Для чего нужен передатчик
Передатчик
Радиопереда́тчик (радиопередающее устройство) — техническое устройство для передачи сигналов в радиоволновом участке спектра электромагнитного излучения.
Функционально радиопередатчик состоит из следующих частей: излучателя радиоволн (радиочастот) и устройства формирования излучаемых радиоволн (радиочастот).
Содержание
История развития
В 1887 году немецкий физик Генрих Рудольф Герц изобрёл и построил радиопередатчик и радиоприёмник, провёл опыты по передаче и приёму радиоволн, чем доказал существование электромагнитных волн, исследовал основные свойства электромагнитных волн.
Первые радиопередатчики искрового принципа действия были очень просты по конструкции — излучателем радиоволн служил искровой разряд, а модулятором являлся телеграфный ключ. С помощью такого радиопередатчика информация передавалась в кодированной дискретной форме — например азбукой Морзе или иным условным сводом сигналов. Недостатками такого радиопередатчика была относительно высокая мощность, требуемая для эффективного излучения радиоволн искровым разрядом, а также очень широкий радиочастотный диапазон излучаемых им волн. В результате одновременная работа нескольких близко расположенных искровых передатчиков была практически невозможной из-за интерференции их сигналов.
Изобретение в 1913 году Мейснером (Германия) электронного генератора и дальнейшее развитие электронных вакуумных ламп позволило усовершенствовать устройство радиопередатчика и устранить эти недостатки, а принципиальная схема радиопередатчика стала неизменной вплоть до настоящего времени. Дальнейшие изобретения в области связи и радиотехники — твердотельные аналоги электронных ламп (транзисторы), кварцевые резонаторы, — сопровождались только количественными изменениями параметров радиопередатчиков — уменьшением размеров и потребляемой мощности, повышением стабильности и КПД, но принципиальная схема осталась той же.
Структурная схема
Современный радиопередатчик состоит из следующих конструктивных частей:
Применение
Радиопередатчик очень часто используется вместе с радиоприёмником и питающим устройством, вместе весь этот комплекс называется радиостанцией. Самостоятельно радиопередатчики используются в тех областях, где не нужен приём информации в месте её передачи — сигналы точного времени, разнообразные навигационные радиомаяки для определения местоположения объектов, многопозиционная радиолокация, радиовещание и т.д. и т.п.
Принцип работы радио
Принцип работы радио
Первый радиоприёмник имел очень простое устройство: батарея, электрический звонок, электромагнитное реле и когерер (от латинского слова cogerentia – сцепление).
Этот прибор представляет собой стеклянную трубку с двумя электродами.
В трубке помещены мелкие металлические опилки.
Действие прибора основано на влиянии электрических разрядов на металлические порошки.
В обычных условиях когерер обладает большим сопротивлением, так как опилки имеют плохой контакт друг с другом.
Пришедшая электромагнитная волна создает в когерере переменный ток высокой частоты.
Первый радиоприёмник А. С. Попова (1895г.)
Современные радиоприёмники
Хотя современные радиоприемники очень мало напоминают приемник Попова, основные принципы их действия те же, что и в его приборе.
Схема простейшего радиоприёмника
Современные радиоприёмники обнаруживают и извлекают передаваемую информацию.
Достигая антенны приёмника, радиоволны пересекают её провод и возбуждают в ней очень слабые частоты.
В антенне одновременно находятся высокочастотные колебания от многих радиопередатчиков.
Поэтому один из важнейших элементов радиоприёмника – избирательное устройство, которое из всех принятых сигналов может отображать нужный.
Таким устройством является колебательный контур.
Контур воспринимает сигналы того радиопередатчика, высокочастотные колебания которого совпадают с собственной частотой колебаний контура приёмника. Назначение других элементов радиоприёмника заключается в том, чтобы усилить принятые колебания, выделить из их колебания звуковой частоты, усилить их и преобразовать в сигналы информации.
Восприятие сигнала устройством
В отдаленном от источника месте отправленный сигнал улавливается приемной антенной радио. Это знаменует этап обработки радиочастотного сигнала, что происходит поэтапно:
В большинстве случаев перед расшифровкой сигнал проходит через большое количество приборов – усилителей, преобразователей частот – а также подвергается оцифровке и программной обработке. И только затем мы сможем понять сведения, полученные радио. Это же одновременно улучшает качество и восприятие информации.
Принципы радиосвязи
Для радиосвязи нужны два отдельных прибора: передатчик и приёмник электромагнитных волн. Для понимания принципов их работы рассмотрим простейшие приборы, созданные немецким учёным Г.Герцем в 1886 году.
Вы видите устройство передатчика. Проволоку разрезали пополам, присоединив получившиеся отрезки к высоковольтному трансформатору. Размер воздушного промежутка между концами проволок установили таким, чтобы в нём часто проскакивали искры.
Искры – это электрический ток в воздухе. Поэтому в момент их проскакивания электроны с отрицательно наэлектризованной части проволоки устремлялись к её положительно наэлектризованной части. Это значит, что в проволоке возникал пульсирующий (переменный) ток, а вокруг неё – пульсирующее (переменное) электромагнитное поле.
Таким образом, проволоки представляют собой и передатчик, и передающую антенну. Электромагнитное поле распространяется электромагнитными волнами, поэтому может быть уловлено на расстоянии. Для этого требуется приёмник: два таких же отрезка проволоки, располагаемые параллельно антенне передатчика. Поскольку энергия волн передатчика распространяется во все стороны, а приёмник улавливает только небольшую их часть, искры в воздушном промежутке приёмника очень малы. Однако их можно видеть невооружённым глазом в темноте.
Передатчик и приёмник Герца не могли быть использованы для дальней радиосвязи. Причина этого – небольшая мощность радиоволн из-за невысокой частоты переменного тока, создаваемого искрами. Поэтому нужно было создать такой генератор тока высокой частоты, мощности которого хватило бы для радиопередач на расстоянии десятков и сотен километров. Когда эта задача была решена, стала возможна не только радиотелеграфная связь, когда слова (по буквам) передаются посредством коротких и длинных импульсов азбуки Морзе, но и радиотелефонная связь, передающая человеческий голос.
Принципиальная схема радиотелефонной связи показана на рисунке ниже. Во-первых, передатчик содержит высокочастотный генератор для обеспечения нужной мощности излучения. Именно он формирует так называемую несущую частоту, на которую настраивается приёмник. Во-вторых, передатчик содержит модулятор – устройство, изменяющее амплитуду или частоту несущей волны «в такт» с передаваемым голосом или музыкой. В-третьих, передатчик имеет передающую антенну.
Наиболее проста для понимания амплитудная модуляция. Высокочастотные колебания, созданные генератором, сначала имеют постоянную амплитуду (см. на рисунке слева). Модулятор меняет амплитуду несущей частоты «по форме» низкочастотного сигнала, поступающего от микрофона. Модулированный сигнал достигает приёмной антенны в виде волн с меняющейся амплитудой (см. на рисунке в центре).
Обратный процесс называется демодуляцией. Приёмная антенна улавливает волны сразу от множества передатчиков, работающих на разных частотах. Поэтому нужно отделить сигнал только от определённого передатчика, работающего на выбираемой нами несущей частоте. Для этого служит приёмный настроечный контур. Выделенный им сигнал «нашего» передатчика направляется в демодулятор – устройство, отделяющее полезный для слушателя низкочастотный сигнал от несущих колебаний. Именно этот сигнал и поступает в наушники или громкоговорители.
Для различных потребителей услуг радиосвязи используются разные диапазоны волн. Различают сверхдлинные, длинные, средние, короткие и ультракороткие радиоволны (см. таблицу).
Диапазон волн | Частота волн | Длина волн |
Сверхдлинные | менее 30 кГц | более 10 км |
Длинные | 30 кГц – 300 кГц | 10 км – 1 км |
Средние | 300 кГц – 3 МГц | 1 км – 100 м |
Короткие | 3 МГц – 30 МГц | 100 м – 10 м |
Ультракороткие | 30 МГц – 150 ГГц | 10 м – 2 мм |
УСТРОЙСТВО И ПРИНЦИП РАБОТЫ РАДИОСТАНЦИЙ
Радиостанция состоит из передающей части (передатчика), приемника, блока вызывного устройства, блока питания и приемопередающей антенны. Переносчиками низкочастотных сигналов, заключающих в себе полезную информацию, являются радиочастотные колебания, вырабатываемые задающим генератором в передатчике.
Передатчик
Структурная схема радиопередающего устройства показана на рис. 3.16.
Рис. 3.16. Структурная схема радиопередающего устройства:
Рис. 3.17. Однокаскадный микрофонный усилитель звуковой частоты (УЗЧ)
Рассмотрим принцип действия задающего генератора высокой частоты (рис. 3.18). Простейший генератор незатухающих колебаний включает транзистор Т, колебательный контур С2, катушку связи Lсв, включенную в цепь базы транзистора и связанную индуктивно с катушкой колебательного контура L.
Сопротивление в цепи базы R1 служит для создания запирающего напряжения смещения на базе транзистора за счет падения напряжения на нем от прохождения постоянной составляющей тока базы.
Рис. 3.18. Схема задающего генератора радиочастоты
Так как при настройке в резонанс LС2-контура (резонанс наступает при условии равенства проводимостей катушки и конденсатора, включенных параллельно друг другу) сопротивление его для переменной составляющей тока большое, то на нем происходит соответствующее этому сопротивлению падение напряжения переменной составляющей, которое снимает через разделительный конденсатор С3 для дальнейшего использования.
Генератор с самовозбуждением колебаний, по существу, является усилителем с глубокой обратной связью, т.е. усилителем собственных колебаний. Непременным условием самовозбуждения колебаний является сдвиг фаз переменных напряжений на коллекторе и базе на 180о и наличие достаточной величины обратной связи по напряжению, обеспечиваемой соответствующим соотношением витков катушек L и Lсв.
Частота собственных колебаний колебательного контура, а следовательно, и частота генератора определяется по формуле
Важным параметром для задающих генераторов является стабильность частоты вырабатываемого напряжения. Существуют параметрическая и кварцевая стабилизации частоты высокочастотных генераторов. Параметрическая стабилизация осуществляется соответствующим подбором параметров и элементов схемы.
В радиостанциях КВ и УКВ применяется, как правило, кварцевая стабилизация, обеспечивающая достаточно простой технической реализацией высокую стабильность частоты колебаний.
Рис. 3.19. Схема включения кварцевых резонаторов:
Для рассматриваемой эквивалентной схемы характерны две резонансные частоты: частота, соответствующая резонансу левой последовательной цепи, состоящей из Lкв, Скв, rкв:
Использование кварцевого резонатора для стабилизации частоты возможно в интервале частот fкв – f0. В этом случае эквивалентное сопротивление кварцевого резонатора носит индуктивный характер.
При высокой добротности и малых значениях коэффициентов линейного и объемного расширения кварца его эквивалентные параметры (Lкв, Скв, rкв) остаются практически неизменными при значительных изменениях температуры окружающей среды, что позволяет обеспечить высокую стабильность частоты задающего генератора. Из эквивалентной схемы того же автогенератора (рис. 3.19, в) видно, что контур подключается к усилительному элементу тремя тёчками, и эта схема называется емкостной трехточкой. В колебательный контур входят две емкости (С1, С2), а кварцевый резонатор КВ выполняет роль индуктивности. Обратная связь в схеме осуществляется при помощи емкостного делителя контурного напряжения, состоящего из конденсаторов С1 и С2. Такое включение кварца (кв) обеспечивает (по сравнению с другими известными схемами) меньшую стабильность частоты при изменении окружающей температуры в широком интервале.
В рассматриваемой схеме выполняется условие баланса фаз, так как напряжение Uо.с на конденсаторе обратной связи С2 находится в противофазе с напряжением Uэк относительно общей заземленной точки, подключенной к эмиттеру транзистора.
Для емкостной трехточки коэффициент обратной связи
Частичное подключение колебательного контура к усилительному элементу снижает влияние нестабильных емкостей р-п перехода транзистора. Смещение на базу транзистора, предназначенное для выбора его рабочего режима, выполняется комбинированным способом. Оно осуществляется в рассматриваемой схеме (см. рис. 3.19, 6) за счет подачи фиксированного напряжения с помощью делителей сопротивлений R1 и R2, а также автоматического смещения, образованного за счет RэCэ, цепочки при протекании постоянной составляющей эмиттерного тока через резистор Rэ.
В практических схемах современных радиопередатчиков процесс, в частности, амплитудной модуляции осуществляется чаще всего не в схеме самого задающего генератора, а в последующей ступени усиления этих колебаний. Это позволяет снизить паразитные эффекты модуляции и повысить качество радиопередатчика в целом.
На рис. 3.20 приведена схема амплитудного модулятора на усилительной ступени высокочастотных колебаний.
Ступени высокочастотных колебаний
Резисторы R1, R2 и емкость С2 предназначены для обеспечения соответствующего режима работы каскада как усилителя, на вход которого (клеммы 1,2) от задающего генератора через С1 подаются высокочастотные колебания. Колебательный контур LСЗ настроен на частоты задающего генератора. На этой частоте контур обладает максимальным сопротивлением для переменной составляющей коллекторного тока, создающего соответствующее падение переменного напряжения, которое снимается с коллектора транзистора и через конденсатор С4 подается в последующие узлы передатчика.
Модуляция осуществляется благодаря применению трансформатора, на первичную обмотку w1 которого (клеммы 3, 4) подаются сигналы звуковой частоты (НЧ) от микрофонного усилителя, а со вторичной обмотки w2 снимаются для управления транзистором Т. Отрицательные полуволны модулирующих сигналов открывают транзистор, положительные полуволны закрывают, в результате увеличивается (или уменьшается) усиливаемый транзистором высокочастотный ток. Графики процесса амплитудной модуляции показаны на рис. 3.21.
На рис. 3.22, а приведена упрощенная схема частотного модулятора, состоящего из колебательного контура LС, диода Д и блокировочных конденсаторов С1, С2.
Действие управляемого диода (варикапа) Д основано на изменении емкости электронно-дырочного перехода при изменении приложенного к нему напряжения. Характеристика варикапа представлена на рис. 3.22, 6. Выбор рабочей точки на характеристике производится установкой требуемого напряжения Е0 от источника питания Е. Конденсаторы С1 и С2
LСС1 параллельно емкости контура подключается варикап Д. Под действием звуковых колебаний внутреннее сопротивление, например, угольного
Принцип работы цифрового радио
Как альтернатива аналоговому радио в мире стало распространяться цифровое и онлайн-радио. Последнее и вовсе отошло от классических стандартов радиовещания и было основано на потоковой трансляции аудиоданных через web-средства. Другими словами, это то же радио, но его вещание осуществляется через Интернет.
Еще на заре развития глобальной сети предпринимались попытки передачи звука с помощью компьютера. Это делалось посредством оцифровки аналоговых сигналов, используя соответственное программное обеспечение. В результате чего получались звуковые файлы, которые пользователи и выкладывали в сеть.
Большинство современных онлайн-ресурсов радиовещания по своим функциональным возможностям не уступают FM-приемникам. Аудиоформаты, наиболее часто поддерживаемые серверами онлайн-радио: MP3, RealAudio, Ogg/Vorbis и WMA. Сегодня большинство станций веб-радио могут предоставить скорость аудиопотока от 64 кбит/с до 128 кбит, при этом, качество звука уже приближается к уровню CD.
Популярность онлайн-радио возрастает с каждым годом. В одних лишь Соединенных Штатах Америки насчитывается около 60 миллионов человек, которые еженедельно слушают подобные радиостанции.
Еще одной особенностью веб-радио является то, что практически любой человек может организовать собственную радиостанцию в сети! Для этого достаточно иметь компьютер, качественный доступ в Интернет, несколько нехитрых программ и жесткий диск, забитый музыкой. Лицензирование пока еще не добралось до такого рода сервиса.
Схема радиотелефонной связи
Рассмотрим основные принципы радиосвязи и примеры их практического использования.
В современном передатчике присутствует генератор высоких частот для создания необходимой мощности излучения.
С его помощью образуется несущая частота, используемая приемником для настройки.
У современного передатчика есть модулятор.
Он представляет собой устройство, которое изменяет амплитуду либо частоту волны синхронно с музыкой либо голосом.
Обязательным элементом передатчика является и передающая антенна.
Модуляция
Самой простой для восприятия является амплитудная модуляция.
У высокочастотных колебаний, которые создает генератор, существует постоянная амплитуда.
С помощью модулятора происходит ее изменение «по форме» сигнала низкой частоты, идущего от микрофона.
Модулированный сигнал попадает на приемную антенну в качестве волн с непостоянной амплитудой.
Демодуляция
Принцип радиосвязи характеризуется и демодуляцией. После улавливания приемной антенной волн происходит отделение сигнала от одного передатчика, который функционирует на частоте, выбранной в качестве несущей величины. Для проведения таких преобразований применяется настроечный приемный контур. Тот сигнал, который выделен от одного передатчика, поступает в демодулятор. В этом устройстве происходит разделение низкочастотных колебаний от высокочастотного сигнала. Далее он поступает в громкоговоритель или в наушники.
Диапазоны волн
Рассматривая принципы радиосвязи, отметим, что волны имеют разные диапазоны.
В настоящее время применяют средние, сверхдлинные, короткие, длинные, а также ультракороткие радиоволны.
Их достаточно широко используют в разнообразных сферах электроники:
Принцип современной радиосвязи предполагает превращение звуковых колебаний в электрические виды с помощью микрофона. Сложность передачи такого сигнала состоит в том, что для осуществления радиосвязи требуются высокочастотные колебания, а звуковые волны имеют низкую частоту. Для решения проблемы используются мощные антенны. Для звуковой частоты накладывание колебаний осуществляется так, чтобы переносить сигнал на существенные расстояния.
Современные принципы радиосвязи и телевидения базируются на радиопередающем устройстве. Он имеет генератор высокой частоты, который преобразует постоянное напряжение в высокочастотные гармонические колебания. Несущая частота должна быть постоянной величиной.
Принципы радиосвязи и телевидения предполагают определенное строение генератора. Он преобразовывает полученные сообщения в электрический сигнал, который и используется для процесса модуляции постоянной частоты. Выбор такого устройства основывается на физической природе транслируемого сигнала, В случае звука для этого используется микрофон, для передачи картинки применяют передающую телевизионную трубку. Модулятор необходим для проведения процесса перевода сигнала высокой частоты в ту величину, которая соответствует звуковому сигналу с передаваемой информацией. Также используются один либо два каскада для усиления модулированного сигнала. Излучающая антенна предназначена для выброса в окружающее пространство электромагнитных волн.
Радиопередатчик
Функционально радиопередатчик состоит из следующих частей:
— задающий генератор (например, синтезатор с ФАПЧ или DDS);
— модулятор (например, аналоговый или DSP с применением векторной IQ модуляции);
— предварительного, предоконечного и оконечного усилителей;
— цепей согласования импедансов, фильтров, систем защит от аварийных режимов работы, измерения параметров и индикации.
Содержание
История развития
В 1887 году немецкий физик Генрих Рудольф Герц изобрёл и построил радиопередатчик и радиоприёмник, провёл опыты по передаче и приёму радиоволн, чем доказал существование электромагнитных волн, исследовал основные свойства электромагнитных волн.
Первые радиопередатчики искрового принципа действия на основе катушки Румкорфа были очень просты по конструкции — излучателем радиоволн служил искровой разряд, а модулятором являлся телеграфный ключ. С помощью такого радиопередатчика информация передавалась в кодированной дискретной форме — например азбукой Морзе или иным условным сводом сигналов. Недостатками такого радиопередатчика была относительно высокая мощность, требуемая для эффективного излучения радиоволн искровым разрядом, а также очень широкий радиочастотный диапазон излучаемых им волн. В результате одновременная работа нескольких близко расположенных искровых передатчиков была практически невозможной из-за интерференции их сигналов.
Следующим этапом было использование в передатчике электромашинного генератора переменного тока. Такой генератор позволял получить достаточно стабильные колебания определенной частоты, которую можно изменять, регулируя частоту вращения ротора генератора. Мощность могла достигать десятков и сотен киловатт. Сигнал такого генератора можно модулировать по амплитуде, что позволяет передавать по радио звуковой сигнал. Однако электромашинный генератор практически пригоден для генерации частот не выше десятков килогерц, то есть передатчик может работать только в самом длинноволновом диапазоне. До 1950-х годов электромашинные передатчики использовались в радиовещании и радиосвязи. Так, в 1925 г. на Октябрьской радиостанции в Ленинграде были установлены два генератора мощностью 50 и 150 кВт конструкции В. П. Вологдина. [2] Как исторический памятник в Швеции сохраняется в рабочем состоянии радиостанция Гриметон (открыта в 1925 г.) с генератором Александерсена мощностью 200 кВт, спроектированным для работы на частотах до 40 кГц.
Изобретение в 1913 году Мейснером (Германия) электронного генератора и дальнейшее развитие электронных вакуумных ламп позволило усовершенствовать устройство радиопередатчика и устранить недостатки искровых и электромашинных систем, а структурная схема радиопередатчика стала в общих чертах неизменной вплоть до настоящего времени. Дальнейшие изобретения в области связи и радиотехники — твердотельные аналоги электронных ламп (транзисторы), кварцевые резонаторы, новые виды модуляции и методы стабилизации частоты — сопровождались только количественными изменениями параметров радиопередатчиков: уменьшением размеров и потребляемой мощности, повышением стабильности и КПД, расширением частотного диапазона и т. д.
Структурная схема
Современный радиопередатчик состоит из следующих конструктивных частей:
Применение
Радиопередатчик очень часто используется вместе с радиоприёмником и питающим устройством, вместе весь этот комплекс называется радиостанцией. Самостоятельно радиопередатчики используются в тех областях, где не нужен приём информации в месте её передачи — сигналы точного времени, разнообразные навигационные радиомаяки для определения местоположения объектов, многопозиционная радиолокация, радиовещание, дистанционное управление, телеметрия и т. д.
Принципы действия радиопередатчика и радиоприемника
Радиопередатчик как устройство для формирования радиосигналов, предназначенных для передачи информации на расстояние с помощью радиоволн, его структура и компоненты. Классификация и типы радиоприемников, причины и этапы уменьшения напряженности поля.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 24.12.2014 |
Размер файла | 13,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Принципы действия радиопередатчика и радиоприёмника
радиопередатчик радиоприемник напряженность
Функционально радиопередатчик состоит из следующих частей:
Любая система радиосвязи включает в себя радиопередающие устройства, функции которого включаются в преобразовании энергии постоянного тока источников питания в электромагнитные колебания и управлении этими колебаниями.
Передача энергии с помощью радиосвязи широко используется при управлении автоматическими объектами.
Современный радиопередатчик состоит из следующих конструктивных частей:
· задающий генератор частоты (фиксированной или перестраиваемой) несущей волны;
· усилитель мощности, который увеличивает мощность сигнала возбудителя до требуемой за счёт внешнего источника энергии;
· устройство согласования, обеспечивающее максимально эффективную передачу мощности усилителя в антенну;
· антенна, обеспечивающая излучение сигнала.
Классификация радиоприёмников
Радиоприёмные устройства делятся по следующим признакам:
· по основному назначению: радиовещательные, телевизионные, связные, пеленгационные, радиолокационные, для систем радиоуправления, измерительные и др.;
· по роду работы: радиотелеграфные, радиотелефонные, фототелеграфные и т.д.;
· по виду модуляции, применяемой в канале связи: амплитудная, частотная, фазовая;
· по диапазону принимаемых волн, согласно рекомендациям МККР:
· приёмник, включающий все широковещательные диапазоны (ДВ, СВ, КВ, УКВ) называют всеволновым.
· по принципу построения приёмного тракта: детекторные, прямого усиления, прямого преобразования,регенеративные, сверхрегенераторы, супергетеродинные с однократным, двукратным или многократным преобразованием частоты;
· по способу обработки сигнала: аналоговые и цифровые;
· по применённой элементной базе: на кристаллическом детекторе, ламповые, транзисторные, на микросхемах;
· по исполнению: автономные и встроенные (в состав др. устройства);
· по месту установки: стационарные, носимые;
· по способу питания: сетевое, автономное или универсальное.
Элемент, с помощью которого осуществляется воздействие на колебания высокой частоты, называется модулятором. Модулятор является неотъемлемой частью радиопередатчика, так как формирует сигнал информации, подлежащий передаче на расстояние. Модулированные высокочастотные колебания усиливаются усилителем мощности и излучаются в окружающее пространство с помощью антенны.
Уменьшение напряжённости поля, а следовательно, и потока энергии, переносимого радиоволной вдоль поверхности Земли (земной волной), обусловлено проводимостью поверхности в этой области. Вдоль проводящей поверхности возникает поток энергии, направленный в проводящую среду и быстро затухающий по мере распространения в ней. Глубина проникновения радиоволны в земную кору определяется толщиной слоя и, следовательно, увеличивается с увеличением длины волны. Поэтому для подземной и подводной радиосвязи используются длинные и сверхдлинные радиоволны. т.к. чем больше число столкновений, тем большая часть энергии, получаемой электроном из волн, переходит в тепло. Поэтому поглощение больше в ниж. областях ионосферы, где v больше, т.к. выше плотность газа. С увеличением частоты поглощение уменьшается. Короткие волны испытывают слабое поглощение и распространяются на большие расстояния. По этому короткие волны используются для передачи
Короткие волны (3-30 МГц)так же в результате их отражения от ионосферы возможна связь как на малых, так и на больших расстояниях при значительно меньшем уровне мощности передатчика и гораздо более простых антеннах, чем в более низкочастотных диапазонах.
Размещено на Allbest.ru
Подобные документы
Системы передачи информации с помощью радиотехнических и радиоэлектронных приборов. Понятие, классификация радиоволн, особенности их распространения и диапазон. Факторы, влияющие на дальность и качество радиоволн. Рефракция и интерференция радиоволн.
реферат [81,5 K], добавлен 27.03.2009
Радиопередающие устройства, их назначение и принцип действия. Разработка структурной схемы радиопередатчика, определение его элементной базы. Электрический расчет и определение потребляемой мощности радиопередатчика. Охрана труда при работе с устройством.
курсовая работа [1,8 M], добавлен 11.01.2013
Основные понятия и классификация приборов для измерения напряженности электромагнитного поля и помех. Измерение напряженности электромагнитного поля. Метод эталонной антенны. Метод сравнения. Измерительные приемники и измерители напряженности поля.
реферат [31,8 K], добавлен 23.01.2009
Радиоволны, распространяющиеся вдоль земной поверхности от радиопередатчика, до приемника, без использования верхних слоев атмосферы. Электромагнитные волны с частотами, использующиеся в традиционной радиосвязи. Преимущества работы на коротких волнах.
презентация [6,5 M], добавлен 13.03.2015
Структурная схема радиопередатчика подвижной связи с угловой модуляцией. Расчет полосового фильтра, опорного (кварцевого) генератора, ограничителя амплитуд, интегратора. Электрический расчет фазового модулятора. Принципиальная схема радиопередатчика.
курсовая работа [2,9 M], добавлен 04.05.2013