Для чего нужен генератор сигналов в осциллографе
Для чего нужен генератор сигналов
Генераторы сигналов – это приборы, позволяющие получать электрические, акустические и т.д. импульсы. Устройство может быть различного типа, но, обычно, прибор выбирают под какую-то определённую цель. При выборе решающую роль может играть форма, статические функции и энергетические показатели прибора. Устройство используют в медицинской сфере, а также в быту.
Цифровые генераторы https://digamma.by/katalog/generatory-signalov/ весьма популярны, так как являются приборами высокой точности. Первый генератор появился в 1887 году, его создал немецкий физик по имени Герман Герц. Он работал на основе индукционной катушки, был искровым и производил электромагнитные волны. В 1913 году другой немецкий учёный по имени Александр Мейснер произвёл электронный генератор с ламповым каскадом и общим катодом. В 1915 году учёным Ральфом Хартли была разработана ламповая или индуктивная система. А в 1919 году американский учёный Эдвин Колпитц создал устройство на электронной лампочке, которое подключалось к колебательному контуру при помощи ёмкостного разделителя напряжения. Позже учёными многих стран было произведено большое количество других вариантов электронных генераторов.
Виды генераторов сигналов
Приборы можно различить по форме сигнала. Они бывают синусоидальные, прямоугольные и в виде пилы. Помимо этого, они различаются по частоте. Бывают низкочастотные, либо высокочастотные. Устройства классифицируются также по принципу возбуждения, и делятся на независимые и самовозбуждение.
Генераторы синусоидального импульса, преимущественно, применяют во время проверки блоков питания, инверторов, а также других типов высокочастотной техники, в том числе, и радиоаппаратуры.
В низкочастотных генераторах присутствуют переменные резисторы. Они нужны для корректирования формы и частоты сигнала. Данный низкочастотный прибор подходит для настройки аудиоаппаратуры. Это может быть звуковой усилитель, проигрыватель и т.д. Ярким примером низкочастотного генератора является примитивный компьютер. Необходимо скачать драйверы, а затем подключить его к аппаратуре посредством переходника.
Стандартная система генератора звуковой частоты с микросхемами внутри. Напряжение подаётся в селектор, а сигнал генерируется в микросхеме, либо в нескольких микросхемах. Частота, при этом, настраивается с помощью модуляционного регулятора. Устройство отличается достаточно обширным диапазоном частоты, в отличие от аналогов.
Самыми точными приборами принято считать генераторы с импульсами произвольной конструкции. Прибор способен вырабатывать частоту от 70 Гц. Устройство подразделяют по степени синхронизации. Она зависит от вида коннектора, установленного в приспособление. Поэтому сигнал может быть усилен за 20-35 ньютон-секунд. Определённые виды генераторов работают в линейном и логарифмическом режимах одновременно. Режим можно поменять с помощью переключателя.
Контроллеры сложных сигналов получают импульсы сложной формы, поэтому в сборке имеются только многоканальные селекторы. Сигналы периодически усиливаются, а режим можно поменять с помощью регулятора. Примером такого прибора можно считать DDS (устройство по принципу прямого цифрового синтеза). Базовая плата оборудована микроконтроллерами, которые легко снимаются и устанавливаются на место. В некоторых типах генераторов такого рода микроконтроллер заменяется одним движением. В случае монтированного редактора, установить ограничители невозможно.
Чтобы пользоваться устройством, особых усилий прилагать не придётся, но важно заметить, что главное, тщательно и правильно его настроить. Принцип действия генератора сигнала основан на ускорении образования сигналов и воспроизведении их с максимальной точностью.
Практическое применение генераторов сигнала
Эти устройства используют в современных лабораториях разработчики электронных и измерительных приборов. Одни и те же генераторы могут быть применены в кабинетах от начального до продвинутого уровня. Генераторы используются в мобильном телефоне, технике для передачи данных, в радиоприёмниках, телеприёмниках, вычислительных машинах, инверторах, бытовых приборах, измерительных устройствах, медицинской аппаратуре. Находчивые обыватели нашли применение для иных целей. К примеру, прибором Tektonix AFG 3000 измеряли емкости, а для регулировки аэронавигационных систем использовали RStamp SMA100A.
Что такое осциллограф?
Осциллограф – электронный прибор для измерения электрических сигналов в цепи и наблюдения за ними. Определение формы и параметров колебаний необходимо для отслеживания корректности работы оборудования.
Первые попытки создать прибор для определения электрических колебаний относятся ещё к 1880 году. Их делали французские и русские физики. Первые осциллографы были аналоговыми. С 1980-х годов сигналы стали фиксироваться с помощью цифрового оборудования.
Устройство и принцип действия прибора
Объясним устройство аналогового осциллографа просто, «для чайников». Прибор состоит из следующих элементов:
Для управления параметрами сигнала и его отображения на экране есть регуляторы. У старых моделей экрана не было. Изображение фиксировалось на фотоленте.
Принцип работы
При запуске прибора сигнал подаётся на вход канала вертикального отклонения. Он имеет высокое входное сопротивление. По тому же принципу работает вольтметр, измеряющий напряжение. Однако вольтметр не показывает временного графика колебаний напряжения.
Сигнал усиливается до необходимого уровня после подачи на вход. Он отображается на экране по вертикальной оси. Усиление требуется для работы отклоняющей системы лучевой трубки или преобразователя сигнала из аналогового в цифровой. Оно позволяет менять масштаб отображения колебаний на экране от крупного до мелкого.
Устройство
Лучевая трубка чувствительна к электрическим импульсам. Чем ниже их частота, тем выше чувствительность. В нынешних трубках количество лучей может составлять от одного до 16. Их количеству соответствует число сигнальных входов и отображающихся одновременно графиков.
Особенность цифрового осциллографа в том, что он имеет экран и преобразователь аналогового сигнала. У него есть память для сохранения данных о полученном графике колебаний. Часть информации анализируется в автоматическом режиме и отображается в обработанном виде. Аналоговый осциллограф не запоминает данные, а только показывает их в реальном времени.
Разверткой называется траектория движения луча, который улавливает колебания и выводит изображение на экран. Она бывает разной формы — эллиптической, круговой. Значение развёртки регулируется в зависимости от исследуемого сигнала по горизонтальной оси (временнóй).
Блок питания подаёт напряжение от сети 220 В на электронные схемы. Есть и аккумуляторные модели, способные работать автономно.
Виды осциллографов
По принципу действия осциллографы бывают цифровыми и аналоговыми. Существуют смешанные аналого-цифровые приборы. Всё чаще выпускают виртуальные. Там в качестве экрана используется другой прибор – монитор компьютера, телевизора.
Работа некоторых моделей основана на электромеханическом принципе:
Прибор может работать самостоятельно или являться приставкой к другому оборудованию (например, компьютеру). Во втором случае цена ниже, но сам прибор зависим от внешнего устройства.
Виды развёрток
В разных режимах работы осциллографа линейные (создаваемых пилообразным напряжением) развёртки могут различаться:
Измеряемые процессы
По принципу работы приборы делят на:
Где применяют осциллографы?
Информация, которую даёт осциллограф:
Осциллографы используют как в практических, так и в научно-исследовательских целях. Для простых измерений можно воспользоваться мультиметром, но в большинстве случаев осциллограф незаменим.
Приборы для измерения колебаний применяют при настройке электронного оборудования. К примеру, для регулировки телевизионного сигнала необходимо получить его осциллографическое изображение. Приборы также используются при ремонте блоков питания, диагностике печатных плат.
При ремонте автомобилей устройство поможет получить данные о положении коленчатого и распределительного валов, датчиков положения. Данные осциллограммы расскажут о наличии импульса на катушке, укажут на неисправность свечей и проводов, диодного моста генератора.
Медицинское оборудование (кардиографы, энцефалографы) тоже работает по принципу осциллографирования. Только электрические колебания, измеряемые ими, происходят в живых организмах.
Методика измерений
Осциллограф измеряет электрическое напряжение и формирует амплитудный график электрических колебаний. Цифровые приборы могут запоминать полученный график, возвращаться к нему.
Колебания отображаются на экране в двухмерной системе координат (напряжение – вертикальная ось, время – горизонтальная ось), формируя график — осциллограмму. Есть ещё третий компонент исследований – интенсивность сигнала (или яркость).
При отсутствии входных импульсов на экране горизонтальная линия – «нулевая», обозначающая отсутствие напряжения. Как только на вход (или входы) прибора подаётся напряжение, на экране становятся видны один или несколько графиков одновременно (зависит от количества измеряемых сигналов).
График электрических колебаний по форме может представлять собой:
Для получения стабильного графика колебаний в приборе стоит блок синхронизации. Получить цикличное отображение колебаний можно только после установки значения синхронизации. Оно принимается за «стартовое», служит отправной точкой графика. Все скачки отображаются по отношению к этой точке.
Как выбрать
Нужно представлять, в каких целях и как часто будет использоваться прибор, для изучения каких сигналов он предназначен. Учитывайте количество точек для одновременного измерения, одиночность или периодичность колебаний. Иногда используются устройства советского производства. Но получить точную настройку с их помощью трудно.
Количество каналов
По количеству каналов осциллографы могут быть одноканальными, простыми (2-4 канала), продвинутыми (до 16 каналов). Несколько каналов позволяют одновременно анализировать поступающие сигналы.
Тип питания
Прибор с аккумулятором можно брать с собой на выезд. Это удобно для мастеров, которые проверяют оборудование по месту его нахождения. Если выезды не производятся, лучше брать работающий от сети осциллограф, поскольку он стабильнее и надёжнее.
Частота дискретизации
Частота дискретизации важна для измерения однократных и переходных процессов. Чем выше этот параметр, тем более точное изображение сигнала на экране удастся получить.
Полоса пропускания
Для простых исследований цифровых схем и усилителей оптимальная звуковая частота — 25 МГц. Для профессионального измерения нужен прибор, у которого этот параметр — до 200 или даже до 500 МГц. Современные линии связи работают на очень высоких частотах. Частота исследуемых сигналов должна быть в 3-5 раз меньше величины полосы пропускания.
Настройка осциллографа
Перед использованием нового устройства проводится его калибровка с помощью находящихся на корпусе генератора прямоугольных импульсов. Сигнальный щуп подключают к калибровочному выходу, при этом на экране появляется «пила» — зигзагообразная линия. Нужно проверить работу всех функций и регуляторов.
Сейчас осциллографы регулярно используют в сфере электроники. Есть большой выбор устройств, позволяющих наблюдать за параметрами электрических колебаний. Без осциллографа не обойтись ни инженеру-профи, ни рядовому любителю радиоэлектроники.
Генераторы сигналов
Генераторы сигналов – приборы, позволяющие получать электрические, акустические и иного рода импульсы. Устройства бывают разных видов — обычно прибор подбирают под конкретную цель. Решающими факторами при выборе могут оказаться форма прибора, его статические функции и энергетические показатели. Устройство применяют в разных сферах — как в медицине, так и в быту (стиральные машины, микроволновки).
Историческая справка
Первый генератор был создан в 1887 году немецким физиком Германом Герцем. Прибор разрабатывался на основе индукционной катушки (или катушки Румкорфа). Он был искровым и вырабатывал электромагнитные волны. Потом история развивалась так:
Это было лишь начало. Позже инженерами разных стран было создано множество вариаций электронных генераторов.
Как устроен генератор сигналов?
Устройство генерирует импульсы различной природы для замера параметров электронных приборов. Большинство генераторов работает только при наличии входного импульса, амплитуда которого постоянно меняется.
Стандартная модель сигнального генератора состоит из нескольких частей:
Смещение сигнала и его амплитуда обычно регулируются 2 кнопками. Работа с файлами происходит через мини-панель. Она дает пользователю просмотреть результаты тестирования или сохранить их для будущего анализа.
Принцип действия
Рассмотрим схему действия на примере простейшего электронного генератора. Есть проводник и магнитное поле, по которому он движется. В качестве проводника обычно используют рамку.
Принцип действия таков:
Схема генератора похожа на схему усилителя. Разница в том, что у первого нет источника входного сигнала. Он заменяется сигналом положительной обратной связи (ПОС).
В процессе обратной связи (ОС) часть выходного сигнала направляется на входную цепь. Структура такого импульса задается спецификой цепи обратной связи. Чтобы обеспечить нужную периодичность колебаний, цепи ОС создают на базе LC или RC-цепей. Частота будет зависеть от времени перезарядки конденсатора.
После формировки в цепи ПОС сигнал отправляется на вход усилителя. Там он умножается в несколько раз и поступает на выход. Оттуда часть отправляется на вход посредством цепи ПОС и снова ослабляется, возвращаясь к исходному значению. Благодаря такой схеме внутри устройства поддерживается постоянная амплитуда выходного сигнала.
Как устроен генератор смешанных сигналов?
Принцип действия генератора смешанных импульсов направлен на то, чтобы ускорить образование сигналов и воспроизводить их с максимальной точностью. Передняя панель прибора снабжена органами управления для контроля самых важных и часто изменяемых параметров. Менее востребованные и редко используемые функции можно найти в меню на основном экране.
Регулятором уровня устанавливается амплитуда движения выходного сигнала. Амплитуду и смещение можно регулировать без входа в многоуровневую систему меню.
Отдельный регулятор также позволяет изменить частоту дискретизации путем изменения периодичности выходного сигнала. При этом форму последнего этот настройщик изменить не сможет. Такая функция есть лишь в меню на основном экране редактирования. Форму выбирают при помощи сенсорной панели или мышки. Пользователь открывает нужную страницу и просто заполняет бланк с цифровой клавиатуры или поворотной ручкой.
Виды генераторов сигналов
Приборы различаются по ряду характеристик. Например, по форме сигнала (синусоидальные, прямоугольные, в виде пилы), по частоте (низкочастотные, высокочастотные), по принципу возбуждения (независимое, самовозбуждение). Однако существует несколько основных видов — о них и расскажем подробнее.
Синусоидальный
Прибор усиливает первоначальный синусоидный код в десятки раз. На выходе получается частота до 100 МГц. При этом исходный синус, как правило, не превышает 50 МГц. Генераторы синусоидального импульса активно используют при проверке блоков питания, инверторов и другой высокочастотной техники, а также радиоаппаратуры.
Генератор низкочастотный
Ниже схема самого простого низкочастотного генератора. На ней видно, что в приборе присутствуют переменные резисторы. Они позволяют корректировать форму и частоту сигнала. Изменить силу импульса можно подключенным модулятором KK202.
Такой прибор подойдет для настройки аудиоаппаратуры (звуковых усилителей, проигрывателей). Наиболее доступным вариантом низкочастотного генератора является обычный компьютер. Достаточно скачать драйверы и подключить его к аппаратуре через переходник.
Генератор звуковой частоты
Стандартная конструкция с микросхемами внутри. Напряжение подается в селектор, а сам сигнал генерируется в одной или нескольких микросхемах. Частоту можно настраивать при помощи модуляционного регулятора. Прибор отличается более обширным диапазоном частоты, чем аналоги (до 2000 кГц).
Импульсы произвольной формы
Генераторы с импульсами произвольной формы имеют повышенную точность. Погрешность минимальная — до 3%. Выходной импульс подвергается тонкой регулировке с применением шестиканального селектора. Прибор вырабатывает частоту от 70 Гц.
Устройства делят по степени синхронизации. Зависит она от типа коннектора, который установлен в прибор. Поэтому сигнал может усиливаться за 15-40 ньютон-секунд. Некоторые модели работают на 2 режимах – линейном и логарифмическом. Режим меняется переключателем, за счет чего корректируется амплитуда.
Контроллеры сложных сигналов
В сборке присутствуют только многоканальные селекторы, так как приборы получают импульсы сложной формы. Сигналы многократно усиливаются, режим можно изменить при помощи регулятора. Вариацией такого прибора считается DDS (устройство по схеме прямого цифрового синтеза).
Базовая плата оборудуется микроконтроллерами, которые легко снимаются и ставятся на место. В некоторых моделях можно заменить микроконтроллер одним движением. Если редактор монтированный, ограничители установить нельзя. Прибор генерирует измерительный сигнал мощностью до 2000 кГц с погрешностью до 2%.
Генератор цифрового сигнала
Цифровые генераторы популярны, потому что отличаются высокой точностью. Пользоваться ими удобно, однако они нуждаются в тщательной настройке. Здесь стоят коннекторы KP300, резисторы достигают сопротивления от 4 Ом. Это позволяет добиться предельно допустимого внутреннего напряжения в схеме.
Области применения
Генераторы сигналов используют современные лаборатории разработчиков электронных и измерительных приборов. Одинаковые генераторы могут применяться в кабинетах от начального до продвинутого уровня.
Однако эти функциональные устройства применяют для настройки и тестирования оборудования и в областях, более доступных обывателю. Вот лишь неполный список устройств, которые используют генераторы:
Находчивые пользователи применяют устройства и для иных целей. Например, прибором Tektonix AFG 3000 измеряли емкости, а RStamp SMA100A хорошо показал себя в регулировке аэронавигационных систем.
Генератор сигналов: схема, принцип действия, устройство, виды
Принцип работы генератора сигналов
При разработке электронных модулей, компонентов схемы и прочих операциях генератор сигналов работает в качестве источника воздействующего сигнала.
Генератор формирует сигнал с изменяемой по времени амплитудой, который подается на тестируемый элемент или высокочастотный модуль, фильтр. Форма сигнала может быть произвольной, а может быть в виде любой периодической функции, например, синусоиды. Может представлять собой цифровой импульс или двоичную последовательность. Наиболее распространенные формы сигналов — синусоидальные сигналы, меандры и прямоугольные сигналы, пилообразные и треугольные сигналы.
Что представляет собой сигнал генератора
Сигнал является биполярным истинным сигналом переменного тока с пиковыми значениями, которые колеблются относительно определенного уровня постоянного напряжения.
Также это могут быть сигналы со смещением, которые опускаются и поднимаются ниже или выше от расположения нулевого уровня (0 В). Под переменным током понимается любой изменяющий свое значение сигнал, независимо от привязки к нулю.
Таким образом, тестирование приборов заключается в подаче сигнала идеальной формы или с добавлением искажений, то есть ошибки, которая возможна в процессе работы диагностируемого прибора.
Главное достоинство генератора сигнала — это возможность имитации реальной ошибки, которую можно предсказать в определенном месте и в нужное время с помощью исследуемой схемы.
В итоге, способность реагировать тестируемого устройства на искажение демонстрирует его готовность работать в неблагоприятных условиях аварийного режима.
Как вывод можно сказать, что сигнал на выходе модуля анализируется осциллографом или другим прибором, например, анализатором спектра или измерителем мощности. По результатам анализа судят о корректной работе проверяемого устройства. По необходимости генератором можно добавить шум на тестируемый сигнал или имитировать замирание входного сигнала.
Основные применения генератора сигналов
Вы спросите, а зачем он нужен. Например, такой прибор как генератор сигналов A96 DDS понадобится, чтобы получить в работе над радиопередатчиком и приемником требуемую форму сигналов, чтобы настраивать УМЗЧ и измерять искажения или фронты.
Даже простейший бюджетный прибор, такой как функциональный генератор сигналов на ICL8038 даст представление о кривой на выходе при подаче синуса, треугольника или меандра, позволит увидеть результат, который получается на выходе.
Подобные устройства используются в прикладных областях при формировании низкочастотных навигационных сигналов, применяются для мобильной сотовой связи, спутников и радиолокации с длинной волны от миллиметрового диапазона. Чтобы выполнять работу в любых условиях придуманы даже карманные генераторы синусоидальных сигналов, такие как Fg-100. Прибор используется вместе с осциллографом для тестирования и наладки электронных схем.
Устройства стабилизируют синтезированную частоту, поддерживают калиброванный выходной уровень сигнала и дают возможность дистанционного управления.
Описание генератора частоты
Из Китая приехал генератор частот. Как вы видите, он представляет из себя довольно таки солидный прибор.
На лицевой панели генератора частот мы видим множество различных кнопок и крутилок. Эта крутилка предназначена для того, чтобы уменьшать или увеличивать амплитуду сигнала.
Эти кнопки предназначены для изменения формы сигналов.
Здесь можно увидеть такие сигналы, как
Далее с помощью кнопок можно выбрать нужный диапазон, а также подключить какой-либо внешний сигнал.
Под внешним счетчиком здесь имеется ввиду какой-либо периодический сигнал с какого-нибудь генератора частоты либо схемы. Подавая такой сигнал на разъем нашего генератора частоты, мы с легкостью можем определить частоту неизвестного сигнала вплоть до 10 Мегагерц. То есть в данном случае генератор функций выполняет роль частотомера.
Далее идут разъемы.
VCF – Voltage Controlled Frequency. По нашему ГУН. Расшифровывается как Генератор Управляемый Напряжением. Само название говорит нам о том, что мы можем менять частоту сигнала с генератора частоты, подавая на этот разъем какое-либо напряжение. В зависимости от того, какая будет амплитуда подаваемого напряжения, такая и будет частота на выходе генератора частоты.
TTL OUT. ТТЛ – Транзисторно-Транзисторная-Логика. OUT – выход. Этот выход предназначен для тактирования логических микросхем, построенных на так называемой транзисторно-транзисторной логике. То есть это логические элементы, которые в своем составе имеют только биполярные транзисторы и резисторы. Такие микросхемы делают в основном на питание +5 В.
Логический ноль – это уровень напряжения от 0 и до +0,5 В. Уровень логической единички от 2,4 и до +5 В. Поэтому, с этого выхода мы получаем прямоугольный периодический сигнал с чередующимися нулями и единицами: 0101010101… Частоту такого сигнала выставляем с помощью крутилки и кнопок выбора диапазона.
OUTPUT. Выход с генератора. Именно с этого разъема мы и получаем необходимый нам сигнал с генератора функций.
Также небольшой интерес могут представлять из себя кнопки
Как устроен генератор сигналов?
Устройство генерирует импульсы различной природы для замера параметров электронных приборов. Большинство генераторов работает только при наличии входного импульса, амплитуда которого постоянно меняется.
Стандартная модель сигнального генератора состоит из нескольких частей:
Смещение сигнала и его амплитуда обычно регулируются 2 кнопками. Работа с файлами происходит через мини-панель. Она дает пользователю просмотреть результаты тестирования или сохранить их для будущего анализа.
Как изменить форму сигнала
Для того, чтобы получить некоторые нестандартные сигналы, типа пилы или прямоугольных сигналов с различной скважностью, нам придется задействовать
вот эту кнопочку и крутилку
Пару слов о скважности. Это параметр применяется к прямоугольной форме сигналов.
T – период импульса, с
t – длительность импульса, с
Величина D (Duty), обратная величине S, называется коэффициентом заполнения
Иллюстрация сигналов с различным коэффициентом заполнения
На экране осциллографа это может выглядеть вот так
Можем также из треугольного сигнала получить пилообразный сигнал
Иногда требуется добавить постоянную составляющую в сигнал. Для этого используем вот эту кнопочку и крутилку.
Смысл этой операции заключается в том, что к переменному току мы добавляем постоянный ток. Если объяснить графически, то это будет выглядеть вот так.
Как вы видите, эта функция без проблем работает в этом генераторе частоты
А также мы без проблем можем замерить этим генератором частот какую-либо частоту, например, с другого генератора. Выставили 15 КГц, он нам тоже показал 15 КГц. Все работает как надо!
Генератор звуковой частоты
Схемы для начинающих
Что такое генератор звука и с чем его едят? Итак, давайте первым делом определимся со значением слова “генератор”. Генератор – от лат. generator – производитель. То есть объясняя домашним языком, генератор – это устройство, которое производит что-либо. Ну а что такое звук? Звук – это колебания, которые может различить наше ухо. Нормальный человек может слышать колебания в диапазоне частот от 16 Гц и до 20 Килогерц. Звук до 16 Герц называют инфразвуком, а звук более 20 000 Герц – ультразвуком.
Из всего вышесказанного можно сделать вывод, что генератор звука – это устройство, которое излучает какой-либо звук. Все элементарно и просто А почему бы его нам не собрать? Схему в студию!
Как мы видим, моя схема состоит из:
– конденсатора емкостью 47 наноФарад
– резистора 20 Килоом
– транзисторов КТ315Г и КТ361Г, можно с другими буквами или вообще какие-нибудь другие маломощные
– маленькая динамическая головка
– кнопочка, но можно сделать и без нее.
На макетной пл ате все это выглядит примерно вот так:
А вот и транзисторы:
Слева – КТ361Г, справа – КТ315Г. У КТ361 буква находится посередине на корпусе, а у 315 – слева.
Эти транзисторы являются комплиментарными парами друг другу.
Частоту звука можно менять, меняя значение резистора или конденсатора. Также частота увеличивается, если повышать напряжение питания. При 1,5 Вольт частота будет ниже, чем при 5 Вольтах. У меня на видео напряжение выставлено 5 Вольт.
Виды генераторов сигналов
Приборы различаются по ряду характеристик. Например, по форме сигнала (синусоидальные, прямоугольные, в виде пилы), по частоте (низкочастотные, высокочастотные), по принципу возбуждения (независимое, самовозбуждение). Однако существует несколько основных видов — о них и расскажем подробнее.
Синусоидальный
Прибор усиливает первоначальный синусоидный код в десятки раз. На выходе получается частота до 100 МГц. При этом исходный синус, как правило, не превышает 50 МГц. Генераторы синусоидального импульса активно используют при проверке блоков питания, инверторов и другой высокочастотной техники, а также радиоаппаратуры.
Генератор низкочастотный
Ниже схема самого простого низкочастотного генератора. На ней видно, что в приборе присутствуют переменные резисторы. Они позволяют корректировать форму и частоту сигнала. Изменить силу импульса можно подключенным модулятором KK202.
Такой прибор подойдет для настройки аудиоаппаратуры (звуковых усилителей, проигрывателей). Наиболее доступным вариантом низкочастотного генератора является обычный компьютер. Достаточно скачать драйверы и подключить его к аппаратуре через переходник.
Генератор звуковой частоты
Стандартная конструкция с микросхемами внутри. Напряжение подается в селектор, а сам сигнал генерируется в одной или нескольких микросхемах. Частоту можно настраивать при помощи модуляционного регулятора. Прибор отличается более обширным диапазоном частоты, чем аналоги (до 2000 кГц).
Генератор цифрового сигнала
Цифровые генераторы популярны, потому что отличаются высокой точностью. Пользоваться ими удобно, однако они нуждаются в тщательной настройке. Здесь стоят коннекторы KP300, резисторы достигают сопротивления от 4 Ом. Это позволяет добиться предельно допустимого внутреннего напряжения в схеме.
Импульсы произвольной формы
Генераторы с импульсами произвольной формы имеют повышенную точность. Погрешность минимальная — до 3%. Выходной импульс подвергается тонкой регулировке с применением шестиканального селектора. Прибор вырабатывает частоту от 70 Гц.
Устройства делят по степени синхронизации. Зависит она от типа коннектора, который установлен в прибор. Поэтому сигнал может усиливаться за 15-40 ньютон-секунд. Некоторые модели работают на 2 режимах – линейном и логарифмическом. Режим меняется переключателем, за счет чего корректируется амплитуда.
Контроллеры сложных сигналов
В сборке присутствуют только многоканальные селекторы, так как приборы получают импульсы сложной формы. Сигналы многократно усиливаются, режим можно изменить при помощи регулятора. Вариацией такого прибора считается DDS (устройство по схеме прямого цифрового синтеза).
Базовая плата оборудуется микроконтроллерами, которые легко снимаются и ставятся на место. В некоторых моделях можно заменить микроконтроллер одним движением. Если редактор монтированный, ограничители установить нельзя. Прибор генерирует измерительный сигнал мощностью до 2000 кГц с погрешностью до 2%.