Для чего нужен энергетический обмен
Обмен веществ — это все химические реакции, происходящие в клетках живых организмов, его еще называют метаболизмом. Он разделяется на анаболизм и катаболизм, то есть энергетический обмен. Первый подразумевает образование из простых химических соединений более сложных. Этот процесс еще называется пластическим обменом. Для его осуществления необходима энергия, которая получается клеткой за счет катаболизма. С помощью этого процесса клетка синтезирует необходимые нуклеиновые кислоты, белки, полисахариды и тому подобное. Все эти вещества могут выступать в роли строительного материала для клетки и организма в целом, выполнять функцию ферментов, гормонов и т. д. На втором процессе — энергетическом обмене — мы остановимся более подробно.
Что такое катаболизм?
Энергетический обмен — это процесс, на протяжении которого вещества, имеющие сложную структуру, расщепляются на более простые либо окисляются, вследствие чего организм получает энергию, необходимую для жизни. Катаболизм включает в себя несколько этапов, на протяжении которых происходят различные химические реакции. Их выделяют три.
Этапы энергетического обмена
Перечисляя этапы катаболизма, можно выделить подготовительный, анаэробный (без участия кислорода) и аэробный (с применением оксигена).
Подготовительный этап
В это время сложные молекулы таких соединений, как белки, углеводы и липиды, расщепляются на более простые, также на этом этапе полимеры превращаются в мономеры. Данный процесс происходит вне клетки, в органах пищеварительной системы. В этом участвуют желудочный сок и разнообразные ферменты. Кислород на этом этапе для реакций не требуется. В результате реакций, произошедших в это время, белки денатурируют и распадаются на аминокислоты, сложные углеводы превращаются в простые моносахариды, из липидов образуется глицерин и высшие кислоты. Часть процессов данного этапа происходит также в лизосомах клетки под воздействием ферментов гидролаз.
Второй этап — анаэробное брожение
Реакции, которые происходят на этой стадии, и их использование
Примером химических реакций, которые проходят на этой стадии, можно назвать самую распространенную — спиртовое брожение. Это процесс расщепления глюкозы либо фруктозы под воздействием специальных ферментов, при котором выделяется углекислый газ и этиловый спирт, а также образуются молекулы АТФ. Уравнение данной химической реакции выглядит так: С6Н12О6 = 2С2Н5ОН + СО2 + 2АТФ. Именно организмы, использующие такую реакцию для получения необходимой энергии, применяются в промышленности для изготовления спиртных напитков. В результате процесса, который используют для получения энергии молочнокислые бактерии, образуется молочная кислота. Уравнение выглядит следующим образом: С6Н12О6 = С3Н6О3 + 2АТФ. В клетках животных и грибов распространена реакция, в результате которой выделяется пировиноградная кислота. Этот процесс выглядит так: С6Н12О6 = 2С3Н4О3 + (4Н) + 2АТФ.
Третий и последний этап — клеточное дыхание
Он происходит в митохондриях. На этой стадии осуществляется окисление веществ, за счет чего высвобождается определенное количество энергии. В такого рода процессах, как уже можно было догадаться, принимает участие кислород.
Как в атмосфере образуется кислород?
В связи с тем, что основным процессом, в котором и заключается энергетический обмен у животных, некоторых бактерий и грибов, является именно клеточное дыхание, кислород для этих организмов жизненно необходим. А такому высокому его содержанию в атмосфере нашей планеты мы обязаны растениям — легким Земли.
Какие органеллы клетки принимают участие в энергетическом обмене?
В первую очередь это митохондрии, именно в них и происходит весь процесс клеточного дыхания. На их кристах окисляются вещества, которые были получены в процессе анаэробного брожения, то есть на втором этапе энергетического обмена. Также это лизосомы, уже неоднократно упомянутые в тексте. Они содержат в своей полости, ограниченной мембраной, ряд необходимых для всех реакций ферментов. В цитоплазме клетки с помощью этих органоидов происходит процесс неполного окисления (гликолиза) органических соединений. Продукты, образованные на этом этапе при участии ферментов, содержащихся в лизосомах, служат сырьем для последующего клеточного дыхания, происходящего в митохондриях. Кроме того, в этих процессах принимают участие микротрубочки, которые транспортируют вещества по клетке, а также плазматическая мембрана, которая содержит специальные белки, переносящие из окружающей среды в цитоплазму определенные нужные для энергетического обмена химические соединения.
Энергетический обмен
Обмен веществ
Энергетический обмен
Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).
Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.
Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.
Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).
Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.
Пластический обмен
АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.
В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Энергетический обмен человека
Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.
У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.
Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.
«Человеческий организм является “машиной”, которая может освобождать химическую энергию, связанную в “топливе” пищевых продуктов; этим “топливом” являются углеводы, жиры, белки и алкоголь» (ВОЗ).
Преимущественное использование любого из перечисленных источников имеет разные характеристики по величине энергетического обмена и сопутствующих метаболических сдвигов.
Особенности различных метаболических источников пищевого энергетического обеспечения
Высвобождение тепла, ккал:
на 1 моль окисленный
Продукция углерода диоксида:
Продукция АТФ, моль:
Стоимость продукции АТФ:
Энергетический эквивалент на 1 л использованного кислорода
[1], [2], [3], [4]
Этапы энергетического обмена
Хотя диссимиляция и синтез структур белков, жиров и углеводов имеют характерные особенности и специфические формы, однако в превращении этих различных веществ имеется ряд принципиально общих этапов и закономерностей. По отношению к высвобождаемой при обмене веществ энергии энергетический обмен следует подразделить на три основных этапа.
На III этапе, так называемом цикле трикарбоновых кислот Кребса, три конечных продукта II фазы сгорают до углекислого газа и воды. При этом освобождается 60-70% энергии питательных веществ. Цикл Кребса является общим конечным путем расщепления как углеводов, так и белков и жиров. Это как бы узловой пункт в обмене, где сходятся превращения различных структур и возможен взаимопереход синтетических реакций.
Реакции энергетического обмена
Сохранение энергии осуществляется за счет превращения энергии расщепления пищевых продуктов в особую форму химических соединений, называемых макроэргами. Носителями этой химической энергии в организме являются различные фосфорные соединения, в которых связь остатка фосфорной кислоты и является макроэргической связью.
Главное место в энергетическом обмене принадлежит пирофосфатной связи со структурой аденозинтрифосфорной кислоты. В форме этого соединения в организме используется от 60 до 70% всей энергии, высвобождающейся при распаде белков, жиров, углеводов. Использование энергии (окисления в форме АТФ) имеет большое биологическое значение, так как благодаря этому механизму возможно разъединение места и времени высвобождения энергии и ее фактического потребления в процессе функционирования органов. Подсчитано, что за 24 ч количество образующейся и расщепляющейся АТФ в организме приблизительно равно массе тела. Превращение АТФ в АДФ высвобождает 41,84-50,2 кДж, или 10-12 ккал.
Образующаяся в результате обмена веществ энергия расходуется на основной обмен, т. е. на поддержание жизни в состоянии полного покоя при температуре окружающего воздуха 20° С, на рост (пластический обмен), мышечную работу и на переваривание и усвоение пищи (специфически-динамическое действие пищи). Имеются различия в расходовании энергии, образующейся в результате обмена, у взрослого и ребенка.
[5], [6], [7], [8], [9], [10]
Основной обмен
У ребенка, как и у всех млекопитающих, рождающихся незрелыми, отмечается первоначальное повышение основного обмена к 1 1/2 годам, которое затем неуклонно продолжает повышаться в абсолютном выражении и столь же закономерно снижаться в расчете на единицу массы тела.
Нередко используют расчетные методы вычисления основного обмена. Формулы обычно ориентированы на показатели либо длины, либо массы тела.
Расчет основного обмена через массу тела (ккал/сут). Рекомендации ФАО / ВО3
Энергетический обмен или откуда берется энергия для организма?
За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…
Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.
Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)
АТФ + H2O ⇒ АДФ + Ф + Энергия
Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.
Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье «Пульс для бега и пульс при физической нагрузке (Пульсовые зоны)«.
Выделяют три энергетические системы, обеспечивающие физическую работу человека:
Энергообеспечение организма человека.
Источники энергии при кратковременной работе.
Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.
АТФ + H2O ⇒ АДФ + Ф + Энергия
В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.
Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.
АДФ+ КрФ ⇒ АТФ + Кр
Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.
Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.
Источники энергии при непродолжительной работе.
Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).
Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями — аэробным и анаэробным.
При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).
Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.
Если кислорода недостаточно, то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)
Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.
Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.
Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).
Гликоген ⇒ АТФ + Молочная кислота
Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.
Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.
Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.
Источники энергии при продолжительной работе.
Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.
При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.
Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода
Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.
Жир + Кислород ⇒ АТФ + Углекислый газ + Вода
Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.
Больше полезной информации и статей вы можете найти ЗДЕСЬ.
Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:
Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.
Для чего нужен энергетический обмен
Видео YouTube
СТАДИИ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
Энергетический обмен (катаболизм, диссимиляция) — это процессы расщепления ве ществ с высвобождением энергии. Высвобожденная энергия преобразуется в энергию АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Она образуется в результате реакции фосфорилирования – присоединения остатков фосфорной кислоты к молекуле АДФ. На эту реакцию расходуется энергия, которая затем накапливается в макроэргических связях молекулы АТФ, при распаде молекулы АТФ или при ее гидролизе до АДФ клетка получает около 40 кДж энергии.
АТФ – постоянный источник энергии для клетки, она мобильно может доставлять химическую энергию в любую часть клетки. Когда клетке необходима энергия – достаточно гидролизовать молекулу АТФ. Энергия выделяется в результате реакции диссимиляции (расщепления органических веществ), в зависимости от специфики организма и условий его обитания энергетический обмен проходит в два или три этапа. Большинство живых организмов относятся к аэробам, использующим для обмена веществ кислород, который поступает из окружающей среды. Для аэробов энергетический обмен проходит в три этапа:
В организмах, которые обитают в бескислородной среде и не нуждаются в кислороде для энергетического обмена – анаэробах и аэробах, при недостатке кислорода проходят энергетический обмен в два этапа:
Количество энергии, которое выделяется при двухэтапном варианте намного меньше, чем в трехэтапном.
ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
Подготовительный этап – во время него крупные пищевые полимерные молекулы распадаются на более мелкие фрагменты. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами, у одноклеточных – ферментами лизосом. Полисахариды распадаются на ди- и моносахариды, белки – до аминокислот, жиры – до глицерина и жирных кислот. В ходе этих превращений энергии выделяется мало, она рассеивается в виде тепла, и АТФ не образуется. Образующиеся в ходе подготовительного этапа соединения-мономеры могут участвовать в реакциях пластического обмена (в дальнейшем из них синтезируются вещества, необходимые для клетки) или подвергаться дальнейшему расщеплению с целью получения энергии.
Большинство клеток в первую очередь используют углеводы, жиры остаются в первом резерве и используются по окончания запаса углеводов. Хотя есть и исключения: в клетках скелетных мышц при наличии жирных кислот и глюкозы предпочтение отдается жирным кислотам. Белки расходуются в последнюю очередь, когда запас углеводов и жиров будет исчерпан – при длительном голодании.
Бескислородный этап (гликолиз) – происходит в цитоплазме клеток. Главным источником энергии в клетке является глюкоза. Ее бескислородное расщепление называют анаэробным гликолизом. Он состоит из ряда последовательных реакций по превращению глюкозы в лактат. Его присутствие в мышцах хорошо известно уставшим спортсменам. Этот этап заключается в ферментативном расщеплении органических веществ, полученных в ходе первого этапа. Так как глюкоза является наиболее доступным субстратом для клетки как продукт расщепления полисахаридов, то второй этап можно рассмотреть на примере ее бескислородного расщепления – гликолиза (Рис. 1).
Рис. 1. Бескислородный этап
Гликолиз – многоступенчатый процесс бескислородного расщепления молекулы глюкозы, содержащей шесть атомов углерода, до двух молекул пировиноградной кислоты (пируват). Реакция гликолиза катализируется многими ферментами и протекает в цитоплазме клетки. В ходе гликолиза при расщеплении одного моля глюкозы выделяется около 200 кДж энергии, 60 % ее рассеивается в виде тепла, 40 % – для синтезирования двух молекул АТФ из двух молекул АДФ. При наличии кислорода в среде пировиноградная кислота из цитоплазмы переходит в митохондрии и участвует в третьем этапе энергетического обмена. Если кислорода в клетке нет, то пировиноградная кислота преобразуется в животных клетках или превращается в молочную кислоту.
В микроорганизмах, которые существуют без доступа кислорода – получают энергию в процессе брожения, начальный этап аналогичен гликолизу: распад глюкозы до двух молекул пировиноградной кислоты, и далее она зависит от ферментов, которые находятся в клетке – пировиноградная кислота может преобразовываться в спирт, уксусную кислоту, пропионовую и молочную кислоту. В отличие от того, что происходит в животных тканях, у микроорганизмов этот процесс носит название молочнокислого брожения. Все продукты брожения широко используются в практической деятельности человека: это вино, квас, пиво, спирт, кисломолочные продукты. При брожении, так же как и при гликолизе, выделяется всего две молекулы АТФ.
Кислородный этап стал возможен после накопления в атмосфере достаточного количества молекулярного кислорода, он происходит в митохондриях клеток. Он очень сложен по сравнению с гликолизом, это процесс многостадийный и идет при участии большого количества ферментов. В результате третьего этапа энергетического обмена из двух молекул пировиноградной кислоты формируется углекислый газ, вода и 36 молекул АТФ (Рис. 2).
Две молекулы АТФ запасаются в ходе бескислородного расщепления молекулами глюкозы, поэтому суммарный энергетический обмен в клетке в случае распада глюкозы можно представить как:
С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 = 6СО 2 + 44Н 2 О + 38АТФ
В результате окисления одной молекулы глюкозы шестью молекулами кислорода образуется шесть молекул углекислого газа и выделяется тридцать восемь молекул АТФ.
Мы видим, что в трехэтапном варианте энергетического обмена выделяется гораздо больше энергии, чем в двухэтапном варианте – 38 молекул АТФ против 2.
В отсутствие кислорода или при его недостатке про исходит брожение. Брожение является эволюционно бо лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли вается до молочной кислоты. При этом восстановленные ранее коферменты НАДН расходу ются на восстановление пирувата: