Для чего необходимо смещение нулевой точки
§ 3. Программирование ЧПУ. Нулевая точка станка
Однако инженер-программист при разработке управляющих программ не учитывает положение ноля станка, т.к. это потребовало бы обеспечить точное положение заготовки относительно данной точки отсчета, что значительно затрудняет процесс наладки станка на обработку.
Наиболее простым способом является задание некой ключевой точки на детали, когда все управляющие программы выводятся от данной точки. Как правило, такой ключевой точкой в плоскости XY являются угол заготовки, габаритный центр заготовки, центр отверстия, по оси Z – это либо верхняя плоскость, либо основание стола. Также в качестве точки отсчета предпочтительно иметь некую конструкторскую базу, от которой задается цепочка размеров, или технологическую базу, но не всегда это возможно осуществить на практике. На рисунке ниже показано создание начала отсчета УП в системе PowerMILL по ключевым точкам заготовки.
Как же произвести обработку, имея две нулевые точки: станка и детали?
Для этого оператор производит нахождение положения нулевой точки детали в системе координат станка. На рисунке ниже нулевая точка находится в левом верхнем углу, а ноль детали в углу заготовки, необходимо найти размеры Xd, Yd, Zd. Процесс нахождения данных размеров называется «привязкой» к заготовке или установкой ноля детали.
На рисунке ниже показано окно задания рабочих смещений для системы ЧПУ Siemens840D.
Фрагмент УП с заданием рабочей системы координат:
При создании УП программист всегда исходит из правила, что именно инструмент перемещается относительно неподвижной заготовки.
4.2. Нулевая точка программы и рабочая система координат
Обычно рабочую систему координат по осям X и Y устанавливают в один из углов или центр детали, а за нуль по оси Z принимают самую верхнюю поверхность детали. Это облегчает программисту выполнение расчетов, а оператору проще «привязываться» и контролировать во время работы перемещения инструмента.
Для нахождения машинной позиции элемента детали или «привязки» используются различные методы, о которых вы узнаете чуть позже.
Современные СЧПУ позволяют запоминать множество смещений. Благодаря нескольким рабочим системам координат программист может использовать одну и ту же УП для обработки нескольких закрепленных на рабочем столе деталей. При этом нет необходимости выполнять программирование для каждой детали в отдельности. Вместо этого, СЧПУ просто смещает рабочую координатную систему (нулевую точку программы) к следующей детали. подлежащей обработке.
Если заготовка устанавливается в тиски, то вы должны учитывать несколько моментов. У тисков есть подвижная и неподвижная губки. Предположим, вы установили нулевую точку на поверхности (грани), примыкающей к подвижной губке тисков (рис. 4.1б). Размеры заготовок могут немного отличаться, и соответственно, оператор станка для получения правильных размеров должен каждый раз «перепривязываться», то есть заново находить координаты нулевой точки. Если же нулевая точка установлена на поверхности, примыкающей к неподвижной губке тисков (рис. 4.1а), то координаты нулевой точки не изменяться при любых отклонениях размеров заготовки.
Рис. 4.1. Варианты расположения нулевой точки в тисках
В большинстве случаев нулевая точка устанавливается относительно уже подготовленных поверхностей. Хорошо, когда на станок с ЧПУ приходит заготовка с обработанным «в размер» наружным контуром. Это позволяет точно и надежно ее закрепить и гарантировать постоянство координат нулевой точки.
4.3. Компенсация длины инструмента
При выполнении УП базовая позиция шпинделя (точка пересечения торца и оси вращения) определяется запрограммированными координатами. Проблема заключается в том, что в базовой позиции шпинделя обработка резанием не осуществляется. Обработка производится кромкой режущего инструмента, которая находится на некотором расстоянии от базовой точки шпинделя. Для того чтобы в запрограммированную координату приходила именно режущая кромка, а не шпиндель, необходимо «объяснить» СЧПУ на какую величину по оси Z нужно сместить эту базовую точку.
Перед началом обработки оператор должен измерить длину каждого из инструментов, использующихся в программе и ввести числовые значения длин в соответствующие регистры компенсации длины инструмента (или в таблицу инструментов). Смещение базовой точки шпинделя на величину длины инструмента называется компенсацией длины инсгрумента (рис. 4.2).
Компенсация длины инструмента на большинстве современных станков активируется командой G43, а отменяется при помощи G49 или Н00.
Рис. 4.2. Схема движения шпинделя
При создании УП программист не указывает напрямую значение длины инструмента (он еще не знает точной длины), а использует «ссылку» на соответствующий регистр компенсации инструмента в памяти СЧПУ. Например, следующая строка программы активирует компенсацию длины инструмента №2: N025 G43 Н02 Z50.
Тема 5. ТЕХНОЛОГИЯ ОБРАБОТКИ ДЕТАЛЕЙ НА СТАНКАХ С ЧПУ
5.1. Структура операционного технологического процесса
5.2. Последовательность обработки типовых деталей и поверхностей
5.3. Выбор траекторий движения режущих инструментов
5.1. Структура операционного технологического процесса
Структура операции обработки детали на станке с ЧПУ несколько отличается от классической. Известно, что наиболее мелкой составляющей частью технологического процесса является переход, который характеризуется единством обрабатываемой поверхности, режущего инструмента и режимов резания. Режимы резания при выполнении перехода на станках с ЧПУ могут изменяться из-за неравномерности припуска или особенностей форм обрабатываемых поверхностей. Поэтому есть основание не включать неизменность режимов резания в число параметров, определяющих переход.
Переходы на станках с ЧПУ подразделяют на элементарные, инструментальные, позиционные и вспомогательные.
Элементарный переход — непрерывный процесс обработки одной элементарной поверхности одним инструментом по заданной программе.
Из элементарных переходов образуется инструментальный переход, представляющий собой законченный процесс обработки одной или нескольких поверхностей одним инструментом при его непрерывном движении по заданной программе.
Вспомогательный переход — часть траектории движения инструмента, не связанная с образованием поверхности (врезание, выход, холостые ходы). В отличие от станков с ручным управлением вспомогательное время включает время на установку и снятие заготовки машинно-вспомогательное время, связанное с выполнением вспомогательных ходов и перемещений при обработке поверхностей.
Позиционный переход — совокупность инструментальных и вспомогательных переходов, выполняемых при неизменности позиции или положения обрабатываемой детали относительно рабочих органов станка.
Из совокупности переходов складывается операция. Операцией механической обработки детали на станке с ЧПУ называется часть технологического процесса, выполняемая над определенной деталью непрерывно на одном рабочем месте по заданной программе и при одной настройке станка.
Понятие «операция на станке с ЧПУ» ограничено условием «при постоянной настройке станка».
Операция может разбиваться на установы. Установом называется часть технологической операции, выполняемая при неизменном закреплении детали.
Операция механической обработки детали на станке с ЧПУ включает также ряд других приемов: измерение детали, смена инструмента, пуск станка и т.д.
5.2. Последовательность обработки типовых деталей и поверхностей
Проектирование технологической операции начинают с выбора последовательности технологических переходов. При обработке деталей на токарных станках с ЧПУ с закреплением их в патроне рекомендуется следующий порядок обработки:
1) центрование (для отверстий диаметром менее 20 мм);
2) сверление сверлом меньшего диаметра (если используются два сверла);
3) сверление сверлом большего диаметра;
4) черновая обработка основных поверхностей, подрезание внешнего торца предварительно и окончательно, обработка основных внутренних и наружных поверхностей;
5) чистовая обработка основных внутренних и наружных поверхностей;
6) обработка дополнительных поверхностей, расположенных в отверстии, на торце и снаружи.
При обработке с закреплением в патроне и поджатием задним центром порядок обработки следующий:
1) черновая обработка основных форм наружной поверхности;
2) черновая и чистовая обработка дополнительных форм поверхности;
3) чистовая обработка основных форм;
4) чистовая обработка дополнительных форм, не нуждающихся в черновой обработке.
При обработке корпусных деталей на многооперационных станках рекомендуется следующий порядок выполнения операций:
1) черновая обработка деталей с двух-трех сторон (в качестве базы используются достаточно большие плоскости);
2) черновая обработка остальных сторон детали с установкой по обработанным поверхностям, создание баз для последующей обработки;
3) чистовая обработка базовой и противобазовой поверхностей и всех элементов (пазов, уступов, отверстий) на этих плоскостях;
4) чистовая обработка остальных сторон детали.
Последовательность выполнения переходов зависит от их назначения (сверление, фрезерование, растачивание и др.), количества переходов, выполняемых одним инструментом, требуемой точности обработки, точности позиционирования узлов станка и многих других факторов.
Токарные операции обычно начинают с черновой обработки, содержащей несколько прямолинейных проходов. При чистовой обработке основные поверхности формируются, как правило, за один проход контурным резцом, а дополнительные — в специальных циклах.
Сочетание черновых и чистовых технологических переходов выбирается в зависимости от размеров, формы соответствующих поверхностей и требований к точности и качеству их обработки. Так, при обработке отверстий возможны две основные технологические схемы:
1) параллельная — каждый инструмент обрабатывает все отверстия одного диаметра, затем производится смена инструмента, и цикл повторяется;
2) последовательная — одно отверстие обрабатывается всеми необходимыми инструментами, затем после изменения позиционирования — следующее отверстие и т.д.
Первый вариант используется при низких требованиях к точности отверстий, второй — при высоких.
Фрезерование отверстий вместо растачивания более целесообразно при длине отверстия, не превышающей длины режущей части фрезы. Его эффективность повышается при обработке отверстий с большими и неравномерными припусками.
5.3. Выбор траекторий движения режущих инструментов
Общие положения. Траектория движения инструмента разрабатывается для так называемого центра инструмента. У резцов центр располагается обычно на их вершинах либо в центре скругления вершины, а у фрез всех видов — в точке пересечения оси инструмента с его торцовой плоскостью.
Траектория движения инструмента зависит от формы поверхностей обрабатываемой детали. При контурной обработке траектория является эквидистантой к контуру обрабатываемой детали (эквидистанта — это геометрическое место точек, равноудаленных от какой-либо линии и лежащих по одну сторону от нее).
Различные геометрические элементы соединяются в точках пересечения или касания. Точки соединения называют опорными точками (точки 1, 3—10). Опорными точками считаются также точки перехода дуги из одного квадранта в другой. Кроме того, на траектории выделяются точки, в которых изменяются технологические параметры (скорость резания, подача инструмент и т.д.). Они называются технологическими опорными точками.
Информация о перемещении инструмента от одной точки траектории к другой записывается в одном кадре управляющей программы.
При разработке траектории необходимо учитывать тип интерполятора системы ЧПУ станка. В условиях использования высокоскоростной обработки очень важны также точность отсчета координат по соответствующим осям и быстродействие системы управления станком.
Построение траекторий рабочих перемещений. При разработке технологии обработки на станках с ЧПУ одной из наиболее сложных проблем является рациональный выбор траектории рабочих перемещений инструмента на переходах. Так, при обработке криволинейной поверхности рациональной с точки зрения уменьшения программирования является траектория, показанная на схеме, приведенной на рис. 5.1, а. Это обусловлено тем, что на большей части своего пути инструмент совершает прямолинейные перемещения. В случае обработки по схеме, приведенной на рис. 5.1, б, инструмент движется в основном по криволинейным траекториям, что сложнее для программирования.
Рис.5.1. Схемы обработки криволинейной поверхности детали:
а — облегченное программирование; б — сложное программирование
Правильный выбор траекторий движения режущих инструментов позволяет сократить основное время обработки и количество инструментов в наладке.
Если деталь имеет несколько ступеней, то припуск условно делится на зоны (перпендикулярно к оси детали) и уровни. В результате образуется определенное количество элементарных участков, каждый из которых можно обозначить двумя цифрами: первая — номер уровня, вторая — номер зоны. Выбор рационального варианта зависит от протяженности зон обработки, длины холостого хода, количества проходов и т.д.
Дополнительные наружные поверхности обрабатываются как показано в табл. 5.1.
Траектории движений резца при обработке наружных дополнительных поверхностей
Эскиз обработки | Схема движений резца |
Без чистовой обработки дна | |
| |
При обработке канавок относительно больших размеров можно использовать комбинацию проходного и канавочного резцов (рис. 5.2).
Нарезание резьб производится за несколько проходов. При этом врезание может осуществляться перпендикулярно к оси детали (рис. 5.3, а, в) или параллельно профилю зуба (рис. 5.3, б, г), с постоянной (рис. 5.3, а, б) или переменной (рис. 5.3, в, г) подачей. В конце цикла можно выполнить калибрующие проходы.
Рис. 5.2. Схемы обработки широких канавок: а, б — без чистовой обработки дна; в — с чистовой обработкой дна; tx — глубина резания за один проход; А — проходы контурного резца; Б — проходы канавочного резца; п„ п2 — количество проходов соответственно контурного и канавочного резцов
Рис. 5.3. Последовательность проходов при нарезании резьбы
Инструменты для обработки дополнительных поверхностей выбирают исходя из минимальных размеров последних, а остальные аналогичные поверхности формируют с использованием дополнительных рабочих ходов.
Черновое и получистовое растачивание отверстий рекомендуется выполнять по схеме, приведенной на рис. 5.3, а, а чистовое — по схемам, показанным на рис. 5.4, б, в. При этом в первом случае возможно появление риски на поверхности отверстия при отводе инструмента. Во втором случае появление риски исключено, но инструмент выводится с рабочей подачей (т.е. медленнее). Обработка фаски выполняется по схеме, приведенной рис. 5.4, г, с выдержкой без осевой подачи в течение одного-двух оборотов инструмента; обработка карманов, уступов, торцов бобышек — по схемам, показанным на рис. 5.4, д, е.
Рис. 5.4. Схемы перемещения инструмента при растачивании отверстий:
а — черновое и получистовое; б — чистовое, когда допускается риска на обработанной поверхности; в — чистовое без риски; г — обработка фаски; д — обработка углублений; е — обработка торца бобышки; 12 — величины подвода и перебега; L — длина отверстия, DH — наружный диаметр инструмента; Dб — диаметр бобышки
При обработке отверстий стержневыми инструментами важное значение имеет правильный выбор подвода и перебега. Эти величины выбирают с учетом обеспечения минимальных холостых перемещений с рабочей подачей и плавного входа инструмента в обрабатываемое отверстие и вывода из него, характера предварительной обработки, геометрии инструмента.
В качестве исходной координаты принимается координата точки касания нижнего торца или перемычки инструмента с плоскостью, на которой расположено обрабатываемое отверстие.
Предварительное фрезерование открытых плоскостей шириной В 3D осуществляется так, что боковые стороны обрабатываются концевой фрезой за два прохода, а средняя часть — торцовой фрезой по схеме, приведенной на рис. 5.6, а.
С позиций проектирования траектории инструментов при фрезерной контурной обработке можно выделить два семейства поверхностей. В первое входят поверхности, обрабатываемые с приданием траектории вида замкнутой строки, которой обводится обрабатываемый контур. Такой путь инструмента получил название строка. Строкой обрабатываются криволинейные контуры плоских деталей. Во второе семейство входят поверхности, которые обрабатываются движением инструмента по траекториям, представляющим собой параллельные строки с противоположными направлениями или спиралеобразные. Этот вид пути инструмента получил название обход. Обходом обрабатываются выпуклые и вогнутые поверхности пространственно-сложных форм (пуансоны, матрицы и т.д.).
Частота строк S (рис. 5.6, а) должна выбираться с учетом допустимой высоты гребешков. Обработка пространственно-сложных поверхностей должна производиться обводом инструмента не по эквидистанте, а по расчетной кривой, которая может быть построена при известных Rд и h = /(Rд, Rcф).
При движении же центра сферического торца фрезы по эквидистанте к контуру плоского сечения вдоль строки происходят врезания в поверхность детали (рис. 5.6, б). Траектории инструмента при обработке пространственно-сложных поверхностей показываются по их контурам на секущих плоскостях.
Рис. 5.6. Схема образования зарезов (а) и гребешков (б) при обходе поверхности параллельными строчками
Специфичны подходы к проектированию траекторий черновых и чистовых проходов. Основное требование к черновым проходам — обеспечение равномерного припуска для чистовых проходов. Если при чистовых проходах траектория инструмента вполне определенная, то черновые проходы, особенно при обработке выборок, могут иметь самые разнообразные траектории. Такое многообразие затрудняет работу как технологов, так и программистов. Поэтому в станках с ЧПУ широко используют так называемые типовые траектории. При разработке траектории недопустимы остановка фрезы или резкое изменение подачи в процессе резания, когда режущие кромки фрезы соприкасаются с обрабатываемой поверхностью. В этом случае неизбежны повреждения поверхности (зарезы, подрезы).
На рис. 5.8 показаны два способа обвода контура. При первом способе (рис. 5.8, а) объем программирования возрастает, однако скорость контурной подачи постоянна, что обусловливает постоянство упругого отжатая фрезы. При втором способе (рис. 5.8, б) в точке А траектории скорость контурной подачи примет нулевое значение. В результате отжатие исчезнет и силы упругости приведут к врезанию фрезы.
Обвод внутреннего контура (рис. 5.9) с радиусным закруглением в вершине, равным радиусу фрезы, сопряжен с возникновением искажения (зареза) контура вследствие упругих деформаций технологической системы, поскольку значение скорости подачи в точке А равно нулю.
11 способов найти нулевую точку на вашем станке с ЧПУ
Первое, что вам нужно сделать, прежде чем вы начнете обработку детали, это сообщить станку, где находится ноль детали. Ноль детали — это точка отсчета, соответствующая координате 0, 0 на чертеже САПР, который вы использовали для всей своей работы CAM или для генерации g-кода вашей программы обработки детали. Она также называется «Program Zero», или X0Y0Z0 в программе g-code или Part Zero. Между прочим, определение местоположения нулевой точки часто называют «касанием». Каждый оператор ЧПУ станка должен уметь выполнить этот простой шаг, и часто полезно иметь более одного способа нати нулевую точку. Трудоемкость не одинакова для каждого из этих способов, и некоторые из них лучше подходят для одних случаев, а другие — для других. Понимание всего арсенала методов поможет вам стать эффективнее, выбирая лучший для каждой новой задачи.
Вот несколько методов на выбор:
Метод 1: используйте Edge Finder
Edge Finders — это, безусловно, самый распространенный способ найти нулевую деталь, поэтому мы начнем с этого. Чтобы использовать этот метод, вставьте деталь в тиски или приспособление для фрезерования. Обычно угловую часть делают нулевой. Поскольку вы будете начинать (обычно) с необработанного материала, важно оставить некоторый припуск на обработку в вашем чертеже САПР.
Edge Finders бывают разных видов, но мы сгруппируем их по механическим и электрическим категориям. Электрические кромкоискатели загораются и / или издают звуковой сигнал при контакте с заготовкой. Они полагаются на то, что заготовка является электропроводной, поэтому цепь замыкается, когда кромкоискатель касается заготовки. Вот типичный электрический кромкоискатель:
Подобные электрические кромкоискатели чрезвычайно просты в использовании и относительно дешевы. Основные их недостатки, низкая точность у тех, где есть подвижные шарики, и чрезмерная хрупкость у тех где нет подвижных частей. Их довольно легко сломать, если вы двигаетесь слишком далеко или слишком быстро.
Механические кромкоискатели существуют уже давно. Они работают, вращаясь на довольно низких оборотах (осторожно!), И когда вы чуть-чуть проезжаете край, они «выскакивают». Это видео от Tormach дает отличный пример механических и электронных кромкоискателей в действии:
При использовании кромкоискателя, вы просто ищите кромку, соответствующую каждой оси, X и Y, и обнуляете координаты станка. Обратите внимание, что при обнулении необходимо учитывать радиус наконечника!
Метод 2: используйте 3D-тестер
Я заплатил больше, когда купил свой — на самом деле, намного больше, так как сначала я купил дешевый китайский клон, пожалел об этом, а затем купил настоящую вещь. Это популярный, но чрезвычайно точный и простой в использовании кромкоискатель. Вы вставляете его в свой шпиндель и используете, чтобы найти нулевую точку детали, кромки, углы, щечки тисков и всевозможные другие общие задачи настройки. Секрет популярности в том, что этот способ быстрее и проще, чем другие методы.
Эти прецизионные измерительные инструменты немецкого производства настолько удобны для выполнения множества задач по настройке, что я постоянно держу один в держателе инструмента и видел, как многие другие специалисты с ЧПУ делают то же самое.
Для поиска Part Zero используйте 3D Taster так же, как и кромкоискатели.
Метод 3: выберите фиксированное место на тисках или приспособлении
Это мой любимый метод, потому что он требует меньше всего времени и усилий для каждой настройки, хотя требует небольшой предварительной настройки один раз.
В двух других методах вы должны находить нулевую точку каждый раз, когда вы устанавливаете новую деталь на станок. С помощью этого метода вы найдете нуль один раз, потому что он связан с удержанием заготовки. Приведу пример. Предположим, вы используете угол фиксированной губки тисков:
Это огромная экономия времени, потому что большую часть времени тиски находятся на вашем рабочем столе. Пока вы проектируете свои детали с идеей, что угол губок тисков представляет собой нулевую точку, вы можете вставить деталь в губки и начать обработку без измерения нулевой точки детали, по крайней мере, без измерения X и Y. В Измерить и обнулить начало координат вам необходимо только если тиски двигаются или вы меняете исходное положение. Возможно, вам придется провести повторные измерения, если на ваших машинах также отсутствуют переключатели исходного положения. Но в любом случае, вы будете устанавливать ноль детали намного реже, и это сэкономит ваше время.
Метод 4: Чтобы найти нулевую точку используйте какой-либо стоп
На картинке выше показан стопор тисков, который я сделал давным-давно. Вы можете установить упор, чтобы повторно выставить деталь по некоторому нулю, относительно которого вы выставляете заготовку.
Вы можете разместить упоры на крепежной пластине. Наконец, вы даже можете получить стопы, которые подходят для Т-образных пазов, например, такие:
Метод 5: используйте камеру или прицел чтобы найти нулевую точку
Центрирующие прицелы существуют уже давно, и при достаточном внимании и увеличении они могут быть довольно точными:
Предупреждаю, что эти центрирующие прицелы трудно увидеть. Иногда оптика не ахти и изображение может быть довольно тусклым. Помогает достаточное освещение, возможно, от дополнительной лампы. Но более современный подход — использовать цифровую камеру с увеличением. Этот снимок центрирующего прицела фрезерного станка Beatty Robotics:
Обратите внимание, что камера смещена от оси шпинделя. Это смещение фиксировано и может быть учтено при обнулении. Есть также камеры, которые устанавливаются прямо в держателе инструмента и смотрят вниз по оси шпинделя.
Метод 6: обнуление элемента детали
Это не полностью независимый метод, потому что вам нужно использовать один из других методов для правильного определения местоположения детали. Но это чрезвычайно полезно для второстепенных операций и случаев, когда вам нужно положить на машину что-то для ремонта или переделки, а не грубый кусок материала. Идея сводится к нулю какой-то особенности детали. Например, мы использовали точечное сверление ямочки с цифровой камерой выше. Фактически, определение местоположения отверстий может быть выполнено очень точно, так что это довольно распространенный тип функции. Конечно, функция не обязательно должна быть нулевой. Он просто должен быть расположен по известному смещению, чтобы после того, как вы нашли элемент, вы могли применить смещение, чтобы получить ноль детали.
Метод 7: бумага Endmill Plus, датчик или измерительный блок
Поиск нулевой детали с помощью концевой фрезы — еще один очень распространенный подход. Идея состоит в том, чтобы подойти к детали с помощью концевой фрезы и использовать какую-либо прокладку, чтобы концевая фреза фактически не контактировала с деталью. Обычные прокладки включают лист бумаги, щуп или измерительный блок. За исключением бумаги, шпиндель должен оставался неподвижным.
Однажды я провел несколько экспериментов, чтобы попытаться определить, насколько точен такой метод. Вот что я нашел из нескольких методов касания в Z:
Прикосновение на ощупь : для моего 1-го метода при остановленном шпинделе подведите резак на верхнюю часть заготовки. Обнулите УЦИ и двигайтесь оттуда. Это дало результат с ошибкой 0,3 мм. Не очень хорошо! Ошибка была относительно повторяемой. В итоге разрез оказался на 0,3мм дюйма глубже, чем хотелось. Это также не особенно хорошо для фрезы или подшипников шпинделя, если вы не будете осторожны.
Отключение по звуку : во второй попытке я осторожно опустил шпиндель под напряжением и прислушался, когда резак начал резать. Этот метод оказался немного более точным, и в результате получился разрез на 0,2 мм. Все еще не очень хорошо.
Прикосновение к бумаге : традиционный метод старой школы заключается в том, чтобы держать кусок сигаретной бумаги (по слухам, толщиной ровно 0,1 мм) на заготовке и постепенно опускать резак, пока он не начнет захватывать бумагу. Добавьте еще 0,01мм, и вы на нуле! Не имея сигаретной бумаги, я использовал стандартную бумагу для лазерных принтеров. Я отрезал полоску шириной 20 мм, чтобы я мог держаться за один конец с безопасного расстояния, и ждал, пока резак схватится. В моем случае я получил 0,25, а не 0,1 ″, но, по крайней мере, это было красивое круглое число и довольно повторяемое.
Устройство предварительной настройки оси Z : Последним в тестах был дешевый модуль предварительной настройки оси Z, который я купил на eBay.
Как это работает? Просто! Если вы нажмете пальцем на наковальню сверху до упора, у вас будет ровно 2 дюйма от верха наковальни до низа гаджета. В этом положении вы поворачиваете циферблат до нуля. Установите его на заготовку, опустите резак, пока игла не зарегистрируется, обнулите стрелку, обнулите координаты, и вы должны быть точно на 2 дюйма выше того места, на котором находится устройство предварительной настройки.
Так что, не ожидая многого, я поставил устройство на мой алюминиевый куб в тисках на столе и повернул головку, пока фреза почти не коснулась. Заблокировал шпиндель и проворачивал стрелку с точной регулировкой до тех пор, пока стрелка не обнулилась, обнулил мою нулевую точку, снял устройство предварительной настройки, отмерял еще 2 дюйма с помощью точной настройки, снова обнулил УЦИ, прибавлял 0,010 дюйма для ровного разреза.
Желаемый результат — 2,396 дюйма. Я опустил высотомер, чтобы снять показания, которые были, пожалуйста, барабанная дробь 2.396 ″! Святая сверхъестественная точность, Бэтмен! Китайский предустановщик действительно работал, и он работал хорошо, и хотя стрелка прошла 2 дюйма, а я ожидал худшего, все получилось правильно.
Есть более дорогие и гораздо более приятные и точные устройства, чем то, что есть у меня, поэтому я не вижу ценности в других методах, которые я пробовал. Я скажу, что измерительный блок может быть очень точным. Просто убедитесь, что вы используете првильно Не совершайте толчковые движения с установленным измерительным блоком, так как это плохо для измерительного блока и фрезы.
Метод 8: Найти нулевую точку с помощью лазерного прицела
Этот метод очень нагляден, но не очень точен. Для того чтобы найти нулевую точку. Вы можете установить дешевый лазер в оправку, которая будет проецировать красивое красное лазерное пятно на вашу заготовку, находящуюся на оси шпинделя.
Метод 9: зонд с ЧПУ
Я оставил лучшее напоследок — высококачественный датчик с ЧПУ автоматизирован и может быть более точным, чем любой другой метод. Зонды входят в шпиндель и используют наконечник щупа для измерения детали:
Метод 10: Найти нулевую точку «На глазок»
Используя этот метод, вы написали свою программу обработки детали, предполагающую, что деталь находится на некотором расстоянии внутри заготовки. Это расстояние определяет, насколько точно вы должны определить нулевую точку детали.
Если программа обработки детали написана так, что деталь находится на 4 мм внутри заготовки, нам нужно только убедиться, что заготовка достаточно велика, и что ноль детали заготовки находится в пределах 4 мм от фактическая нулевой точке. Это такая большая погрешность, что вы легко можете увидеть ноль.
Бонус: метод 11: используйте машину для остановки
Вот метод, предложенный нашими читателями — спасибо, ребята!
Вставьте штифт в держатель инструмента, установите его в соответствии с программой обработки детали и позвольте штифту быть упором, когда вы вставляете деталь в тиски. Вам нужно будет компенсировать диаметр штифта в вашей программе.
Это позволяет легко изготавливать детали, которые намного короче или намного длиннее, чем ваши губки тисков. Я делаю нечто подобное на своем токарном станке с ЧПУ все время, когда устанавливаю инструмент так, чтобы я мог подтянуть пруток вверх и использовать инструмент в качестве упора для начала новой детали.
Заключение
Теперь у вас есть 11 способов найти нулевую точку для ваших проектов с ЧПУ. У каждого есть свои сильные и слабые стороны. Есть еще много других методов. Поиск нулевой детали для некоторых видов 5-осевой работы или работы с деталями сложной формы может быть очень сложной задачей.
Расскажите нам, какие ваши любимые методы, которые мы упустили, в комментариях — поделитесь опытом ваших собственных специальных приемов.