Для чего нужен калориметр

Калориметр

Для чего нужен калориметр. Смотреть фото Для чего нужен калориметр. Смотреть картинку Для чего нужен калориметр. Картинка про Для чего нужен калориметр. Фото Для чего нужен калориметр

В физике элементарных частиц и ядерной физике калориметром называется прибор для измерения энергии частиц (см. статью Калориметр (ядерная физика)).

Содержание

Современные калориметры

Современные калориметры работают в диапазоне температур от 0,1 до 3500 К и позволяют измерять количество теплоты с точностью до 0,01-10 %. Устройство калориметров весьма разнообразно и определяется характером и продолжительностью изучаемого процесса, областью температур, при которых производятся измерения, количеством измеряемой теплоты и требуемой точностью.

Типы калориметров

Калориметр, предназначенный для измерения суммарного количества теплоты Q, выделяющейся в процессе от его начала до завершения, называют калориметр-интегратором; Калориметр для измерения тепловой мощности (скорости тепловыделения) L и её изменения на разных стадиях процесса — измерителем мощности или калориметр-осциллографом. По конструкции калориметрической системы и методу измерения различают жидкостные и массивные калориметры, одинарные и двойные (дифференциальные).

Жидкостный калориметр-интегратор

Жидкостный калориметр-интегратор переменной температуры с изотермической оболочкой применяют для измерений теплот растворения и теплот химических реакций. Он состоит из сосуда с жидкостью (обычно водой), в котором находятся: камера для проведения исследуемого процесса («калориметрическая бомба»), мешалка, нагреватель и термометр. Теплота, выделившаяся в камере, распределяется затем между камерой, жидкостью и другими частями калориметра, совокупность которых называют калориметрической системой прибора.

У жидкостных калориметров изотермическую температуру оболочки поддерживают постоянной. При определении теплоты химической реакции наибольшие затруднения часто связаны не с учётом побочных процессов, а с определением полноты протекания реакции и с необходимостью учитывать несколько реакций.

Калориметрические измерения

Изменение состояния (например, температуры) калориметрической системы позволяет измерить количество теплоты, введённое в калориметр. Нагрев калориметрической системы фиксируется термометром. Перед проведением измерений калориметр градуируют — определяют изменение температуры калориметрической системы при сообщении ей известного количества теплоты (нагревателем калориметра или в результате проведения в камере химической реакции с известным количеством стандартного вещества). В результате градуировки получают тепловое значение калориметра, то есть коэффициент, на который следует умножить измеренное термометром изменение температуры калориметра для определения количества введённой в него теплоты. Тепловое значение такого калориметра представляет собой теплоёмкость (с) калориметрической системы. Определение неизвестной теплоты сгорания или другой химической реакции Q сводится к измерению изменения температуры Δt калориметрической системы, вызванного исследуемым процессом: Q=cΔt. Обычно значение Q относят к массе вещества, находящегося в камере калориметра.

Побочные процессы в калориметрических измерениях

Калориметрические измерения позволяют непосредственно определить лишь сумму теплот исследуемого процесса и различных побочных процессов, таких как перемешивание, испарение воды, разбивание ампулы с веществом и т. п. Теплота побочных процессов должна быть определена опытным путём или расчётом и исключена из окончательного результата. Одним из неизбежных побочных процессов является теплообмен калориметра с окружающей средой посредством излучения и теплопроводности. В целях учёта побочных процессов и прежде всего теплообмена калориметрическую систему окружают оболочкой, температуру которой регулируют.

Изотермический калориметр-интегратор

В калориметре-интеграторе другого вида — изотермическом (постоянной температуры) введённая теплота не изменяет температуры калориметрической системы, а вызывает изменение агрегатного состояния тела, составляющего часть этой системы (например, таяние льда в ледяном калориметре Бунзена). Количество введённой теплоты рассчитывается в этом случае по массе вещества, изменившего агрегатное состояние (например, массе растаявшего льда, которую можно измерить по изменению объёма смеси льда и воды), и теплоте фазового перехода.

Массивный калориметр-интегратор

Массивный калориметр-интегратор чаще всего применяют для определения энтальпии веществ при высоких температурах (до 2500 °C). Калориметрическая система у калориметров этого типа представляет собой блок из металла (обычно из меди или алюминия) с выемками для сосуда, в котором происходит реакция, для термометра и нагревателя. Энтальпию вещества рассчитывают как произведение теплового значения калориметра на разность подъёмов температуры блока, измеряемых после сбрасывания в его гнездо ампулы с определённым количеством вещества, а затем пустой ампулы, нагретой до той же температуры.

Проточные лабиринтные калориметры

Теплоёмкость газов, а иногда и жидкостей, определяют в т. н. проточных лабиринтных калориметрах — по разности температур на входе и выходе стационарного потока жидкости или газа, мощности этого потока и джоулевой теплоте, выделенной электрическим нагревателем калориметра.

Калориметр — измеритель мощности

Калориметр, работающий как измеритель мощности, в противоположность калориметру-интегратору должен обладать значительным теплообменом, чтобы вводимые в него количества теплоты быстро удалялись и состояние калориметра определялось мгновенным значением мощности теплового процесса. Тепловая мощность процесса находится из теплообмена калориметра с оболочкой. Такие калориметры, разработанные французским физиком Э.Кальве, представляют собой металлический блок с каналами, в которые помещают цилиндрические ячейки. В ячейке проводится исследуемый процесс; металлический блок играет роль оболочки (температура его поддерживается постоянной с точностью до 10 −5 —10 −6 К). Разность температур ячейки и блока измеряется термобатареей, имеющей до 1000 спаев. Теплообмен ячейки и ЭДС термобатареи пропорциональны малой разности температур, возникающей между блоком и ячейкой, когда в ней выделяется или поглощается теплота. В блок помещают чаще всего две ячейки, работающие как дифференциальный калориметр: термобатареи каждой ячейки имеют одинаковое число спаев и поэтому разность их ЭДС позволяет непосредственно определить разность мощности потоков теплоты, поступающей в ячейки. Этот метод измерений позволяет исключить искажения измеряемой величины случайными колебаниями температуры блока. На каждой ячейке монтируют обычно две термобатареи: одна позволяет скомпенсировать тепловую мощность исследуемого процесса на основе эффекта Пельтье, а другая (индикаторная) служит для измерения нескомпенсированной части теплового потока. В этом случае прибор работает как дифференциальный компенсационный калориметр При комнатной температуре такими калориметрами измеряют тепловую мощность процессов с точностью до 1 мкВт.

Названия калориметров

Обычные названия калориметров — «для химической реакции», «бомбовый», «изотермический», «ледяной», «низкотемпературный» — имеют историческое происхождение и указывают главным образом на способ и область использования калориметров, не являясь ни полной, ни сравнительной их характеристикой.

Общая классификация калориметров

Общую классификацию калориметров можно построить на основе рассмотрения трёх главных переменных, определяющих методику измерений: температуры калориметрической системы Tc; температуры оболочки To, окружающей калориметрическую систему; количества теплоты L, выделяемой в калориметре в единицу времени (тепловой мощности).

Калориметры с постоянными Tc и To называют изотермическим; с Tc = To — адиабатическим; калориметр, работающий при постоянной разности температур TcTo, называют калориметром с постоянным теплообменом; у изопериболического калориметра (его ещё называют калориметром с изотермической оболочкой) постоянна To, а Tc является функцией тепловой мощности L.

Факторы, влияющие на окончательный результат измерений

Важным фактором, влияющим на окончательный результат измерений, является надёжная работа автоматических регуляторов температуры изотермических или адиабатических оболочек. В адиабатическом калориметре температура оболочки регулируется так, чтобы она была всегда близка к меняющейся температуре калориметрической системы. Адиабатическая оболочка — лёгкая металлическая ширма, снабженная нагревателем, — уменьшает теплообмен настолько, что температура калориметра меняется лишь на несколько десятитысячных град/мин. Часто это позволяет снизить теплообмен за время калориметрического опыта до незначительной величины, которой можно пренебречь. В случае необходимости в результаты непосредственных измерений вводится поправка на теплообмен, метод расчёта которой основан на законе теплообмена Ньютона — пропорциональности теплового потока между калориметром и оболочкой разности их температур, если эта разность невелика (до 3—4 °C).

Для калориметра с изотермической оболочкой теплоты химической реакции могут быть определены с погрешностью до 0,01 %. Если размеры калориметра малы, температура его изменяется более чем на 2—3 °C и исследуемый процесс продолжителен, то при изотермической оболочке поправка на теплообмен может составить 15—20 % от измеряемой величины и существенно ограничить точность измерений. В этих случаях целесообразнее применять адиабатическую оболочку.

При помощи адиабатического калориметра определяют теплоёмкость твёрдых и жидких веществ в области от 0,1 до 1000 К. При комнатных и более низких температурах адиабатический калориметр, защищённый вакуумной рубашкой, погружают в сосуд Дьюара, заполненный жидким гелием, водородом или азотом. При повышенных температурах (выше 100 °C) калориметр помещают в термостатированную электрическую печь.

Источник

Калориметр

Калориметр, предназначенный для измерения суммарного количества теплоты Q, выделяющейся в процессе от его начала до завершения, называют калориметром-интегратором; калориметр для измерения тепловой мощности L и её изменения на разных стадиях процесса — измерителем мощности или калориметром-осциллографом. По конструкции калориметрической системы и методу измерения различают жидкостные и массивные калориметры, одинарные и двойные (дифференциальные).

Жидкостный калориметр-интегратор переменной температуры (рис. 1) с изотермической оболочкой применяют для измерений теплот растворения и теплот химических реакций. Он состоит из сосуда с жидкостью (обычно водой), в котором находятся: камера для проведения исследуемого процесса («калориметрическая бомба»), мешалка, нагреватель и термометр. Теплота, выделившаяся в камере, распределяется затем между камерой, жидкостью и др. частями калориметра, совокупность которых называют калориметрической системой прибора. Изменение состояния (например, температуры) калориметрической системы позволяет измерить количество теплоты, введённое в калориметр. Нагрев калориметрической системы фиксируется термометром. Перед проведением измерений калориметр градуируют — определяют изменение температуры калориметрической системы при сообщении ей известного количества теплоты (нагревателем калориметра или в результате проведения в камере химической реакции с известным количеством стандартного вещества). В результате градуировки получают тепловое значение калориметра, т. е. коэффициент, на который следует умножить измеренное термометром изменение температуры калориметра для определения количества введённой в него теплоты. Тепловое значение такого калориметра представляет собой теплоёмкость (с) калориметрической системы. Определение неизвестной теплоты сгорания или др. химической реакции Q сводится к измерению изменения температуры D t калориметрической системы, вызванного исследуемым процессом: Q = c × D t. Обычно значение Q относят к массе вещества, находящегося в камере калориметра.

Калориметрические измерения позволяют непосредственно определить лишь сумму теплот исследуемого процесса и различных побочных процессов, таких как перемешивание, испарение воды, разбивание ампулы с веществом и т.п. Теплота побочных процессов должна быть определена опытным путём или расчётом и исключена из окончательного результата. Одним из неизбежных побочных процессов является теплообмен калориметра с окружающей средой посредством излучения и теплопроводности. В целях учёта побочных процессов и прежде всего теплообмена калориметрическую систему окружают оболочкой, температуру которой регулируют.

У жидкостных калориметров температуру оболочки поддерживают постоянной. При определении теплоты химической реакции наибольшие затруднения часто связаны не с учётом побочных процессов, а с определением полноты протекания реакции и с необходимостью учитывать несколько реакций.

В калориметре-интеграторе другого вида — изотермическом (постоянной температуры) введённая теплота не изменяет температуры калориметрической системы, а вызывает изменение агрегатного состояния тела, составляющего часть этой системы (например, таяние льда в ледяном калориметре Бунзена). Количество введённой теплоты рассчитывается в этом случае по массе вещества, изменившего агрегатное состояние (например, массе растаявшего льда, которую можно измерить по изменению объёма смеси льда и воды), и теплоте фазового перехода.

Массивный калориметр-интегратор чаще всего применяют для определения энтальпии веществ при высоких температурах (до 2500 °С). Калориметрическая система у калориметров этого типа представляет собой блок из металла (обычно из меди или алюминия) с выемками для сосуда, в котором происходит реакция, для термометра и нагревателя. Энтальпию вещества рассчитывают как произведение теплового значения калориметра на разность подъёмов температуры блока, измеряемых после сбрасывания в его гнездо ампулы с определённым количеством вещества, а затем пустой ампулы, нагретой до той же температуры.

Теплоёмкость газов, а иногда и жидкостей, определяют в т. н. проточных лабиринтных калориметрах — по разности температур на входе и выходе стационарного потока жидкости или газа, мощности этого потока и джоулевой теплоте, выделенной электрическим нагревателем калориметра.

Обычные названия калориметров — «для химической реакции», «бомбовый», «изотермический», «ледяной», «низкотемпературный» — имеют историческое происхождение и указывают главным образом на способ и область использования калориметра, не являясь ни полной, ни сравнительной их характеристикой.

Общую классификацию калориметров можно построить на основе рассмотрения трёх главных переменных, определяющих методику измерений: температуры калориметрической системы Tc; температуры оболочки To, окружающей калориметрическую систему количества теплоты L, выделяемой в калориметре в единицу времени (тепловой мощности).

Калориметр с постоянными Tc и To называют изотермическим; с Tc = To — адиабатическим; калориметр, работающий при постоянной разности температур Tc — To, называют калориметром с постоянным теплообменом; у изопериболического калориметра (его ещё называют калориметром с изотермической оболочкой) постоянна To, а Tc является функцией тепловой мощности L.

Важным фактором, влияющим на окончательный результат измерений, является надёжная работа автоматических регуляторов температуры изотермических или адиабатических оболочек. В адиабатическом калориметре температура оболочки регулируется так, чтобы она была всегда близка к меняющейся температуре калориметрической системы. Адиабатическая оболочка — лёгкая металлическая ширма, снабженная нагревателем, — уменьшает теплообмен настолько, что температура калориметра меняется лишь на несколько десятитысячных град/мин. Часто это позволяет снизить теплообмен за время калориметрического опыта до незначительной величины, которой можно пренебречь. В случае необходимости в результаты непосредственных измерений вводится поправка на теплообмен, метод расчёта которой основан на законе теплообмена Ньютона — пропорциональности теплового потока между калориметром и оболочкой разности их температур, если эта разность невелика (до 3—4 ° С).

Для калориметра с изотермической оболочкой теплоты химической реакции могут быть определены с погрешностью до 0,01%. Если размеры калориметра малы, температура его изменяется более чем на 2—3 °С и исследуемый процесс продолжителен, то при изотермической оболочке поправка на теплообмен может составить 15—20% от измеряемой величины и существенно ограничить точность измерений. В этих случаях целесообразнее применять адиабатическую оболочку.

При помощи адиабатического калориметра определяют теплоёмкость твёрдых и жидких веществ в области от 0,1 до 1000 К. При комнатных и более низких температурах адиабатический калориметр, защищенный вакуумной рубашкой, погружают в Дьюара сосуд, заполненный жидким гелием, водородом или азотом (рис. 3). При повышенных температурах (выше 100 °С) калориметр помещают в термостатированную электрическую печь.

Лит.: Попов М. М., Термометрия и калориметрия, 2 изд., М., 1954; Скуратов С. М., Колосов В. П., Воробьев А. Ф., Термохимия, ч. 1—2, М., 1964—66; Кальве Э., Прат А., Микро-калориметрия, пер. с франц., М., 1963; Experimental thermochemistry, v. 1—2 N. Y. — L., 1956-62.

Для чего нужен калориметр. Смотреть фото Для чего нужен калориметр. Смотреть картинку Для чего нужен калориметр. Картинка про Для чего нужен калориметр. Фото Для чего нужен калориметр

Рис. 2. Калориметр Э. Кальве для измерения тепловой мощности процессов (схема): 1 — калориметрическая ячейка с термопарами; 2 — блок калориметра; 3 — металлические конусы для создания однородного поля температур в блоке; 4 — оболочка; 5 — нагреватель для термостатирования прибора; 6 — тепловые экраны; 7 — тепловая изоляция; 8 — трубка для введения вещества в калориметр; 9 — окно для отсчётов показаний гальванометра 10.

Для чего нужен калориметр. Смотреть фото Для чего нужен калориметр. Смотреть картинку Для чего нужен калориметр. Картинка про Для чего нужен калориметр. Фото Для чего нужен калориметр

Рис. 3. Адиабатический калориметр для определения теплоёмкости при низких температурах (схема): 1 — калориметр (а — сосуд для вещества, б — термометр сопротивления, в — нагреватель); 2 — адиабатические оболочки (ширмы); 3 — вакуумная рубашка; 4 — труба для откачки; 5 — трубка для электрических проводов.

Для чего нужен калориметр. Смотреть фото Для чего нужен калориметр. Смотреть картинку Для чего нужен калориметр. Картинка про Для чего нужен калориметр. Фото Для чего нужен калориметр

Рис. 1. Жидкостный калориметр-интегратор с изотермической оболочкой (схема): 1 — «калориметрическая бомба»; 2 — нагреватель для возбуждения реакции; 3 — собственно калориметр (сосуд, заполненный водой); 4 — термометр сопротивления; 5 — холодильник (трубка, через которую можно пропускать холодный воздух); 6 — изотермическая оболочка калориметра, заполненная водой; 7 — нагреватель оболочки; 8 — контактный термометр для регулировки температуры оболочки; 9 — контрольный термометр; 10 — мешалки с приводом.

Источник

Калориметр

Для чего нужен калориметр. Смотреть фото Для чего нужен калориметр. Смотреть картинку Для чего нужен калориметр. Картинка про Для чего нужен калориметр. Фото Для чего нужен калориметр

Для чего нужен калориметр. Смотреть фото Для чего нужен калориметр. Смотреть картинку Для чего нужен калориметр. Картинка про Для чего нужен калориметр. Фото Для чего нужен калориметр

Для чего нужен калориметр. Смотреть фото Для чего нужен калориметр. Смотреть картинку Для чего нужен калориметр. Картинка про Для чего нужен калориметр. Фото Для чего нужен калориметр

Полезное

Смотреть что такое «Калориметр» в других словарях:

калориметр — калориметр … Орфографический словарь-справочник

КАЛОРИМЕТР — (от лат. calor тепло и греч. metreo измеряю), прибор для измерения кол ва теплоты, выделяющейся или поглощающейся в к. л. физ., хим. или биол. процессе. Термин «К.» был предложен франц. учёными А. Лавуазье и П. Лапласом (1780). Совр. К. работают… … Физическая энциклопедия

калориметр — а, м. calorimètre m. Прибор для определения количества теплоты. Ож. 1986. Тепломер calorimètre. Кадет Хим. сл. 4 5. Лекс. Ян. 1804: калориметр; САН 1847: калоримЕтр; Уш. 1934: калорИметр … Исторический словарь галлицизмов русского языка

калориметр — calorimeter, air heater *Kalorimeter прилад для вимірювання кількості тепла, що її виділяє або вбирає тіло. Застосовується як основний прилад в калориметрії сукупності методів вимірювання теплових ефектів, які супроводять різні хімічні, фізичні… … Гірничий енциклопедичний словник

КАЛОРИМЕТР — КАЛОРИМЕТР, прибор, используемый при экспериментах, связанных с измерением количества тепла. Обычно это сосуд из материала, обладающего высокой проводимостью, например, из меди, снабженный теплоизоляцией. Существует много вариантов калориметра… … Научно-технический энциклопедический словарь

калориметр — Измерительный прибор, основанный на преобразовании энергии излучения в тепловую энергию, представляющий собой поглотитель известной массы с известной теплоемкостью, близкий по своим свойствам к черному телу, или с известным коэффициентом… … Справочник технического переводчика

КАЛОРИМЕТР — (от латинского calor тепло и. метр), прибор для измерения количества теплоты, выделяющейся или поглощающейся при различных физических, химических, биологических или промышленных процессах. Используется, например, для определения теплоты сгорания … Современная энциклопедия

КАЛОРИМЕТР — КАЛОРИМЕТР, калориметра, муж. (от лат. calor теплота и греч. metron мера) (физ.). Прибор для измерений количества теплоты. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова

КАЛОРИМЕТР — КАЛОРИМЕТР, а, муж. Прибор для измерения количества теплоты. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Источник

История калориметра, детали, типы и их характеристики

калориметр представляет собой устройство, которое используется для измерения изменения температуры определенного количества вещества (обычно воды) с известной удельной теплоемкостью. Это изменение температуры связано с поглощением или выделением тепла в исследуемом процессе; химический, если это реакция, или физический, если он состоит из изменения фазы или состояния.

В лаборатории самый простой калориметр, который можно найти, это калориметр. Он используется для измерения тепла, поглощенного или выделенного в реакции при постоянном давлении, в водном растворе. Реакции выбираются так, чтобы избежать вмешательства реагентов или газообразных продуктов..

Для чего нужен калориметр. Смотреть фото Для чего нужен калориметр. Смотреть картинку Для чего нужен калориметр. Картинка про Для чего нужен калориметр. Фото Для чего нужен калориметрВ экзотермической реакции количество выделяемого тепла может быть рассчитано по увеличению температуры калориметра и водного раствора:

Количество тепла, которое выделяется в реакции = количество тепла, поглощенного калориметром + количество тепла, поглощенного раствором

Количество тепла, поглощаемое калориметром, называется калориметрической емкостью калориметра. Это определяется подачей известного количества тепла в калориметр с заданной массой воды. Затем измеряют повышение температуры калориметра и содержащегося в нем раствора..

С этими данными и использованием удельной теплоемкости воды (4,18 Дж / г ºC) можно рассчитать калорийность калориметра. Эта емкость также называется постоянной калориметра.

С другой стороны, тепло, получаемое водным раствором, равно m · ce · Δt. В формуле m = масса воды, ce = удельная теплоемкость воды и Δt = изменение температуры. Зная все это, можно рассчитать количество тепла, выделяемое экзотермической реакцией..

История калориметра

В 1780 году французский ученый А. Л. Лавуазье, считающийся одним из отцов химии, использовал морскую свинку, чтобы измерить выработку тепла при дыхании..

Как? Использование устройства, похожего на калориметр. О тепле, производимом морской свинкой, свидетельствует таяние снега, окружавшего аппарат.

Исследователи А. Л. Лавуазье (1743-1794) и П. С. Лаплас (1749-1827) разработали калориметр, который использовался для измерения удельной теплоты тела методом таяния льда.

Калориметр состоял из луженого цилиндрического стакана, покрытого лаком, удерживаемого штативом и внутренне ограниченного воронкой. Внутри было помещено еще одно стекло, похожее на предыдущее, с трубкой, проходящей через внешнюю камеру и снабженной ключом. Внутри второго стекла была сетка.

В эту сетку помещалось существо или объект, удельное тепло которого было желательно определить. Лед был помещен внутри концентрических сосудов, как в корзине.

Тепло, выделяемое телом, поглощалось льдом, вызывая его слияние. И жидкий водный продукт таяния льда собирали, открывая ключ внутреннего стекла.

И, наконец, при взвешивании воды масса расплавленного льда была известна.

части

Изображение показывает части калориметрического насоса; Тем не менее, можно заметить, что он имеет термометр и мешалку, общие элементы в нескольких калориметрах.

Типы и их характеристики

Кофейная чашка

Это тот, который используется для определения тепла, выделяемого экзотермической реакцией, и тепла, поглощаемого в эндотермической реакции..

Калориметрический насос

Это устройство, в котором измеряется количество тепла, которое выделяется или поглощается в реакции, которая происходит при постоянном объеме..

Реакция протекает в прочном стальном сосуде (насосе), который погружается в большой объем воды. Это делает изменения температуры воды небольшими. Следовательно, предполагается, что изменения, связанные с реакцией, измеряются при постоянной температуре и объеме..

Вышесказанное указывает на то, что при проведении реакции в калориметрическом насосе работа не выполняется..

Реакция начинается с подачи электричества через кабели, подключенные к насосу.

Адиабатический калориметр

Он характеризуется наличием изолирующей структуры, называемой экраном. Экран расположен вокруг ячейки, где происходят изменения температуры и тепла. Он также подключен к электронной системе, которая поддерживает свою температуру очень близко к температуре элемента, чтобы избежать передачи тепла.

В адиабатическом калориметре разница температур между калориметром и его окружением сводится к минимуму; а также минимизировать коэффициент теплопередачи и время теплообмена.

Его части состоят из следующего:

-Ячейка (или контейнер), интегрированная в систему изоляции, с помощью которой пытаются избежать потери тепла.

-Термометр, для измерения изменений температуры.

-Нагреватель, подключенный к контролируемому источнику электрического напряжения.

-И щит, уже упоминавшийся.

В калориметре этого типа могут быть определены такие свойства, как энтропия, температура Дебая и плотность электронного состояния..

Изопериболический калориметр

Это устройство, в котором реакционная ячейка и насос погружены в конструкцию, называемую рубашкой. В этом случае так называемая рубашка состоит из воды, поддерживаемой при постоянной температуре.

Температура ячейки и насоса повышается при выделении тепла во время процесса сгорания; но температура водяной рубашки поддерживается на фиксированной температуре.

Микропроцессор контролирует температуру ячейки и кожуха, внося необходимые поправки в тепло утечки, возникающее в результате различий между двумя температурами..

Эти поправки применяются непрерывно и с окончательной поправкой, основанной на измерениях до и после испытания..

Проточный калориметр

Разработанный Caliendar, он имеет устройство для перемещения газа в контейнере с постоянной скоростью. При добавлении тепла измеряется увеличение температуры в жидкости..

Проточный калориметр характеризуется:

— Точное измерение постоянного расхода.

— Точное измерение количества тепла, вводимого в жидкость через нагреватель.

— Точное измерение повышения температуры в газе, вызванное подводом энергии

— Конструкция для измерения емкости газа под давлением.

Калориметр для дифференциальной сканирующей калориметрии

Он характеризуется наличием двух контейнеров: в одном помещается исследуемый образец, в то время как другой остается пустым или используется контрольный материал.

Два сосуда нагреваются с постоянной скоростью энергии с помощью двух независимых нагревателей. Когда начинается нагрев двух емкостей, компьютер будет отображать разницу тепловых потоков нагревателей в зависимости от температуры, что позволяет определить поток тепла..

Кроме того, можно определить изменение температуры как функции времени; и, наконец, калорийность.

приложений

По физикохимии

-Основные калориметры, типа кофейной чашки, позволяют измерять количество тепла, которое организм выделяет или поглощает. Они могут определить, является ли реакция экзотермической или эндотермической. Кроме того, удельная теплоемкость тела может быть определена.

-С помощью адиабатического калориметра удалось определить энтропию химического процесса и электронную плотность состояния.

В биологических системах

-Микрокалориметры используются для изучения биологических систем, которые включают взаимодействия между молекулами, а также происходящие конформационные изменения молекул; например, при развертывании молекулы. Линия включает в себя как дифференциальное сканирование, так и изотермическое титрование.

-Микрокалориметр используется при разработке лекарственных препаратов малых молекул, биотерапевтических средств и вакцин..

Кислородный насос калориметр и калорийность

Сжигание многочисленных веществ происходит в калориметре кислородного насоса, и его калорийность может быть определена. В число веществ, изученных с помощью этого калориметра, входят: уголь и кокс; пищевые масла, как тяжелые, так и легкие; бензин и все моторные топлива.

А также виды топлива для авиационных реакторов; топливные отходы и размещение отходов; пищевые продукты и добавки для питания человека; кормовые культуры и добавки для кормления животных; строительные материалы; ракетное и ракетное топливо.

Аналогично, калорийность была определена с помощью калориметрии в термодинамических исследованиях горючих материалов; в изучении энергетического баланса в экологии; во взрывчатых веществах и термопорошках и в обучении основным термодинамическим методам.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *