Для чего нужен метеозонд
Метеозонд
Метеозо́нд или шар-зо́нд — беспилотный аэростат, предназначенный для изучения атмосферы. Состоит из резиновой или пластиковой оболочки, наполненной водородом или гелием, и подвешенного к ней контейнера с аппаратурой. Приборы позволяют измерять давление воздуха, влажность, температуру и другие параметры. Замеры перемещения шара позволяют определять скорость ветра на разных высотах. Информация, как правило, передаётся по радио («радиозонд»). До внедрения радио на метеозондах устанавливали метеорографы, которые нужно было возвращать на землю. В настоящий момент контейнеры с аппаратурой изготавливаются максимально дешевыми, поэтому после разрыва оболочки, контейнер падает на землю и разбивается (при этом возможны повреждения объектов на земле). Если шар запускают только для измерения скорости ветра, то его называют «шар-пилот».
Высотные метеозонды могут достигать высоты 30—40 км. Рекорд высоты для аэростатов составляет 51 820 м (1972 г., над США [1] ). Часто метеозонды принимают за НЛО.
См. также
Примечания
Ссылки
Актинометр · Анемометр · Балансомер · Барограф · Барометр · Ветроуказатель · Гелиограф · Гигрометр · Детектор испарения · Детектор молний · Дисдрометр · Облачный прожектор · Облакомер · Защитные очки · Индикатор приращения льда · Лидар · Метеозонд · Метеорологическая ракета · Нефелометр · Нефоскоп · Пиранометр · Погодный радар · Радиолокационная станция · Радиозонд · Осадкомер · Снегомер · SODAR · Соляриметр · Термограф · Термометр · Термометрическая будка · Ультразвуковой анемометр · Флюгер |
Полезное
Смотреть что такое «Метеозонд» в других словарях:
метеозонд — метеозонд … Орфографический словарь-справочник
метеозонд — аэростат, аэрозонд, зонд Словарь русских синонимов. метеозонд сущ., кол во синонимов: 3 • аэрозонд (3) • … Словарь синонимов
метеозонд — а, ч. Метеорологічний зонд (див. зонд 2)) … Український тлумачний словник
ракета-метеозонд — ракета метеозонд, ракеты метеозонда … Орфографический словарь-справочник
ракета-метеозонд — сущ., кол во синонимов: 1 • ракета (27) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов
Розуэлльский инцидент — Это статья о городской легенде. Пожалуйста, отредактируйте статью так, чтобы мифичность предмета статьи была ясна как из её первых предложений, так и из последующего текста … Википедия
Метеорология — (от греч. μετέωρος, metéōros, атмосферные и небесные явления и λογία, логия) наука о строении и свойствах земной атмосферы и совершающихся в ней физических процессах. Во многих странах метеорологию называют физикой атмосферы, что в большей… … Википедия
Розвелл — «Розуэлльский гоминид». Розуэлльский инцидент (англ. Roswell incident) один или несколько случаев, имевших место в июле 1947 года близ Розуэлла в Нью Мексико. Они состоят в том, что там якобы было обнаружено множество образцов различных веществ… … Википедия
Розвеллский инцидент — «Розуэлльский гоминид». Розуэлльский инцидент (англ. Roswell incident) один или несколько случаев, имевших место в июле 1947 года близ Розуэлла в Нью Мексико. Они состоят в том, что там якобы было обнаружено множество образцов различных веществ… … Википедия
Росвелльский инцидент — «Розуэлльский гоминид». Розуэлльский инцидент (англ. Roswell incident) один или несколько случаев, имевших место в июле 1947 года близ Розуэлла в Нью Мексико. Они состоят в том, что там якобы было обнаружено множество образцов различных веществ… … Википедия
Метеозонд
Метеозонд.
Метеозонд – беспилотный аэростат, предназначенный для изучения атмосферы.
Метеозонд:
Полученная информация, как правило, передаётся по радиоканалу в режиме реального времени на приемный наземный комплекс – в таком случае метеозонд называют радиозондом. Радиозонды работают на выделенных радиочастотах 403 МГц (±3 Мгц), 1680 МГц (± 10 МГц), 1782 (±8 МГц – до 2023 г.). До внедрения радио на метеозондах устанавливали метеорографы, которые возвращались на землю. Современные радиозонды вместо радиоканалов могут использовать различные механизмы для определения скорости и направления ветра, например, системы позиционирования (ГЛОНАСС, GPS и др.).
Если шар запускают только для измерения скорости ветра, то его называют «шар-пилот».
Метеозонды, предназначенные для пребывания на постоянной высоте в течение длительного периода времени, называют «трансозонды».
Высотные метеозонды могут достигать высоты 30-40 км. Рекорд высоты для ультратонкого полиэтиленового метеозонда с диаметром 60 м составляет 53,7 км (рекорд поставлен в 2013 г.).
Как мы запускали метеозонд на Урале. Часть 1
Запуск метеозонда в небо — есть старинная забава ученых и энтузиастов, со времен инцидента в Розуэлле (штат Нью-Мексико). Метеорологи запускают зонды для наблюдения за процессами в верхних слоях атмосферы. Кто-то запускает зонды в торнадо, чтобы узнать его структуру. Энтузиасты же, в основном, делают это для красивой картинки нашей родной планеты с высоты полета Фрэнсиса Гэри Пауэрса.
Наш хакспейс полон энтузиастов, и был лишь вопрос времени, когда мы проведем такое грандиозное мероприятие. Это время настало весной текущего года. Прохладным утром 11 апреля 2015-го, хакспейс MakeItLab вместе с сетью магазинов оптики «Четыре глаза» и несколькими другими организациями запустили метеозонд в «уральскую» стратосферу!
С чего все начиналось
Почти год назад наш хакспейс посетил Александр Изгагин, глава местного планетария, и предложил вместе запустить метеозонд. Принес кучу уже купленного оборудования, включая два баллона. Осталось только собрать все вместе, определиться с полезной нагрузкой, добыть гелий, и запустить аппарат в небо.
Тогда же была и сформулирована главная цель запуска — популяризация науки. Для этого предполагалось собрать много школьников на сам запуск. Устроить среди ребят конкурс на лучшее исследование, которое можно провести на борту зонда. Отправить в стратосферу что-нибудь памятное.
Но, к сожалению, пока мы неторопливо готовились к запуску, незаметно подкрались холода и снег. Так что мероприятие было решено перенести на весну 2015-го. К тому же, весной есть еще и замечательный праздник — день космонавтики. Именно к этой дате мы и запланировали торжественный запуск. Осталось только закончить начатое!
Из чего состоит метеозонд
Перед тем как приступить к конструированию, мы тщательно изучили «интернеты», и в частности опыт наших коллег из Санкт-Петербурга. Узнали, как и из чего создать метеозонд, что называется, своими руками. Так мы выяснили, что классическая схема любительского метеозонда состоит из трех основных частей:
Баллон и обвязка
Метеозонды поднимаются в воздух за счет архимедовой силы, выталкивающей шар с легким газом в верхние разряженные слои атмосферы. В качестве легкого газа обычно используют водород или гелий. Первый дает большую тягу, но в смеси с воздухом очень взрывоопасен (помним Гинденбург). Второй является инертным газом, посему не горит, но и тягу дает меньшую. Раз уж мы собрались запускать зонд среди кучи детей, выбор пал на гелий.
Мы использовали хлоропреновый шар, широко используемый в рекламных целях. Собственно и покупали мы его в соответствующей организации. Судя по спецификации, максимальный объем 8-футового шара составил 7.5 куб. метров. Максимальный рекомендуемый вес груза — 4.5 кг. Вот так он выглядел в исходном состоянии. Как гигантский надувной шарик.
Парашют
Есть две распространенные схемы крепления парашюта. В первой, фал от нагрузки до шара непрерывен, а парашют с балансировочным кольцом как бы ответвляется от фала, и свободно болтается. Во второй, фал делится на два отрезка, первый из которых цепляется за центр балансировочного кольца, а второй за верхушку парашюта. Мы выбрали второй вариант.
Балансировочное кольцо нарисовали в SketchUp, и распечатали PLA пластиком на 3D-принтере. Парашют вырезали из куска брезента 1х1м. Пришили к нему восемь строп, и проделали в центре отверстие. Все края, разумеется, обработали. Вот так выглядит сложенный парашют и кольцо:
Идея работы такой схемы проста. Пока аппарат взлетает, парашют находится в натянутом состоянии, и служит частью фала. Как только шар лопается, парашют теряет натяжение и начинает расправляться.
Приборный отсек
Опираясь на мировой опыт и наши хотелки, мы решили разместить в летающем кубе следующее оборудование:
1) GPS GSM трекер отечественной фирмы X-Keeper. GPS-трекер — это устройство, которое каждые N минут отправляет через GSM сеть GPS координаты своего местоположения. В этом конкретном устройстве стояли симки двух наших крупнейших операторов. Чтобы трекер помог, ясень пень, спускаемый аппарат должен упасть в зоне действия сети одного из операторов.
2) Светозвуковой маяк с автономным питанием. Спустя несколько часов после старта это устройство начинает тревожно выть и мигать яркими светодиодами. Это должно было немного упростить поиск, особенно в темное время. По сути, простая платка на энергоэффективном микроконтроллере MSP430.
3) HD камере SJ4000 на боку модуля было суждено снимать красоты нашей планеты с заоблачной высоты.
4) Камера в полу модуля и радиопередатчик 500мВт 1.2ГГц предназначались для онлайн-трансляции при взлете.
5) Блок сбора показаний датчиков — этакий логгер — мы установили для измерения высоты полета, температуры, влажности. Кроме этого, на борт аппарата приклеили небольшую солнечную батарею, которую также подключили к логгеру.
6) LiPO аккумулятор емкостью 2200 мАч и напряжением 3S (11.1В) — для питания всего этого безобразия.
7) Особый груз — 12 юбилейных монет с изображением Юрия Гагарина, и горстку всяких важных вещей, включая детскую игрушку и ириску.
Более подробно про оборудование зонда напишем в следующей статье, а пока вот такая схема того, что с чем связано.
Сам модуль собрали из теплоизоляционного материала толщиной 30 мм. Экструдированный пенополистирол, который продается в каждом строительном магазине. Короб тщательно склеили Uhu Por клеем и обернули армированным скотчем. Получилась вот такая коробка:
Вес метеозонда, включая сам шар, фал, парашют и приборный отсек составил около 2 кг. Учитывая, что шар мы планировали наполнить 5 кубами гелия, зонд должен был взлететь с приличной скоростью 5 м/с.
Передатчик для камеры:
Светозвуковой маяк собран на скорую руку:
Нижняя онлайн-камера была помещена в напечатанный на 3D-принтере корпус. Бронестекло не стали ставить, дабы не провоцировать появление росы.
Наземное оборудование
Для обеспечения трансляции видео с борта зонда использовали вот такой приемник и направленную антенну к нему. Кстати, благодаря этой антенне удалось снимать видео с расстояния в несколько километров.
Баллон гелия приобрели у местного поставщика технических газов. В подобной же конторе, добыли и редуктор для баллона. Надо сказать, без редуктора накачать шар будет непросто. При откручивании вентиля на баллоне газ попрет очень бодро, и можно будет легко порвать шар. Все наблюдатели при этом зальются веселым гномьим смехом.
Разрешение на запуск
Как оказалось позже, вопросами запуска метеозондов занимается служба с длинным названием: зональный центр единой службы по организации воздушного движения (сокращенно ЗЦ ЕС ОрВД). Там нас попросили написать официальный запрос на запуск метеозонда, с указанием летных характеристик, а также точной даты и времени запуска. Далее, в день X, мы должны были уведомить службу о нашей готовности, и сообщить расчетные координаты падения зонда. Что мы и сделали, воспользовавшись сервисом прогноза predict.habhub.org. Наконец, после падения аппарата, следовало еще раз позвонить, и сообщить о завершении миссии.
За 1 час до старта
Итак, все готово к запуску метеозонда. Вытаскиваем оборудование на площадку запуска, и начинаем подготовку.
Включаем бортовое питание, и тем самым запускаем HD-камеру на запись, а онлайн-камеру на трансляцию. Александр Кормильцев дорезает поролон, которым мы забили пустое пространство приборного отсека.
На телевизоре появляется картинка с онлайн-камеры. Так что метеозонд теперь «видит».
Запускаем гелий в шар. Редуктор у нас был слабенький, пришлось выкрутить его на всю катушку.
Даже на максимуме пропускной способности редуктора, пришлось ждать около получаса пока шар не наполнится до желаемого объема. После того как шар приобрел угрожающие размеры, мы перемотали горловину лейкопластырем, и привязали к нему кольцо с фалом.
Последний шаг — закрываем крышку зонда. По сути, заклеиваем все тем же армированным скотчем.
Торжественный момент — загрузка монеток:
Начало закачки гелия в баллон:
Видео трансляция работает (левый нижний угол):
Старт
За несколько секунд до старта начинаем потихоньку стравливать фал вверх. Окружающие нас дети хором ведут обратный отсчет, и остановить их уже нельзя. Бортовая HD-камера вовсю работала, так что на ней хорошо запечатлен этот волнительный момент.
Онлайн-трансляция с борта
А это несколько скриншотов прямой трансляции.
После того, как шар поднялся на километр вверх (на вскидку), антенну видеоприемника пришлось нацеливать вручную:
Целиком видеотрансляция с момента отрыва от земли находится на ютубе: youtu.be/N5ZAYWiAtB0?t=3600
Поиск
Шар улетел, и нам оставалось только ждать первых GPS координат с трекера. В общем-то, вероятность того, что зонд упадет в зоне действия мобильных операторов была весьма невысокая. Всё-таки, мы живем на Урале: лес вокруг.
Но случилось то, что случилось. Спустя один час и 15 минут, на мой телефон пришла долгожданная SMS с координатами! Было ощущение, как будто мы получили первый сигнал с марсохода. С этого момента, все стали морально готовиться к путешествию. Ведь координаты указывали на точку в 200 км от города, ядрен батон!
Мы открыли веб-интерфейс трекера и стали ждать следующих координат. Каждые 10 минут поступала обновленная информация. Зонд неторопливо спускался на парашюте в район города Ирбит. Наконец, координаты перестали меняться, и мы выдвинулись в путь. Всего было три машины и 11 человек.
Десант притворяется. На самом деле всю дорогу пытались нащупать видеосигнал с передающей камеры.
Вообще, уже на карте было видно, что зонд лежит где-то в поле. Почему-то я был уверен, что поле представляет собой просто кучу земли, максимум — вскопанной. Ну все же садили/копали картошку. Но не тут то было! Оказывается, я никогда не видел весеннего удобренного поля. Мир уже не будет таким, как прежде…
Тут мы еще веселые, сразу после выгрузки. Предвкушаем поиски. Угадайте, кто единственный взял с собой резиновые сапоги?
А впереди бодрая пробежка по бескрайнему полю:
Следуя по заветным координатам, мы таки нашли его! В самой-самой жиже, но нашли!
Небольшой видеоролик с места падения:
Разбор полета
Долгая дорога домой заняла еще три часа с лишним. Наконец, достигнув к ночи нашего хакспейса, мы вскрыли приборный отсек.
Достали пакетик с монетками и стратегический контейнер с ириской.
SD-карточка с данными телеметрии. В ней-то как раз и хранится информация о высоте полета! Все очень переживали, как высоко смог подняться наш метеозонд.
Судя по графику, зонд поднялся почти на 19 километров. Конечно, если верить дешевому барометру BMP180.
И, наверное, самая ожидаемая информация — видео с HD камеры.
32-гигабайтная флешка была целиком забита. Причем, первые 2 часа — это видео непосредственно взлета и посадки. Остальное — лежание на поле.
Видео и фото полета
Ребята из «Телепорт» оперативно скомпилировали фильм о наших приключениях:
Благодарности
Мероприятие прошло крайне успешно благодаря слаженной работе всех организаторов и помощников. Так что хочется сказать огромное спасибо всем задействованным организациям:
Планы на будущее
Уже в конце мая — начале июня мы планируем очередной запуск. И к этому мероприятию у нас уже есть некоторые идеи модернизации:
Для чего нужен метеозонд
Как известно, климат планеты формируется в земной атмосфере. Особую роль в создании погоды играет тропосфера, представляющая собой ее нижний слой, поскольку в тропосфере сосредоточено более 0,8 всей массы атмосферного воздуха. Здесь наблюдается сильно развитая турбуленция и конвекция, сосредоточена основная часть водяного пара, возникают облака, циклоны и антициклоны [1, 4].
Для исследования нижних слоев атмосферы (тропосферы) применяются различные методы: космический мониторинг, наземная радиолокация, авиационная разведка погоды, применение мобильных метеозондов и дронов.
Особую актуальность приобретают исследования окружающей среды в связи с угрозой «парникового эффекта». Важно получить адекватные результаты анализа химического состава воздушных масс на различных широтах Земли в широком интервале высот.
Наибольший интерес вызывает динамика изменения концентрации углекислого газа (CO2), соединений серы, пылевых выбросов и т.п., не менее важно изучить характер возникновения и изменения озонных дыр. В данном случае шары-зонды при изучении верхних слоев тропосферы имеют ряд преимуществ по сравнению с винтовыми дронами, которые обладают ограниченным ресурсом по высоте к времени пребывания на исследуемых горизонтах.
Рис. 1. Схема метеозонда: 1 – оболочка; 2 – аппаратура; 3 – газ
Рис. 2. Распределение температуры по вертикали в атмосфере
В последнее время проводятся эксперименты по применению шаров-зондов для ретрансляции телекоммуникационной информации. Здесь используются специальные приспособления, стабилизирующие траекторию движения шаров-зондов.
Простейший метеозонд имеет, как правило, эластичную оболочку из резины, которая наполняется гелием или водородом (рис. 1). К зонду крепится измерительная аппаратура и средство передачи данных.
В работе [5] было проведено исследование формообразования метеозонда при подъеме в верхние слои тропосферы (рис. 2).
В итоге на основе закона Архимеда была получена формула
(1)
где h – наибольшая высота подъема зонда, м; Т – абсолютная температура воздуха на высоте h, K; rш – радиус шара-зонда на высоте подъема зонда h, м; ρ0в – плотность воздуха на поверхности Земли, кг/м3; m – масса шара-зонда (m = mоб + mг – суммарная масса оболочки шара и газа-наполнителя), кг; R = 8,31 Дж/(моль?град) – универсальная газовая постоянная; μв – молекулярная масса воздуха, кг/моль; g ≈ 9,81 м/с2 – ускорение свободного падения у поверхности Земли.
Важно то, что g практически не меняется и на высоте 8–18 км.
Следует отметить, что относительная упругая деформация каучуков (различных видов резины, эластомеров) Е может превышать 100 %. Первоначально при растяжении цепей молекул материала зонда требуется низкое напряжение. По мере растяжения цепей молекул сопротивление дальнейшему деформированию возрастает, так как увеличение деформаций вызывает разрыв связей уже растянутых молекул. Это отображено на диаграмме деформаций (рис. 3).
Рис. 3. Схема диаграммы деформаций ε эластомеров от напряжения σ
Исследуем динамику изменения размеров метеозонда в момент его динамического равновесия в верхних слоях атмосферы.
Согласно [2], упругая деформация Е эластомеров (каучуков) может превышать 100 %. На первом этапе деформации для распрямления цепей молекул требуется сравнительно низкое механическое напряжение σ. По мере распрямления цепей молекул сопротивление деформации возрастает, так как это нарастание вызывает разрыв связей уже выпрямленных молекул. Существует предельное значение относительных деформаций Епр, которому соответствует предельная прочность σпр разрушения материала зонда, которая соответствует теоретической прочности σТ.
(2)
где E ≤ 0,02 ГПа = 2?107 Па = 20 МПа – модуль упругости резины;
a = 2?10–8 см = 2?10–10 м – межатомное расстояние в молекулярных цепях резины; Э – удельная поверхностная энергия резинового шара, Дж/м3
Если учесть, что поверхностная энергия Wпов пропорциональна поверхности шара Sш, имеем:
(3)
Но удельная поверхностная энергия Э определяется по формуле
(4)
Подставляя (3) в (4), получим
(5)
Известно, что α зависит от материала оболочки шара.
Подставляя (4) в (2), имеем
(6)
Рассмотрим условие разрыва оболочки шара-зонда на предельной высоте подъема h:
(7)
где Phш – давление газа-наполнителя на высоте h, Па; Phв – давление воздуха, окружающего шар-зонд, на высоте h, Па.
На основании формулы Менделеева – Клапейрона получим Phш:
(8)
где Vш – объем шара-зонда на высоте h, м3.
Опираясь на барометрическую формулу, определим Phв:
(9)
где Р0 – давление воздуха, окружающего шар-зонд на поверхности Земли, Па; μв – молекулярная масса воздуха, кг/моль.
Подставляя (1) в (9), имеем
(10)
Подставляя (6), (8), (10) в (7), получим
(11)
Из условия (11) следует предельное значение радиуса шара-зонда на высоте h при температуре Т (рис. 4):
(12)
Из (12) следует, что rш > 0. Тогда получим температурный режим, при котором не произойдет разрыв оболочки шара-зонда:
(13)
(14)
Рис. 4. Зависимость радиуса метеозонда rш от температуры Т тропосферы
Таким образом, в статье:
1. Получена формула (12) предельного значения радиуса резинового шара-зонда на максимальной высоте подъема h при данной температуре тропосферы Т.
2. Получена формула (10) давления Phв воздуха, окружающего шар-зонд, на максимальной высоте подъема h.
3. Установлена допустимая предельная температура Ткр тропосферы (14) на данной высоте h, выше которой происходит разрыв оболочки шара-зонда.