложна. Наиболее надежным и дешевым является устройство, каждый разряд которого может принимать два состояния: намагничено — не намагничено, высокое напряжение — низкое напряжение и т. д. В современной электронике развитие аппаратной базы ЭВМ идет именно в этом направлении. Следовательно, использование двоичной системы счисления в качестве внутренней системы представления информации вызвано конструктивными особенностями элементов вычислительных машин.

Преимущества двоичной системы счисления:

1. Простота совершаемых операций

2. Возможность осуществлять автоматическую обработку информации, реализуя только два состояния элементов компьютера.

Недостаток двоичной системы счисления:

1. Быстрый рост числа разрядов в записи, представляющей двоичное число

Для представления двоичных чисел вне компьютера используют более компактные по длине чисел восьмеричную (для записи кодов чисел и машинных команд) и шестнадцатеричную (для записи адреса команд) системы счисления.

3. Предоставление информации в компьютере.

В данный момент для кодировки информации в компьютере используется двоичная система счисления. Каждый символ в компьютере представляется в виде последовательности единиц и нулей, любая такая последовательность состоит из восьми знаков. Знакоместа в таких последовательностях называется битом, а восемь битов это байт.

Для перевода значений отдельных байтов в понятные человеку знаки (буквы и цифры) компьютер использует специальные «кодовые таблицы», в которых каждому знаку сопоставлен байт с определенным значением.

Впрочем, измерять компьютерную информацию байтами весьма неудобно из-за объема. Вот почему на практике в компьютерном мире оперируют такими величинами:

• килобайт (кб) — 2 в степени 10 байт — 1024 байт;

• мегабайт (Мб) — 2 в степени 20 байт — 1 048 576 байт —

1 048 576 кб-1024 Мб;

• терабайт (Тб) — 2 в степени 40 байт — 1 099 511 627 776 байт —

Биты используются в компьютерной терминологии значительно реже, — например, в показателях скорости передачи данных:

• килобит (кбит) — 2 в степени 10 бит —’1024 бит — 128 байт;

• мегабит (Мбит) — 2 в степени 20 бит — 1 048 576 бит —

3. 1Представление чисел.

Как было уже сказано, все числовые данные хранятся в машине в двоичном виде, то есть в виде последовательности нулей и единиц, однако формы хранения целых и вещественных чисел различны.

Целые числа хранятся в форме с фиксированной запятой, вещественные числа хранятся в форме с плавающей запятой. В темах 8 и 9 можно прочитать подробное описание способов представления чисел в компьютерах. Заметим, что термин «действительные числа» в компьютерной терминологии заменяется на вещественные числа.

Необходимость различного представления целых и вещественных чисел вызвана тем, что скорость выполнения арифметических операций над числами с плавающей запятой существенно ниже скорости выполнения этих же операций над числами с фиксированной запятой. Существует большой класс задач, в которых не используются вещественные числа. Например, задачи экономического характера, при решении которых данными служат количество деталей, акций, сотрудников и так далее, работают только с целыми числами. Текстовая, графическая и звуковая информация, как это будет показано ниже, также кодируются в компьютере с помощью целых чисел. Для повышения скорости выполнения таких задач и используется представление целых чисел в форме с фиксированной запятой.

Для решения математических и физических задач, в которых трудно обойтись только целыми числами, используется представление чисел в форме с плавающей запятой.

Более того, в современных персональных компьютерах процессоры выполняют операции только над целыми числами в форме с фиксированной запятой.

3. 2Представление текстовых данных

Любой текст состоит из последовательности символов. Символами могут быть буквы, цифры, знаки препинания, знаки математических действий, круглые и квадратные скобки и т. д. Особо обратим внимание на символ «пробел», который используется для разделения слов и предложений между собой. Хотя на бумаге или экране дисплея «пробел» — это пустое, свободное место, этот символ ничем не хуже» любого другого символа. На клавиатуре компьютера или пишущей машинки символу «пробел» соответствует специальная клавиша.

Текстовая информация, как и любая другая, хранится в памяти компьютера в двоичном виде. Для этого каждому символу ставится в соответствие некоторое неотрицательное число, называемое кодом символа, и это число записывается в компьютерную память в двоичном виде. Конкретное соответствие между символами и их кодами называется системой кодировки.

В современных компьютерах, в зависимости от типа операционной системы и конкретных прикладных программ, используются 8-разрядные и 16-разрядные (Windows 95, 98, ХР) коды символов. Использование 8-разрядных кодов позволяет закодировать 256 различных знаков, этого вполне достаточно для представления многих символов, используемых на практике. При такой кодировке для кода символа достаточно выделить в памяти один байт. Так и делают: каждый символ представляют своим кодом, который записывают в один байт памяти. В персональных компьютерах обычно используется система кодировки ASCII (American standard Соде for Information Interchange) — американский стандартный код для обмена информации. В этой системе не предусмотрены коды для русского алфавита, поэтому в нашей стране используются варианты этой системы кодировки, в которые включают буквы русского алфавита. Чаще всего используется вариант, известный под названием «Альтернативная кодировка».

Компьютерные технологии постоянно совершенствуются, и в настоящее время все большее число программ начинает поддерживать шестнадцатибитовый стандарт Unicode, который позволяет кодировать практически все языки и диалекты жителей Земли в силу того, что кодировка включает в себя 65 536 различных двоичных кодов.

3. 3. Представление графической информации

Мониторы современных компьютеров могут работать в двух режимах: текстовом и графическом.

В текстовом режиме экран обычно разбивается на 25 строк по 80 символов в строке. В каждую позицию экрана (знакоместо) может быть помещен один символ. В текстовом режиме на экран монитора можно выводить тексты и простые рисунки, составленные из символов псевдографики. Всего на экране 25 • 80 = 2000 знакомест. В каждом знакоместе находится ровно один символ (пробел — равноправный символ), этот символ может быть высвечен одним из 16 цветов. При этом можно изменять цвет фона (8 цветов), на котором рисуется символ и, кроме того, символ может мерцать, для представления цвета символа нам требуется 4 бита (2 = 16), для представления цвета фона требуется 3 бита (23 = 8), один бит — для реализации мерцания (0 — не мерцает, 1 — мерцает). Следовательно, для описания каждого знакоместо нам требуется 2 байта: первый байт — символ, второй байт — его цветовые характеристики. Таким образом, любой текст или рисунок в текстовом режиме монитора в памяти компьютера (в видеопамяти) занимает 2000 • 2 байта = 4000 байт 4 Кбайта.

В графическом режиме экран разделяется на отдельные светящиеся точки (пиксели), количество которых определяет разрешающую способность монитора и зависит от его типа и режима. Любое графическое изображение хранится в памяти в виде информации о каждом пикселе на экране. Если пиксель не участвует в изображении картинки, то он не светится, если участвует, то светится и имеет определенный цвет. Поэтому состояние каждого пикселя описывается последовательностью нулей и единиц. Такую форму представления графических изображений называют растровой. В зависимости от того, сколькими цветами (размер палитры) мы можем высветить каждый пиксель, рассчитывается размер информации, отводимый под каждый пиксель. Если монитор может работать с 16 цветами, то цвет каждого пикселя описывается 4 битами (24 = 16). Для работы с 256 цветами под каждый пиксель надо будет отвести 8 бит, или 1 байт (28 = 256).

Посчитаем, сколько байт занимает при хранении в памяти картинка, если на экран можно вывести 640 * 480 пикселей, и монитор поддерживает 256 цветов:

640. 480 • 1 байт = 307200 байт 300 Кбайт.

Компьютерное кодирование видеоинформации, также как кино и телевидение, основаны на том, что человеческое зрение позволяет создавать иллюзию движения при частой смене кадров (более 15 раз в секунду), на которых изображены последовательные фазы движения. Для записи 1 секунды цветного изображения без звука (25 кадров размером 1024 * 768 пикселей) потребуется примерно 60 Мбайт (25 4024. 768 • 3 = 58 982 400 байт). При этом на запись двухчасового фильма потребуется более 400 Гбайт.

Из-за больших размеров графических и видео файлов они очень редко хранятся в компьютере в неупакованном виде.

Простейший методов упаковки графических изображений RLE-кодирование ( англ. Run-Length Encoding) — кодирование путем учета числа повторений), позволяющее компактно кодировать длинные последовательности одинаковых байтов. Упакованная последовательность состоит из управляющих байтов, за каждым из которых следуют один или несколько байтов данных. Если старший (самый левый) бит управляющего байта ранен 1, то следующий байт надо при распаковке повторить несколько раз (сколько именно — записано в оставшихся семи битах управляющего байта). Например, управляющий байт 10000101 говорит, что следующий за ним байт нужно повторить 5 раз (так как двоичное число 101 равно 5). Если же старший бит управляющего байта равен 0, то надо взять несколько следующих байтов данных без всяких изменений. Сколько именно — тоже записано в оставшихся 7 битах. Например, управляющий байт 00000011 говорит, что следующие за ним 3 байта нужно взять без изменений.

Другие алгоритмы сжатия графической и видео информации основываются на том, что человеческий глаз более восприимчив к яркости отдельной точкУ1, чем к её цветности.

Поэтому можно при упаковке выбросить данные о цвете каждой второй точки изображения (сохранив только ее яркость), a при распаковке — брать вместо выброшенного цвет соседней точки. Формально распакованное изображение будет отличаться от исходного, однако это отличие будет практически незаметно на глаз. При таком методе упаковки экономия составляет менее 50%. Голее сложные методы упаковки изображений позволяют добиться значительно лучших результатов. Например, алгоритм JPEG (от названия разработавшей его группы — Joint Photographic Experts Group) способен упаковывать графические изображения в несколько десятков раз без заметной потери качества.

Чтобы решить проблему большого объёма информации при записи фильмов, например, сохраняют не кадры, а изменения кадров. К тому же, при упаковке видеоинформации допустимы большие искажения, чем при сжатии статических изображений: кадры меняются быстро, и зритель не успевает рассматривать их детально.

Вводи хранение в компьютере технических чертежей и им подобных графических изображений осуществляется по-другому. Любой чертеж содержит отрезки, окружности, дуги. Например, положение каждого отрезка на чертеже можно задать координатами двух точек, определяющих его начало и конец. Окружность — координатами центра и длиной радиуса. Дугу — координатами конца и начала, центра и длиной радиуса. Кроме того, для каждой линии указывается ее тип: тонкая, штрихпунктирная и Т. д. Такая информация о чертеже вводится в компьютер как обычная буквенно-цифровая и обрабатывается в дальнейшем специальными программами. Эта форма представления изображения называется векторной.

Примером современной компьютерной системы автоматизации черчения, ориентированной на векторную форму представления графической информации, является система AutoCAD. Появившиеся в последние годы высококачественные программы векторизации (преобразования графического изображения из растровой формы в векторную) позволили в значительной мере автоматизировать работу по вводу чертежа в память компьютера с помощью сканеров. Хранение чертежа в компьютере в векторной форме на несколько порядков сокращает необходимый объем памяти и значительно облегчает внесение изменений (редактирование).

3. 4 Представление звуковой информации

Развитие аппаратной базы современных компьютеров параллельно с развитием программного обеспечения позволяет сегодня записывать и воспроизводить на компьютерах музыку и человеческую речь. Существуют два способа звукозаписи:

• цифровая запись, при которой реальные звуковые волны преобразуются в цифровую информацию путем измерения звука тысячи раз в секунду;

• MIDI-запись, при которой, вообще говоря, записывается не реальный звук, а определенные команды-указания (какие клавиши надо нажимать, например, на синтезаторе).

MIDI-запись является электронным эквивалентом записи игры на фортепиано.

Для того чтобы можно было воспользоваться первым указанным способом, в компьютере должна быть звуковая карта (плата).

Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой (сила, интенсивность звука) и частотой (высота тона звука). Частота волны (количество «волн» в секунду) измеряется в герцах (Гц). Чем больше амплитуда сигнала, тем громче звук, чем больше частота сигнала, тем выше тон. Человек воспринимает звуковые волны с частотой из диапазона от 20 Гц до 20 000 Гц.

Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в цифровую последовательность, состоящую из нулей и единиц. Данную функцию выполняет специальный блок, входящий в состав звуковой карты и называемый аналого-цифровым преобразователем (АЦII).

Реальные звуковые волны имеют весьма сложную форму, и для получения их высококачественного цифрового представления требуется высокая частота дискретизации

АЦП производит дискретизацию звукового сигнала по времени путем измерения уровня интенсивности звука несколько тысяч раз в секунду (через равные пpомежyтки). Частота, с которой производят измерения звукового сигнала, называется частотой дискретизации. Например, при записи музыкальных компакт-дисков используют частоту дискретизации 44 кГц, а при записи речи вполне достаточно частоты дискретизации 8 кГц.

В результате дискретизации амплитуды звукового сигнала непрерывная зависимость амплитуды от времени А(t) заменяется на дискретную последовательность стандартных (заранее определенных) уровней громкости. Графически это выглядит как замена гладкой кривой на последовательность «ступенек». Число разрядов, используемых для записи уровней громкости звука, определяет качество звучания

Таким образом, в ходе оцифровки звука мы получаем поток целых чисел, представляющих собой номера стандартных амплитуд сигналов. Получившиеся значения записываются в виде 0 и 1 в память компьютера (в файлы с расширением. WAV).

Аналоговый электрический сигнал (запись на грампластинке, магнитной ленте) теоретически представляет собой точную копию исходной звуковой волны, а цифровой код — лишь более или менее точное приближение. Тем не менее, цифровая звукозапись имеет множество преимуществ. Так, например, цифровые копии всегда идентичны цифровым оригиналам, а это значит, что записи можно копировать много раз без ухудшения качества.

При воспроизведении записанного в компьютерный файл звука имеет место обратное преобразование: из дискретной цифровой формы — в непрерывную аналоговую. Это преобразование осуществляет устройство, находящееся на звуковой плате и называемое цифро-аналоговый преобразователь (ЦАП).

Хранение звука в виде цифровой записи занимает достаточно много места в памяти компьютера. В качестве примера оценим объем файла, в котором хранится стереоаудио звучание длительностью 1 секунда. При этом при оцифровке звука использовалось 65 536 стандартных уровней звука (для хранения номера уровня требуется 16 бит), а частота дискретизации равна 48 кГц. Следовательно, для хранения в компьютере 1 секунды звучания в оцифрованном виде при заданных характеристиках оцифровки нам требуется

16 бит. 48 000 • 2 = 1 536 000 бит = 192 000 байт = 187,5 Кб.

Умножение на коэффициент 2 связано с тем, что хранится стереозвук.

MIDI-запись была разработана в начале 80-х годов ХХ века (MIDI — Musical Instrument Digital Interfase — интерфейс цифровых музыкальных инструментов). MIDI-иxформация представляет собой команды, а не звуковую волну. Эти команды — инструкции синтезатору. В качестве команды музыкальному синтезатору может передаваться указание нажать или отпустить определенную клавишу, изменить высоту или тембр звучания, изменить силу давления на клавиатуру, включить или выключить полифонический режим и Т. П. MIDI–команды делают запись музыкальной информации более компактной, чем цифровая запись. Однако для записи MIDI-команд вам потребуется устройство, имитирующее клавишный синтезатор, которое воспринимает MIDI-команды и при их получении может генерировать соответствующие звуки.

Из всех видов информации, представимых и обрабатываемых в компьютерах, звуковая информация хуже всего поддается упаковке. Это связано с тем, что звуковые сигналы обладают малой избыточностью (в частности, в закодированных звуковых фрагментах редко появляются повторяющиеся последовательности байтов).

Система счисления — способ записи чисел с помощью заданного набора специальных знаков (цифр).

Базис – это последовательность чисел, каждое из которых задает значение цифры «по месту» или «вес» каждого разряда.

Основание системы счисления — отношение весов соседних разрядов основной позиционной системы счисления.

Непозиционная система счисления — система счисления, в которой вес цифры не зависит от ее положения.

Универсальная система счисления — система счисления, которая позволяет записать любое вещественное число (конечной или бесконечной последовательностью цифр).

Неуниверсальная система счисления — система счисления, которая позволяет записать лишь относительно небольшие числа, иногда только целые (либо наоборот, только меньшие единицы).

Основная система счисления — позиционная система счисления, в которой вес каждой цифры изменяется в одно и то же число раз при ее переносе из любого разряда в соседний с ним.

Неосновная система счисления — позиционная система счисления, в которой соотношение весов соседних разрядов может меняться.

Традиционная система счисления — система счисления, в которой запись числа состоит из двух частей — целой и дробной. Количество цифр перед разделяющей эти части запятой (точкой) заранее не известно и может быть сколь угодно большим. Фактически запись числа образует две последовательности цифр, разбегающиеся влево и вправо от запятой.

Информационная система счисления — система счисления, в которой запись числа (в отличие от традиционной) состоит из единственной последовательности цифр. При этом каждая очередная цифра (бит) уточняет значение числа (его положение на оси).

5. Переход к другому основанию

Любая позиционная система счисления характеризуется тем, что базисом этой системы являются последовательные степени основания, иначе говоря, число единиц соответствующие основанию образуют единицу следующего разряда.

Так неотрицательное число, а в любой системе счисления можно записать как

Таким образом, позиционная система счисления позволяет с помощью заранее ограниченного набора цифр записать в виде суммы степеней основания системы.

На этом и основывается перевод из любой позиционной системы счисления в десятичную систему.

5. 1 Перевод из произвольной позиционной системы счисления в десятичную систему.

Для перевода из любой позиционной системы счисления в десятичную систему используется следующий алгоритм:

Пронумеруем цифры в изначальной записи числа справа налево, начиная с нуля (номера соответствуют степени основания в многочлене )

Умножим каждое число на соответствующую степень основания.

Складываем получившиеся произведения.

11012 =1*23 + 1*22 + 0*21+ 1*20= 8+4+0+1=1310

1204205= 1*55+2*54+0*53+4*52+2*51+0*50= 3125+1250+0+100+10+0=448510

5. 2 Перевод из десятичной системы в произвольную позиционную систему счисления

Для перевода из десятичной системы счисления в любую позиционную необходимо придерживаться следующего алгоритма:

1. Делим исходное число на основание нацело в десятичной системы счисления и записываем в качестве нового значения десятичного целую часть результата от деления.

2. Остаток от деления (он должен быть не больше основания данной системы) записываем начиная с последнего.

4410 переведём в двоичную систему

44 делим на 2. частное 22, остаток 0

22 делим на 2. частное 11, остаток 0

11 делим на 2. частное 5, остаток 1

5 делим на 2. частное 2, остаток 1

2 делим на 2. частное 1, остаток 0

1 делим на 2. частное 0, остаток 1

Частное равно нулю, деление закончено. Теперь записав все остатки, справа налево получим число 1011002

5. 3 Перевод в машинной группе.

Для этого типа операций существует упрощенный алгоритм.

Для восьмеричной — разбиваем число на триады, для шестнадцатеричной — разбиваем на тетрарды, преобразуем триады по таблице

Пример: преобразуем 1011002 восьмеричная — 101 100 → 548 шестнадцатеричная — 0010 1100 → 2C16

Обратный перевод из восьмеричной и шестнадцатеричной в двоичную осуществляется за счет замены цифр соответствующими триадами и тетрардами.

5. 4 Дробное счисление в других системах счисления

До этого в рассмотренных примерах показателем степени основания системы счисления являлось натуральное число, но ничто не мешает перевести показатель степени в диапазон целых чисел, т. е. расширить его в отрицательную полуплоскость. При этом формула, данная в определении будет, также верна.

Рассмотрим пример: число 103,625 можно представить как

Таким образом, из примера видно, что не только целое, но и дробное число можно представить как комбинацию из цифр системы счисления.

5. 4. 1 Перевод из произвольной системы счисления в десятичную систему.

Рассмотрим пример перевода двоичного числа 1100,0112 в десятичное систему. Целая часть этого числа равна 12 (см. выше), а вот перевод дробной части рассмотрим подробнее:

Итак, число 1100,0112 = 12,37510.

Точно также осуществляется перевод из любой системы счисления, только вместо «2» ставится основание системы.

Для удобства перевода, целую и дробную части числа почти всегда переводят по отдельности, а результат потом суммируют.

5. 4. 2 Перевод из двоичной системы в 8- и 16-ричную

Перевод дробной части из двоичной системы счисления в системы счисления с основаниями 8 и 16 осуществляется точно так же, как и для целых частей числа, за тем лишь исключением, что разбивка на триады и тетрады идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа. Например, рассмотренное выше число 1100,0112 будет выглядеть как 14,38 или C,616.

5. 4. 3 Перевод из десятичной системы в произвольную систему

Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в нуль и начать умножение получившегося числа на основании той системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в нуль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль. Ниже приводится пример перевода числа 103,62510 в двоичную систему счисления.

Переводим целую часть по правилам, описанным выше, получаем 10310 = 11001112.

0,625 умножаем на 2. Дробная часть 0,250. Целая часть 1.

0,250 умножаем на 2. Дробная часть 0,500. Целая часть 0.

0,500 умножаем на 2. Дробная часть 0,000. Целая часть 1.

Итак, сверху вниз получаем число 1012

Точно также осуществляется перевод в системы счисления с любым основанием.

Сразу нужно отметить, что этот пример специально подобран, в общем случае очень редко удаётся завершить перевод дробной части числа из десятичной системы в другие системы счисления, а потому, в подавляющем большинстве случаев, перевод можно осуществить с какой либо долей погрешности. Чем больше знаков после запятой — тем точнее приближение результата перевода к истине. В этих словах легко убедиться, если попытаться, например, перевести в двоичный код число 0,626.

6. Арифметические действия в позиционных системах счисления.

Все позиционные системы счисления одинаковы, а именно, во всех них арифметические действия выполняются по одним и тем же правилам:

• Справедливы все законы: сочетательный, переместительный, распределительный;

• Справедливы все правила арифметических действий, которые действуют в десятичной системе счисления;

• Правила выполнения арифметических действий опираются на таблицу сложения и умножения Р-ичных цифр.

Для того чтобы производить арифметические действия в позиционных системах счисления необходимо знать соответствующие таблицы умножения и сложения.

Из приведенных примеров видно, что при сложении столбиком чисел, в данном случае двоичной системы, как и в любой позиционной системе счисления, в следующий разряд переносится только единица.

Нужно сказать, что само действие выполняется аналогично десятичному: цифры по разрядно складываются и при образовании переполнения, оно переносится в следующий разряд в виде степени образовавшегося переполнения. Так же для выполнения сложения используются соответствующие таблицы

Чтобы найти разность чисел a и b необходимо найти такое число c, a+c=b.

На этом принципе и основано вычитание во всех позиционных системах счисления.

Как известно умножение можно заменить сложением. Например:

Из этого следует, что умножение в других позиционных системах счисления так же можно заменить сложением то есть:

101*11=101+101+101(так 11 в десятичной системе счисления )

Из этого можно сделать вывод, что умножение во всех позиционных система счисления происходит по одному принципу. В основном для умножения различных чисел недесятичных систем счисления используются соответствующие таблицы умножения

Деление-это процесс последовательного вычитания одного числа из другого. При делении в десятичной системе счисления мы отнимаем определенное количество делителей из делимого, то есть, уменьшаем число на определенное количество и получаем необходимое число.

Вывод очевиден, деление во всех позиционных системах счисления происходит по одному и тому же принципу, для сравнения поделим двоичное число 1101102 на 112 и восьмеричное число 554768 на 58:

Так же для работы используются соответствующие таблицы умножения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *