Для чего нужен энергетический обмен

Обмен веществ — это все химические реакции, происходящие в клетках живых организмов, его еще называют метаболизмом. Он разделяется на анаболизм и катаболизм, то есть энергетический обмен. Первый подразумевает образование из простых химических соединений более сложных. Этот процесс еще называется пластическим обменом. Для его осуществления необходима энергия, которая получается клеткой за счет катаболизма. С помощью этого процесса клетка синтезирует необходимые нуклеиновые кислоты, белки, полисахариды и тому подобное. Все эти вещества могут выступать в роли строительного материала для клетки и организма в целом, выполнять функцию ферментов, гормонов и т. д. На втором процессе — энергетическом обмене — мы остановимся более подробно.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Что такое катаболизм?

Энергетический обмен — это процесс, на протяжении которого вещества, имеющие сложную структуру, расщепляются на более простые либо окисляются, вследствие чего организм получает энергию, необходимую для жизни. Катаболизм включает в себя несколько этапов, на протяжении которых происходят различные химические реакции. Их выделяют три.

Этапы энергетического обмена

Перечисляя этапы катаболизма, можно выделить подготовительный, анаэробный (без участия кислорода) и аэробный (с применением оксигена).

Подготовительный этап

В это время сложные молекулы таких соединений, как белки, углеводы и липиды, расщепляются на более простые, также на этом этапе полимеры превращаются в мономеры. Данный процесс происходит вне клетки, в органах пищеварительной системы. В этом участвуют желудочный сок и разнообразные ферменты. Кислород на этом этапе для реакций не требуется. В результате реакций, произошедших в это время, белки денатурируют и распадаются на аминокислоты, сложные углеводы превращаются в простые моносахариды, из липидов образуется глицерин и высшие кислоты. Часть процессов данного этапа происходит также в лизосомах клетки под воздействием ферментов гидролаз.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Второй этап — анаэробное брожение

Реакции, которые происходят на этой стадии, и их использование

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Примером химических реакций, которые проходят на этой стадии, можно назвать самую распространенную — спиртовое брожение. Это процесс расщепления глюкозы либо фруктозы под воздействием специальных ферментов, при котором выделяется углекислый газ и этиловый спирт, а также образуются молекулы АТФ. Уравнение данной химической реакции выглядит так: С6Н12О6 = 2С2Н5ОН + СО2 + 2АТФ. Именно организмы, использующие такую реакцию для получения необходимой энергии, применяются в промышленности для изготовления спиртных напитков. В результате процесса, который используют для получения энергии молочнокислые бактерии, образуется молочная кислота. Уравнение выглядит следующим образом: С6Н12О6 = С3Н6О3 + 2АТФ. В клетках животных и грибов распространена реакция, в результате которой выделяется пировиноградная кислота. Этот процесс выглядит так: С6Н12О6 = 2С3Н4О3 + (4Н) + 2АТФ.

Третий и последний этап — клеточное дыхание

Он происходит в митохондриях. На этой стадии осуществляется окисление веществ, за счет чего высвобождается определенное количество энергии. В такого рода процессах, как уже можно было догадаться, принимает участие кислород.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Как в атмосфере образуется кислород?

В связи с тем, что основным процессом, в котором и заключается энергетический обмен у животных, некоторых бактерий и грибов, является именно клеточное дыхание, кислород для этих организмов жизненно необходим. А такому высокому его содержанию в атмосфере нашей планеты мы обязаны растениям — легким Земли.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Какие органеллы клетки принимают участие в энергетическом обмене?

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

В первую очередь это митохондрии, именно в них и происходит весь процесс клеточного дыхания. На их кристах окисляются вещества, которые были получены в процессе анаэробного брожения, то есть на втором этапе энергетического обмена. Также это лизосомы, уже неоднократно упомянутые в тексте. Они содержат в своей полости, ограниченной мембраной, ряд необходимых для всех реакций ферментов. В цитоплазме клетки с помощью этих органоидов происходит процесс неполного окисления (гликолиза) органических соединений. Продукты, образованные на этом этапе при участии ферментов, содержащихся в лизосомах, служат сырьем для последующего клеточного дыхания, происходящего в митохондриях. Кроме того, в этих процессах принимают участие микротрубочки, которые транспортируют вещества по клетке, а также плазматическая мембрана, которая содержит специальные белки, переносящие из окружающей среды в цитоплазму определенные нужные для энергетического обмена химические соединения.

Источник

Энергетический обмен

Обмен веществ

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Энергетический обмен

Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).

Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.

Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).

Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Пластический обмен

АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.

В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Энергетический обмен человека

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Весь контент iLive проверяется медицинскими экспертами, чтобы обеспечить максимально возможную точность и соответствие фактам.

У нас есть строгие правила по выбору источников информации и мы ссылаемся только на авторитетные сайты, академические исследовательские институты и, по возможности, доказанные медицинские исследования. Обратите внимание, что цифры в скобках ([1], [2] и т. д.) являются интерактивными ссылками на такие исследования.

Если вы считаете, что какой-либо из наших материалов является неточным, устаревшим или иным образом сомнительным, выберите его и нажмите Ctrl + Enter.

«Человеческий организм является “машиной”, которая может освобождать химическую энергию, связанную в “топливе” пищевых продуктов; этим “топливом” являются углеводы, жиры, белки и алкоголь» (ВОЗ).

Преимущественное использование любого из перечисленных источников имеет разные характеристики по величине энергетического обмена и сопутствующих метаболических сдвигов.

Особенности различных метаболических источников пищевого энергетического обеспечения

Высвобождение тепла, ккал:

на 1 моль окисленный

Продукция углерода диоксида:

Продукция АТФ, моль:

Стоимость продукции АТФ:

Энергетический эквивалент на 1 л использованного кислорода

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен[1], [2], [3], [4]

Этапы энергетического обмена

Хотя диссимиляция и синтез структур белков, жиров и углеводов имеют характерные особенности и специфические формы, однако в превращении этих различных веществ имеется ряд принципиально общих этапов и закономерностей. По отношению к высвобождаемой при обмене веществ энергии энергетический обмен следует подразделить на три основных этапа.

На III этапе, так называемом цикле трикарбоновых кислот Кребса, три конечных продукта II фазы сгорают до углекислого газа и воды. При этом освобождается 60-70% энергии питательных веществ. Цикл Кребса является общим конечным путем расщепления как углеводов, так и белков и жиров. Это как бы узловой пункт в обмене, где сходятся превращения различных структур и возможен взаимопереход синтетических реакций.

Реакции энергетического обмена

Сохранение энергии осуществляется за счет превращения энергии расщепления пищевых продуктов в особую форму химических соединений, называемых макроэргами. Носителями этой химической энергии в организме являются различные фосфорные соединения, в которых связь остатка фосфорной кислоты и является макроэргической связью.

Главное место в энергетическом обмене принадлежит пирофосфатной связи со структурой аденозинтрифосфорной кислоты. В форме этого соединения в организме используется от 60 до 70% всей энергии, высвобождающейся при распаде белков, жиров, углеводов. Использование энергии (окисления в форме АТФ) имеет большое биологическое значение, так как благодаря этому механизму возможно разъединение места и времени высвобождения энергии и ее фактического потребления в процессе функционирования органов. Подсчитано, что за 24 ч количество образующейся и расщепляющейся АТФ в организме приблизительно равно массе тела. Превращение АТФ в АДФ высвобождает 41,84-50,2 кДж, или 10-12 ккал.

Образующаяся в результате обмена веществ энергия расходуется на основной обмен, т. е. на поддержание жизни в состоянии полного покоя при температуре окружающего воздуха 20° С, на рост (пластический обмен), мышечную работу и на переваривание и усвоение пищи (специфически-динамическое действие пищи). Имеются различия в расходовании энергии, образующейся в результате обмена, у взрослого и ребенка.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен[5], [6], [7], [8], [9], [10]

Основной обмен

У ребенка, как и у всех млекопитающих, рождающихся незрелыми, отмечается первоначальное повышение основного обмена к 1 1/2 годам, которое затем неуклонно продолжает повышаться в абсолютном выражении и столь же закономерно снижаться в расчете на единицу массы тела.

Нередко используют расчетные методы вычисления основного обмена. Формулы обычно ориентированы на показатели либо длины, либо массы тела.

Расчет основного обмена через массу тела (ккал/сут). Рекомендации ФАО / ВО3

Источник

Энергетический обмен или откуда берется энергия для организма?

За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…

Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

АТФ + H2O ⇒ АДФ + Ф + Энергия

Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье «Пульс для бега и пульс при физической нагрузке (Пульсовые зоны)«.

Выделяют три энергетические системы, обеспечивающие физическую работу человека:

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Энергообеспечение организма человека.

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O ⇒ АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

АДФ+ КрФ ⇒ АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Источники энергии при непродолжительной работе.

Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями — аэробным и анаэробным.

При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

Если кислорода недостаточно, то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.

Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

Гликоген ⇒ АТФ + Молочная кислота

Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород ⇒ АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.

Больше полезной информации и статей вы можете найти ЗДЕСЬ.

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

Источник

Для чего нужен энергетический обмен

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Видео YouTube

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

СТАДИИ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Энергетический обмен (катаболизм, диссимиляция) — это процессы расщепления ве­ ществ с высвобождением энергии. Высвобожденная энергия преобразуется в энергию АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Энер­ге­ти­че­ский обмен – это со­во­куп­ность хи­ми­че­ских ре­ак­ций по­сте­пен­но­го рас­па­да ор­га­ни­че­ских со­еди­не­ний, со­про­вож­да­ю­щих­ся вы­сво­бож­де­ни­ем энер­гии, часть ко­то­рой рас­хо­ду­ет­ся на син­тез АТФ. Син­те­зи­ро­ван­ная АТФ ста­но­вит­ся уни­вер­саль­ным ис­точ­ни­ком энер­гии для жиз­не­де­я­тель­но­сти ор­га­низ­мов. Она об­ра­зу­ет­ся в ре­зуль­та­те ре­ак­ции фос­фо­ри­ли­ро­ва­ния – при­со­еди­не­ния остат­ков фос­фор­ной кис­ло­ты к мо­ле­ку­ле АДФ. На эту ре­ак­цию рас­хо­ду­ет­ся энер­гия, ко­то­рая затем на­кап­ли­ва­ет­ся в мак­ро­эр­ги­че­ских свя­зях мо­ле­ку­лы АТФ, при рас­па­де мо­ле­ку­лы АТФ или при ее гид­ро­ли­зе до АДФ клет­ка по­лу­ча­ет около 40 кДж энер­гии.

АТФ – по­сто­ян­ный ис­точ­ник энер­гии для клет­ки, она мо­биль­но может до­став­лять хи­ми­че­скую энер­гию в любую часть клет­ки. Когда клет­ке необ­хо­ди­ма энер­гия – до­ста­точ­но гид­ро­ли­зо­вать мо­ле­ку­лу АТФ. Энер­гия вы­де­ля­ет­ся в ре­зуль­та­те ре­ак­ции дис­си­ми­ля­ции (рас­щеп­ле­ния ор­га­ни­че­ских ве­ществ), в за­ви­си­мо­сти от спе­ци­фи­ки ор­га­низ­ма и усло­вий его оби­та­ния энер­ге­ти­че­ский обмен про­хо­дит в два или три этапа. Боль­шин­ство живых ор­га­низ­мов от­но­сят­ся к аэро­бам, ис­поль­зу­ю­щим для об­ме­на ве­ществ кис­ло­род, ко­то­рый по­сту­па­ет из окру­жа­ю­щей среды. Для аэро­бов энер­ге­ти­че­ский обмен про­хо­дит в три этапа:

В ор­га­низ­мах, ко­то­рые оби­та­ют в бес­кис­ло­род­ной среде и не нуж­да­ют­ся в кис­ло­ро­де для энер­ге­ти­че­ско­го об­ме­на – анаэ­ро­бах и аэро­бах, при недо­стат­ке кис­ло­ро­да про­хо­дят энер­ге­ти­че­ский обмен в два этапа:

Ко­ли­че­ство энер­гии, ко­то­рое вы­де­ля­ет­ся при двух­этап­ном ва­ри­ан­те на­мно­го мень­ше, чем в трех­этап­ном.

ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

Под­го­то­ви­тель­ный этап – во время него круп­ные пи­ще­вые по­ли­мер­ные мо­ле­ку­лы рас­па­да­ют­ся на более мел­кие фраг­мен­ты. В же­лу­доч­но-ки­шеч­ном трак­те мно­го­кле­точ­ных ор­га­низ­мов он осу­ществ­ля­ет­ся пи­ще­ва­ри­тель­ны­ми фер­мен­та­ми, у од­но­кле­точ­ных – фер­мен­та­ми ли­зо­сом. По­ли­са­ха­ри­ды рас­па­да­ют­ся на ди- и мо­но­са­ха­ри­ды, белки – до ами­но­кис­лот, жиры – до гли­це­ри­на и жир­ных кис­лот. В ходе этих пре­вра­ще­ний энер­гии вы­де­ля­ет­ся мало, она рас­се­и­ва­ет­ся в виде тепла, и АТФ не об­ра­зу­ет­ся. Об­ра­зу­ю­щи­е­ся в ходе под­го­то­ви­тель­но­го этапа со­еди­не­ния-мо­но­ме­ры могут участ­во­вать в ре­ак­ци­ях пла­сти­че­ско­го об­ме­на (в даль­ней­шем из них син­те­зи­ру­ют­ся ве­ще­ства, необ­хо­ди­мые для клет­ки) или под­вер­гать­ся даль­ней­ше­му рас­щеп­ле­нию с целью по­лу­че­ния энер­гии.

Боль­шин­ство кле­ток в первую оче­редь ис­поль­зу­ют уг­ле­во­ды, жиры оста­ют­ся в пер­вом ре­зер­ве и ис­поль­зу­ют­ся по окон­ча­ния за­па­са уг­ле­во­дов. Хотя есть и ис­клю­че­ния: в клет­ках ске­лет­ных мышц при на­ли­чии жир­ных кис­лот и глю­ко­зы пред­по­чте­ние от­да­ет­ся жир­ным кис­ло­там. Белки рас­хо­ду­ют­ся в по­след­нюю оче­редь, когда запас уг­ле­во­дов и жиров будет ис­чер­пан – при дли­тель­ном го­ло­да­нии.

Бес­кис­ло­род­ный этап (гли­ко­лиз) – про­ис­хо­дит в ци­то­плаз­ме кле­ток. Глав­ным ис­точ­ни­ком энер­гии в клет­ке яв­ля­ет­ся глю­ко­за. Ее бес­кис­ло­род­ное рас­щеп­ле­ние на­зы­ва­ют анаэ­роб­ным гли­ко­ли­зом. Он со­сто­ит из ряда по­сле­до­ва­тель­ных ре­ак­ций по пре­вра­ще­нию глю­ко­зы в лак­тат. Его при­сут­ствие в мыш­цах хо­ро­шо из­вест­но устав­шим спортс­ме­нам. Этот этап за­клю­ча­ет­ся в фер­мен­та­тив­ном рас­щеп­ле­нии ор­га­ни­че­ских ве­ществ, по­лу­чен­ных в ходе пер­во­го этапа. Так как глю­ко­за яв­ля­ет­ся наи­бо­лее до­ступ­ным суб­стра­том для клет­ки как про­дукт рас­щеп­ле­ния по­ли­са­ха­ри­дов, то вто­рой этап можно рас­смот­реть на при­ме­ре ее бес­кис­ло­род­но­го рас­щеп­ле­ния – гли­ко­ли­за (Рис. 1).

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Рис. 1. Бес­кис­ло­род­ный этап

Гли­ко­лиз – мно­го­сту­пен­ча­тый про­цесс бес­кис­ло­род­но­го рас­щеп­ле­ния мо­ле­ку­лы глю­ко­зы, со­дер­жа­щей шесть ато­мов уг­ле­ро­да, до двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты (пи­ру­ват). Ре­ак­ция гли­ко­ли­за ка­та­ли­зи­ру­ет­ся мно­ги­ми фер­мен­та­ми и про­те­ка­ет в ци­то­плаз­ме клет­ки. В ходе гли­ко­ли­за при рас­щеп­ле­нии од­но­го моля глю­ко­зы вы­де­ля­ет­ся около 200 кДж энер­гии, 60 % ее рас­се­и­ва­ет­ся в виде тепла, 40 % – для син­те­зи­ро­ва­ния двух мо­ле­кул АТФ из двух мо­ле­кул АДФ. При на­ли­чии кис­ло­ро­да в среде пи­ро­ви­но­град­ная кис­ло­та из ци­то­плаз­мы пе­ре­хо­дит в ми­то­хон­дрии и участ­ву­ет в тре­тьем этапе энер­ге­ти­че­ско­го об­ме­на. Если кис­ло­ро­да в клет­ке нет, то пи­ро­ви­но­град­ная кис­ло­та пре­об­ра­зу­ет­ся в жи­вот­ных клет­ках или пре­вра­ща­ет­ся в мо­лоч­ную кис­ло­ту.

В мик­ро­ор­га­низ­мах, ко­то­рые су­ще­ству­ют без до­сту­па кис­ло­ро­да – по­лу­ча­ют энер­гию в про­цес­се бро­же­ния, на­чаль­ный этап ана­ло­ги­чен гли­ко­ли­зу: рас­пад глю­ко­зы до двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты, и далее она за­ви­сит от фер­мен­тов, ко­то­рые на­хо­дят­ся в клет­ке – пи­ро­ви­но­град­ная кис­ло­та может пре­об­ра­зо­вы­вать­ся в спирт, ук­сус­ную кис­ло­ту, про­пи­о­но­вую и мо­лоч­ную кис­ло­ту. В от­ли­чие от того, что про­ис­хо­дит в жи­вот­ных тка­нях, у мик­ро­ор­га­низ­мов этот про­цесс носит на­зва­ние мо­лоч­но­кис­ло­го бро­же­ния. Все про­дук­ты бро­же­ния ши­ро­ко ис­поль­зу­ют­ся в прак­ти­че­ской де­я­тель­но­сти че­ло­ве­ка: это вино, квас, пиво, спирт, кис­ло­мо­лоч­ные про­дук­ты. При бро­же­нии, так же как и при гли­ко­ли­зе, вы­де­ля­ет­ся всего две мо­ле­ку­лы АТФ.

Кис­ло­род­ный этап стал воз­мо­жен после на­коп­ле­ния в ат­мо­сфе­ре до­ста­точ­но­го ко­ли­че­ства мо­ле­ку­ляр­но­го кис­ло­ро­да, он про­ис­хо­дит в ми­то­хон­дри­ях кле­ток. Он очень сло­жен по срав­не­нию с гли­ко­ли­зом, это про­цесс мно­го­ста­дий­ный и идет при уча­стии боль­шо­го ко­ли­че­ства фер­мен­тов. В ре­зуль­та­те тре­тье­го этапа энер­ге­ти­че­ско­го об­ме­на из двух мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты фор­ми­ру­ет­ся уг­ле­кис­лый газ, вода и 36 мо­ле­кул АТФ (Рис. 2).

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Две мо­ле­ку­лы АТФ за­па­са­ют­ся в ходе бес­кис­ло­род­но­го рас­щеп­ле­ния мо­ле­ку­ла­ми глю­ко­зы, по­это­му сум­мар­ный энер­ге­ти­че­ский обмен в клет­ке в слу­чае рас­па­да глю­ко­зы можно пред­ста­вить как:

С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 = 6СО 2 + 44Н 2 О + 38АТФ

В ре­зуль­та­те окис­ле­ния одной мо­ле­ку­лы глю­ко­зы ше­стью мо­ле­ку­ла­ми кис­ло­ро­да об­ра­зу­ет­ся шесть мо­ле­кул уг­ле­кис­ло­го газа и вы­де­ля­ет­ся трид­цать во­семь мо­ле­кул АТФ.

Мы видим, что в трех­этап­ном ва­ри­ан­те энер­ге­ти­че­ско­го об­ме­на вы­де­ля­ет­ся го­раз­до боль­ше энер­гии, чем в двух­этап­ном ва­ри­ан­те – 38 мо­ле­кул АТФ про­тив 2.

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

В отсутствие кислорода или при его недостатке про­ исходит брожение. Брожение является эволюционно бо­ лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко­ нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли­ вается до молочной кислоты. При этом восстановленные ранее коферменты НАДН расходу­ ются на восстановление пирувата:

Для чего нужен энергетический обмен. Смотреть фото Для чего нужен энергетический обмен. Смотреть картинку Для чего нужен энергетический обмен. Картинка про Для чего нужен энергетический обмен. Фото Для чего нужен энергетический обмен

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *