Для чего нужен автопилот
АВТОПИЛО́Т
Скопировать библиографическую ссылку:
АВТОПИЛО́Т (от авто. и франц. pilote; от ср.-век. греч. πηδώτης – рулевой, кормчий), система устройств и программно-аппаратный комплекс для автоматического управления транспортным средством по определённой, заданной ему траектории. Для летательных аппаратов (самолёт, вертолёт) с целью сохранения заданного режима полёта авиационный А. обеспечивает автоматическую стабилизацию угловых (тангаж, крен, рыскание) и курсовых (высота, скорость, направление) параметров движения летательного аппарата (ЛА), а также заданную траекторию полёта (заход на посадку, посадка); при директорном управлении формирует командные сигналы, отслеживаемые (выполняемые) пилотом. Действие А. основано на принципе обратной связи: А. формирует управляющие сигналы на основе рассогласования текущих значений стабилизируемых параметров с их заданными значениями. А. включает в себя пульт задания режимов полёта; датчики, определяющие текущее положение ЛА в пространстве; устройства, формирующие управляющие сигналы; исполнительные рулевые машинки, или сервоприводы. Например, во время полёта самолёта в автоматическом режиме при отклонении какого-либо контролируемого параметра от заданного значения приводятся в действие аэродинамические органы управления самолётом (рули направления и высоты), восстанавливающие заданный режим полёта. Первый А. с гироскопическими датчиками создал Э. Сперри (США) в 1912–14; он обеспечивал автоматическое удержание курса полёта и стабилизацию крена. Первый отечественный А. разработан в 1932. В 1947 самолёт C-54 ВВС США совершил трансатлантический перелёт полностью под управлением А. (включая взлёт и посадку).
Для чего нужен автопилот
Не для кого не секрет, что все больше производителей автомобилей смотрят в сторону автономного управления транспортом. Появления полностью беспилотной машины лишь вопрос времени. Такие гиганты как Tesla вовсю внедряют автоматическое управление машиной, при помощи компьютера и вскоре мы увидим, как машина самостоятельно смоет передвигаться по любым дорогам и доставлять человека в любую точку на карте, без единого прикосновения приборов управления транспортом.
Для чего же нужен автопилот
Преимущество использования автопилота может быть неоспоримым. Мелочи, на подобии автоматической парковки, были придуманы еще до Tesla и разрекламированы по всему миру. Основными целями автопилота должны быть безопасность и комфорт.
Под комфортом можно подразумевать полное расслабление в дороге, отвлечение от напряженного управления транспортом. Вспомните хотя бы, как тяжело стоять в пробке, где постоянно приходится выдавать алгоритм: газ- тормоз. А теперь представьте себе, каково сидеть в машине, которая сама трогается вместе с потоком и сама останавливается, и все, что Вам необходимо, это указать машине, куда она должна Вас доставить. Машина сама проедет пробку (вероятно даже выстроит маршрут, по которому можно будет объехать затор), сама припаркуется и будет ждать дальнейших указаний!
Что касается безопасности, то не для кого не секрет, что компьютер всегда был и будет стремительнее в принятии решения, чем человеческая реакция. Вспомним, что стоп- сигналы на автомобили стоят не просто так, а потому, что человеческий мозг быстрее воспримет информацию, о том, что идущая впереди машина начинает тормозит при загоревших ярким светом красных огней, чем если бы сигналов не было и мозг не сразу бы воспринял то, что машина замедляет ход и он сейчас идет на сближение. Компьютер же в этом случае еще быстрее, и начать сбавлять ход он может практически мгновенно, как только датчики зафиксируют сокращение дистанции между автомашинами.
Возьмем другую ситуацию. Человек поехал на зеленый сигнал светофора, и будучи уверенным, что у него преимущество, расслабил бдительность и не заметил, как не особо одаренный мозгом водитель, летит на красный свет по перпендикулярной улице. Секунда, и мы видим страшное ДТП, возможно даже со смертельным исходом. А теперь представьте себе, что у машины стоял автопилот. Компьютер не растеряет бдительность и зафиксировав быстро приближающийся автомобиль, притормозит, избежав аварии. Что уж говорить, если бы автопилот стоял у машины, ехавшей на красный, и предположим, что компьютер в принципе не дал бы проехать машине на запрещающий сигнал светофора, и не позволил бы ей разогнаться.
Конечно же, приведенные выше примеры, относятся не только к автопилоту. Современные машины обладают бортовым компьютером, следящим за положением на дороге и помогающем водителю. Но речь идет о перспективе полного автоуправления автомобилем. Почти все сто процентов произошедших ДТП на дорогах, так или иначе связаны с человеческим фактором, и лишь малая толика случаев, связаны с техническими неисправностями авто, случившихся внезапно. Компьютер же сможет минимизировать количество ДТП. Например, по данным из доклада правительства США в 2017 году, автопилот Tesla сократил количество ДТП с участием машин данной марки на 40%. Теперь представьте себе, если автопилоты будут стоять на всех машинах, и будут они куда совершенней нынешних прототипов.
Да, опасение сбоя в электронике имеют место быть. Но техническая неисправность может случиться с любой машиной, что войдет именно в этот малый процент случаев ДТП. Если же сбой произойдет в самом программном обеспечении, то это по существу, опять же человеческий фактор, так как именно разработчики ПО не уследили за недоработкой. Но как бы цинично это не звучало: каждое ДТП, совершенной из- за несовершенства ПО, будет вносить свой вклад в развитие автопилота, так как информация о баге будет отправлена в центр, где его быстро исправят и выкатят обновление на все действующие автопилоты. С человеком же такого проделать не получится. Если водитель проехал на красный свет, нельзя это пофиксить и заставить все других водителей перестать это делать, а автопилот можно!
Думаю, основное предназначение автопилота будет дальня поездка. Как и с авиацией, где автопилот позволяет пилотам хоть немного расслабиться в дальнем перелете, так и с автомобилями. Например, дальнобойщик может хоть немного расслабиться в дальней поездке, что повысит производительность и минимизирует ДТП, случившемся из- за невнимательность, возникающей при переутомлении.
Как бы то ни было, будущее, описанной многими фантастами, неумолимо приближается, и мы стоит у самых его истоков, наблюдая за всем из первых рядов. Уже совсем скоро, мы увидим, как транспорт передвигается по дороге абсолютно без помощи человека. Одним из направлений, над которым работают в настоящий момент, это беспилотный общественный транспорт. Уже можно представлять, как электробусы без водителя и, возможно, без кондуктора будут колесить по городам, развозя его жителей с феноменальной пунктуальностью и безопасностью!
По сути, неразрешенным вопросом остается выявление ответственной стороны, если ДТП все же свершится из- за автопилота. Кто будет возмещать ущерб и отвечать по закону, владелец авто или его разработчик? Пусть этот вопрос решают в правительствах, а мы будем наблюдать и верить, что в будущем, автопилоты будут на столько совершенны, что по их вине не свершится ни одной аварии на дорогах.
Как работает автопилот в машине
У компьютера нет органов чувств в привычном для человека понимании, но все же он «видит» все, что происходит на дороге, как в прямом так и в переносном смысле, а кое в чем, его «зрение» превосходит человеческое. Разберем автопилот на примере все той же машины от Tesla.
По сути автопилот опирается на четыре элемента отслеживания дороги и ситуации на ней. GPS-трекер следит за правильным выполнением все работ других устройств, для избегания некорректных действий. Радар отслеживает другие машины вокруг транспорта, причем на данный момент, ему не помеха погодные условия, такие как ливень, туман и т.п. К тому же радар способен отследить различные объекты сквозь препятствия, например, находящимися за другой машиной. Ультразвуковые сенсоры так же предназначены для фиксации объектов вокруг машины, и к тому же они способны определить плотность данных объектов. На данный момент машины Tesla оснащены 12 такими датчиками по всему периметру машины. Камеры, в количестве 8 штук, размещенные так же по периметру машины, позволяют компьютеры отслеживать все, что происходит вокруг машины на 360°. Так же фронтальная камера определяет разметку на дороге и дорожные знаки!
Центральный компьютер анализирует все полученные данные и на их основе совершает то или иное действие. Например, двигаясь по трассе, водителю достаточно включить поворотник, что бы машина поняла, что нужно перестроиться в другую полосу движения. Но вот перестроится ли она? Вот в чем вопрос! Дело в том, что даже при команде водителя перестроиться в другой ряд, компьютер проанализирует ситуацию вокруг машины и примет решения, безопасно ли перестраиваться в данный момент. Например датчики могут зафиксировать быстрое приближения маши позади на соседнем ряду и компьютер просто откажется выполнять опасный маневр, который может привести к ДТП. Это лишь малое достоинство нынешних автопилотов, но подобных достоинств огромное множество и становится их все больше и в скором времени водителю необязательно будет давать команду на перестроение, а компьютер сам решит, нужно это или нет!
Что мы имеем по итогам
Безусловно, автопилот в машине, это совсем уже ближайшее будущее. Безопасность движения, автопилот повышает в разы. Конечно же, каждый задастся вопросом, доверится ли он бездушной машине, или все же решит сам управлять машиной. Но давайте посмотрим правде в глаза, недоверие компьютеру стоит лишь в ключе собственного авто. Каждый водитель моет заявить, что он побоится отдать управление своим транспортом компьютеру, но он не был бы против, если компьютер управлял машиной, которая только что пролетела на запрещающий сигнал светофора, или так, что только что подрезала его на трассе! Все довольно относительно, и лишь время покажет, друг нам автопилот или еще одна головная боль дорожной полиции!
Автопилот в самолете
Зарождение авиастроения много чего изменило в конструкции самолетов и их управлении. Еще 20-30 лет назад такой прибор, как автопилот, был неизвестен практически никому. За эти годы ситуация в корне изменилась. Большую часть полета управление огромными пассажирскими авиалайнерами осуществляют именно автопилоты. Можно сказать, что пилот активно участвует только на рулении и взлете, после чего передает управление системе. Также нужно вмешательство пилота при посадке судна. Бортовой компьютер самолетов значительно упрощает задачи в управлении и контроле.
Пилоты современных моделей «Эйрбаса» часто шутят, что для управления новыми моделями пассажирских лайнеров достаточно собаки и одного человека. Собака необходима, чтобы кусать пилота, чтобы тот не тянулся к рычагам и кнопкам управления, а человек нужен для того, чтобы кормить пса. Конечно же, это шутка, которая появилась за счет современных систем управления, таких как fly-by-wire, иными словами, это радиодистанционное управление аппаратом. Оно позволяет обеспечить передачу сигналов от самого пилота к механизмам лайнера в виде электрических сигналов. Это значит, что вместо использования старой гидравлики пилоты осуществляют управление, посылая сигналы через компьютер к отдельным механизмам машины.
Что же такое автопилот в широком понимании данного термина? Это программно-аппаратная система, которая имеет возможность вести транспортное средство по заданному маршруту. С каждым годом инноваций становится все больше во многих отраслях транспортного строения. Все же лидирующие позиции занимает воздушный транспорт.
Автопилот самолета создан для стабилизации всех параметров полета судна и ведения по заданному курсу. При этом соблюдается установленная пилотом скорость и высота полета. Перед тем как переводить летательный аппарат на режим автопилота, необходимо создать четкий полет без скольжения или завала машины. После стабилизации самолета по всем плоскостям можно производить включение системы автоматического управления, но при этом необходимо проводить регулярный контроль показателей. Стоит отметить, что и военные самолеты имеют такие системы.
Более сложные в своей конструкции и надежные автопилоты начали устанавливаться на отечественные самолеты с конца 70-х годов.
Краткая история создания автопилота
Первый автопилот в мире был создан еще в далеком 1912 году. Изобретение принадлежит американской компании Sperry Corporation, которая смогла создать систему, удерживающую самолет на заданной траектории, при этом стабилизируя крен. Это было достигнуто за счет связи высотометра и компаса с рулями направления и высоты. Связь была настроена за счет использования блока и гидравлического привода.
На схеме показано, как работает типичный автопилот.
Заранее рассчитанные параметры полета вводятся в компьютеры самолета (1).
После взлета автопилот вступает в действие.
Два дисплея(2)показывают положение самолета, его предполагаемый маршрут и высоту.
Изменение положения маленьких заслонок(3) на наружной поверхности самолета оповещает компьютеры о малейшем изменении в ориентации самолета.
Для определения положения используется глобальная система навигации (ГСН) (4).
Приемник расположен на верхней части корпуса (5).
Компьютеры следят за маршрутом и автоматические производят необходимые изменения посредством сервомеханизмов (6),
которые управляют рулем (7),
и настройкой дросселей двигателей (11)
При необходимости пилот может в любой момент отключить автопилот и перейти к ручному управлению (12)
Начиная с 30-х годов 20 века, автопилотами начали оснащать некоторые пассажирские авиалайнеры. Новый виток в развитие автоматических систем управления внесла Вторая мировая война, которая требовала подобных технологий для дальних бомбардировщиков. Впервые полностью автоматический полет через Атлантику, включая посадку и взлет, осуществил самолет C-54, принадлежавший США. Это произошло в 1947 году.
Современный этап развития автоматизированных систем управления самолетами достиг качественно нового уровня. На сегодняшний день лайнеры комплектуются системами ВБСУ или САУ. Система автоматического управления «САУ» осуществляет качественную стабилизацию судна на маршруте и в пространстве. Совокупность агрегатов системы позволяет управлять аппаратом на всех этапах полета. Самые современные разработки позволяют осуществлять полет в так называемом штурвальном режиме, это позволяет максимально облегчить работу пилота, минимизировать его вмешательство. Такие системы самостоятельно стабилизируют самолет от сноса, скольжения или болтанки, могут переходить даже на критические режимы полета, при этом очень часто игнорируя действия пилотов.
Автопилот самолета ведет аппарат по заданному маршруту, при этом используется комплексная информация навигационных приборов собственных и наземных датчиков, которые проводят анализ полета. Данная система проводит управление всеми агрегатами летательного судна. Также работают траекторные системы, которые проводят заход на посадку с высокими показателями точности без каких-либо действий пилотов.
Управляющие устройства в стандартном их виде (рычаги, педали) практически не используются. Высокая степень автоматизации довела управление до подачи электрических импульсов ко всем частям самолетов без применения гидравлики в системе управления. Электромеханические приборы управления позволяют воссоздать более привычные условия пилотам. В кабинах пилотов все чаще устанавливаются боковые рычаги управления по типу «сайдстик».
Проблемы автоматического управления самолетами
Конечно же, первоочередной и самой главной проблемой при создании автопилотов является сохранение безопасности полета. В большинстве старых автоматических систем управления пилот имеет возможность в любое время произвести срочное отключение автопилота и перейти на ручное управление. При нарушении или поломке автопилота крайне необходимо отключение системы обычным способом или механическим. В аппарате Ту-134 возможно проведение «отстрела» автопилота установленным пиропатроном. При разработке автопилота тщательно продумываются варианты его отключения в случае поломки без вреда для полета.
Для повышения безопасности автоматика управления работает в многоканальном режиме. Параллельно могут работать сразу четыре системы пилотирования с одинаковыми параметрами и возможностями. Также система проводит постоянный анализ и мониторинг входящих информационных сигналов. Полет осуществляется на основе так называемого метода кворумирования, который состоит из принятия решения по данным большинства систем.
В случае поломки автопилот способен самостоятельно выбрать дальнейший режим управления. Это может быть переключение на другой канал управления или передача управления пилоту. Для проверки работы систем необходимо проводить так называемый предполетный прогон систем. Данный тест состоит из запуска пошаговой программы, которая подает имитацию сигналов полета.
Все же ни одна проверка не позволяет достичь 100%-й гарантии безопасности и работы в полете. Из-за нестандартных ситуаций в воздухе могут возникать дополнительные проблемы с автоматикой управления. Некоторые автопилоты имеют различные программы, которые позволяют наиболее безопасно проводить полет соответствующего авиалайнера.
Все же полет на одном автопилоте без человеческого фактора очень опасен и практически невозможен. Можно сделать один логический вывод, что чем «умнее» самолет и сложнее его конструкция, тем меньше шансов на полет без человеческого вмешательства. Чем больше новых автоматизированных систем используется, тем значительнее возрастают шансы на их отказ в полете. Просчитать все варианты отказа практически невозможно. Именно поэтому навыки пилота останутся востребованными постоянно, поскольку каждый летчик проходит очень большой путь к управлению пассажирскими лайнерами. Соответственно, навыки и быстрое принятие решений остаются более важными, нежели действия компьютерных программ.
Самые современные системы автоматического управления типа fly-by-wire позволили значительно снизить общую массу конструкции самолета. При этом надежность бортовых систем возросла в разы. Оборудование реагирует без промедлений, а также способно исправлять ошибки, вызванные человеческим фактором при управлении. Это говорит о том, что система не позволит пилоту завести машину в опасную для нее и пассажиров на борту ситуацию. Современные самолеты типа Airbus перестали комплектоваться стандартными рычагами и педалями управления, вместо этого устанавливаются джойстики. Все это позволяет пилотам не задумываться над тем, какую команду и как необходимо передать отдельному агрегату. Не нужно продумывать угол отклонения элеронов или закрылок, достаточно наклонить джойстик управления – и компьютер сделает все сам.
Все же, несмотря на всю радужную картину, по вине автопилотов произошло немало крушений и аварий, которые привели к человеческим жертвам. История авиакатастроф по вине автоматических систем управления, к сожалению, очень богата фактами ненадежности таких систем.
Автопилот
Автопилот — устройство или программно-аппаратный комплекс, ведущий транспортное средство по определённой траектории. Наиболее часто автопилоты применяются для управления летательными аппаратами (в связи с тем, что полёт чаще всего происходит в пространстве, не содержащем большого количества препятствий), а также для управления транспортными средствами, движущимися по рельсовым путям. Современный автопилот позволяет автоматизировать все этапы полёта или движения другого транспортного средства.
Содержание
Автопилот в авиации
Авиационный автопилот предусматривает автоматическую стабилизацию параметров движения летательного аппарата (автопарирование возмущений по курсу, крену и тангажу) и в качестве дополнительных функций — стабилизацию высоты и V скорости. Предварительно, перед включением автопилота в работу, летательный аппарат выставляется в стабилизированный полёт без тенденции к завалам и скольжению, то есть стабилизируется по трём осям (по курсу-крену-тангажу) триммерами. После включения автопилота требуется периодический контроль его работоспособности и периодическая корректировка дрейфа рулевых машин, обусловленная несовершенством схемы и параметрическим разбросом комплектующих. На военных машинах управление самолётом по крену через автопилот может передаваться штурману, через бомбовый прицел, для разгрузки лётчика в процессе прицеливания и бомбометания.
В общем, классические автопилоты в современной авиации установлены на довольно старых машинах. Начиная с 1970-80-х годов, в СССР строились вполне сложные многофунциональные структуризированные системы автоматического управления летательными аппаратами.
История разработки и внедрения автопилота в авиации
В современной авиации
В современной авиации более глубокое развитие автоматизации полёта получили системы автоматического управления (САУ или АБСУ) и более сложные структурированные комплексы. САУ, помимо стабилизации самолёта в пространстве и на маршруте, позволяет также реализовать программное управление на различных этапах полёта. Наиболее сложные системы автоматического управления берут на себя значительную часть функций по управлению самолётом в «штурвальном режиме», делая управление для лётчика лёгким и единообразным, парируя болтанку, предотвращая сносы, скольжения, выходы на критические режимы полёта и даже запрещая или игнорируя некоторые действия лётчика. Система управления в автоматических режимах ведёт самолёт по заданному маршруту (или реализует более сложную подпрограмму боевого применения), используя пилотажно-навигационную информацию от группы собственных датчиков, самолётных систем, наземных радионавигационных средств или даже выполняя команды бортового оборудования соседнего самолёта (некоторые боевые летательные аппараты могут работать в паре или группой, постоянно обмениваясь тактической информацией по радиоканалам, вырабатывая тактику совместных действий и выполняя полётное задание в автоматическом или, что происходит чаще, полуавтоматическом режиме). Подсистема траекторного управления позволяет выполнять заход на посадку с высокой точностью без вмешательства экипажа. В качестве управляющих органов уже давно стараются не применять рулевые машины, включённые в проводку управления, а используют прямое управление рулевыми агрегатами, подмешивая управляющие сигналы от системы автоматического управления в сигналы от штурвала (или ручной системы управления). На органах управления применяется довольно сложная электромеханическая система имитации загрузки для создания лётчику привычных усилий. В последнее время от этой практики постепенно отходят, резонно считая, что как ни имитируй, всё равно большая часть процесса управления воздушным судном автоматизирована. Всё чаще в кабинах современных самолётов применяются боковые ручки управления типа «сайдстик».
Проблемы систем автопилотирования
Основной проблемой при построении автопилотов и автоматических систем управления является безопасность полёта. В простейших и не только авиационных автопилотах предусматривается быстрое отключение автопилота лётчиком при нарушениях его нормальной работы, возможность «пересиливания» рулевых машин ручным управлением, механическое отключение рулевых машин от проводки управления и даже «отстрел» пиропатронами (Ту-134). Системы автоматического управления изначально проектируются с расчётом на отказы с сохранением основных функций работы, и предусматривается комплекс мер для повышения безопасности полёта. Системы автоматического управления проектируются многоканальными, то есть параллельно работают два, три и даже четыре абсолютно одинаковых канала управления на общий рулевой привод, и отказ одного-двух каналов никак не влияет на общую работоспособность системы. Система контроля постоянно отслеживает соответствие входных сигналов, прохождение сигналов по цепям и выполняет непрерывный контроль выходных параметров системы автоматического управления в течение всего полёта, как правило, по методу кворумирования (голосование большинством) или сравнения с эталоном. В случае возникновения какого-либо отказа система самостоятельно принимает решение на возможность дальнейшей работы режима, его переключения на резервный канал, дублирующий режим или передачи управления лётчику. Хорошим способом проверки общего контроля исправности системы автоматического управления считается предполётный тест-контроль, осуществляемый методом «прогона» пошаговой программы, подающей стимулирующие имитационные сигналы в различные входные цепи системы, что вызывает фактические отклонения рулевых и управляющих поверхностей самолёта в различных режимах работы.
Тем не менее, даже полная предполётная проверка автоматической системы управления с программным тест-контролем не может дать 100 % гарантии исправности системы. В связи с большой сложностью некоторые режимы просто невозможно симулировать в наземных условиях.
Автопилот в других транспортных средствах
Понятие «автопилот» (иногда в жаргонной форме) включает в себя, помимо классического авиационного автопилота, также и системы автоматического пилотирования, вождения или управления всевозможными шагающими, колёсными, плавающими или крылатыми машинами (роботами) и развивающиеся системы автоматического управления автомобилем в условиях шоссе. Примером канала автоматического управления автомобилем может служить система стабилизации текущей скорости движения, известная как «круиз-контроль» («автоспид», «автодрайв»)
См. также
Автоведение — система автоматического управления поездом.