Для чего нужен протокол http

Обзор протокола HTTP

HTTP — это протокол, позволяющий получать различные ресурсы, например HTML-документы. Протокол HTTP лежит в основе обмена данными в Интернете. HTTP является протоколом клиент-серверного взаимодействия, что означает инициирование запросов к серверу самим получателем, обычно веб-браузером (web-browser). Полученный итоговый документ будет (может) состоять из различных поддокументов, являющихся частью итогового документа: например, из отдельно полученного текста, описания структуры документа, изображений, видео-файлов, скриптов и многого другого.

Для чего нужен протокол http. Смотреть фото Для чего нужен протокол http. Смотреть картинку Для чего нужен протокол http. Картинка про Для чего нужен протокол http. Фото Для чего нужен протокол http

Клиенты и серверы взаимодействуют, обмениваясь одиночными сообщениями (а не потоком данных). Сообщения, отправленные клиентом, обычно веб-браузером, называются запросами, а сообщения, отправленные сервером, называются ответами.

Составляющие систем, основанных на HTTP

HTTP — это клиент-серверный протокол, то есть запросы отправляются какой-то одной стороной — участником обмена (user-agent) (либо прокси вместо него). Чаще всего в качестве участника выступает веб-браузер, но им может быть кто угодно, например, робот, путешествующий по Сети для пополнения и обновления данных индексации веб-страниц для поисковых систем.

Каждый запрос (англ. request) отправляется серверу, который обрабатывает его и возвращает ответ (англ. response). Между этими запросами и ответами как правило существуют многочисленные посредники, называемые прокси, которые выполняют различные операции и работают как шлюзы или кэш, например.

Для чего нужен протокол http. Смотреть фото Для чего нужен протокол http. Смотреть картинку Для чего нужен протокол http. Картинка про Для чего нужен протокол http. Фото Для чего нужен протокол http

Обычно между браузером и сервером гораздо больше различных устройств-посредников, которые играют какую-либо роль в обработке запроса: маршрутизаторы, модемы и так далее. Благодаря тому, что Сеть построена на основе системы уровней (слоёв) взаимодействия, эти посредники «спрятаны» на сетевом и транспортном уровнях. В этой системе уровней HTTP занимает самый верхний уровень, который называется «прикладным» (или «уровнем приложений»). Знания об уровнях сети, таких как представительский, сеансовый, транспортный, сетевой, канальный и физический, имеют важное значение для понимания работы сети и диагностики возможных проблем, но не требуются для описания и понимания HTTP.

Клиент: участник обмена

Участник обмена (user agent) — это любой инструмент или устройство, действующие от лица пользователя. Эту задачу преимущественно выполняет веб-браузер; в некоторых случаях участниками выступают программы, которые используются инженерами и веб-разработчиками для отладки своих приложений.

Браузер всегда является той сущностью, которая создаёт запрос. Сервер обычно этого не делает, хотя за многие годы существования сети были придуманы способы, которые могут позволить выполнить запросы со стороны сервера.

Веб-страница является гипертекстовым документом. Это означает, что некоторые части отображаемого текста являются ссылками, которые могут быть активированы (обычно нажатием кнопки мыши) с целью получения и соответственно отображения новой веб-страницы (переход по ссылке). Это позволяет пользователю «перемещаться» по страницам сети (Internet). Браузер преобразует эти гиперссылки в HTTP-запросы и в дальнейшем полученные HTTP-ответы отображает в понятном для пользователя виде.

Веб-сервер

На другой стороне коммуникационного канала расположен сервер, который обслуживает (англ. serve) пользователя, предоставляя ему документы по запросу. С точки зрения конечного пользователя, сервер всегда является некой одной виртуальной машиной, полностью или частично генерирующей документ, хотя фактически он может быть группой серверов, между которыми балансируется нагрузка, то есть перераспределяются запросы различных пользователей, либо сложным программным обеспечением, опрашивающим другие компьютеры (такие как кеширующие серверы, серверы баз данных, серверы приложений электронной коммерции и другие).

Прокси

Между веб-браузером и сервером находятся большое количество сетевых узлов, передающих HTTP сообщения. Из-за слоистой структуры большинство из них оперируют также на транспортном сетевом или физическом уровнях, становясь прозрачным на HTTP слое и потенциально снижая производительность. Эти операции на уровне приложений называются прокси. Они могут быть прозрачными или нет, (изменяющие запросы не пройдут через них), и способны исполнять множество функций:

Основные аспекты HTTP

Даже с большей сложностью, введённой в HTTP/2 путём инкапсуляции HTTP-сообщений в фреймы, HTTP, как правило, прост и удобен для восприятия человеком. HTTP-сообщения могут читаться и пониматься людьми, обеспечивая более лёгкое тестирование разработчиков и уменьшенную сложность для новых пользователей.

Введённые в HTTP/1.0 HTTP-заголовки сделали этот протокол лёгким для расширения и экспериментирования. Новая функциональность может быть даже введена простым соглашением между клиентом и сервером о семантике нового заголовка.

HTTP не имеет состояния, но имеет сессию

HTTP не имеет состояния: не существует связи между двумя запросами, которые последовательно выполняются по одному соединению. Из этого немедленно следует возможность проблем для пользователя, пытающегося взаимодействовать с определённой страницей последовательно, например, при использовании корзины в электронном магазине. Но хотя ядро HTTP не имеет состояния, куки позволяют использовать сессии с сохранением состояния. Используя расширяемость заголовков, куки добавляются к рабочему потоку, позволяя сессии на каждом HTTP-запросе делиться некоторым контекстом или состоянием.

HTTP и соединения

Соединение управляется на транспортном уровне, и потому принципиально выходит за границы HTTP. Хотя HTTP не требует, чтобы базовый транспортного протокол был основан на соединениях, требуя только надёжность, или отсутствие потерянных сообщений (т.е. как минимум представление ошибки). Среди двух наиболее распространённых транспортных протоколов Интернета, TCP надёжен, а UDP — нет. HTTP впоследствии полагается на стандарт TCP, являющийся основанным на соединениях, несмотря на то, что соединение не всегда требуется.

HTTP/1.0 открывал TCP-соединение для каждого обмена запросом/ответом, имея два важных недостатка: открытие соединения требует нескольких обменов сообщениями, и потому медленно, хотя становится более эффективным при отправке нескольких сообщений, или при регулярной отправке сообщений: тёплые соединения более эффективны, чем холодные.

Проводятся эксперименты по разработке лучшего транспортного протокола, более подходящего для HTTP. Например, Google экспериментирует с QUIC (которая основана на UDP) для предоставления более надёжного и эффективного транспортного протокола.

Чем можно управлять через HTTP

Естественная расширяемость HTTP со временем позволила большее управление и функциональность Сети. Кеш и методы аутентификации были ранними функциями в истории HTTP. Способность ослабить первоначальные ограничения, напротив, была добавлена в 2010-е.

Ниже перечислены общие функции, управляемые с HTTP.

HTTP поток

Когда клиент хочет взаимодействовать с сервером, являющимся конечным сервером или промежуточным прокси, он выполняет следующие шаги:

Если активирован HTTP-конвейер, несколько запросов могут быть отправлены без ожидания получения первого ответа целиком. HTTP-конвейер тяжело внедряется в существующие сети, где старые куски ПО сосуществуют с современными версиями. HTTP-конвейер был заменён в HTTP/2 на более надёжные мультиплексные запросы во фрейме.

HTTP сообщения

HTTP/1.1 и более ранние HTTP сообщения человекочитаемые. В версии HTTP/2 эти сообщения встроены в новую бинарную структуру, фрейм, позволяющий оптимизации, такие как компрессия заголовков и мультиплексирование. Даже если часть оригинального HTTP сообщения отправлена в этой версии HTTP, семантика каждого сообщения не изменяется и клиент воссоздаёт (виртуально) оригинальный HTTP-запрос. Это также полезно для понимания HTTP/2 сообщений в формате HTTP/1.1.

Существует два типа HTTP сообщений, запросы и ответы, каждый в своём формате.

Запросы

Примеры HTTP запросов:

Для чего нужен протокол http. Смотреть фото Для чего нужен протокол http. Смотреть картинку Для чего нужен протокол http. Картинка про Для чего нужен протокол http. Фото Для чего нужен протокол http

Запросы содержат следующие элементы:

Ответы

Для чего нужен протокол http. Смотреть фото Для чего нужен протокол http. Смотреть картинку Для чего нужен протокол http. Картинка про Для чего нужен протокол http. Фото Для чего нужен протокол http

Ответы содержат следующие элементы:

Вывод

HTTP — лёгкий в использовании расширяемый протокол. Структура клиент-сервера, вместе со способностью к простому добавлению заголовков, позволяет HTTP продвигаться вместе с расширяющимися возможностями Сети.

Хотя HTTP/2 добавляет некоторую сложность, встраивая HTTP сообщения во фреймы для улучшения производительности, базовая структура сообщений осталась с HTTP/1.0. Сессионный поток остаётся простым, позволяя исследовать и отлаживать с простым монитором HTTP-сообщений.

Источник

Глава 1. Введение в протоколы HTTP и HTTPS

Протокол HTTP предназначен для передачи содержимого в Интернете. HTTP — это простой протокол, который использует для передачи содержимого надежные службы протокола TCP. Благодаря этому HTTP считается очень надежным протоколом для обмена содержимым. Также HTTP является одним из самых часто используемых протоколов приложений. Все операции в Интернете используют протокол HTTP.

HTTPS — это безопасная версия протокола HTTP, которая реализует протокол HTTP с использованием протокола TLS для защиты базового TCP-подключения. За исключением дополнительной конфигурации, необходимой для настройки TLS, использование протокола HTTPS по сути не отличается от протокола HTTP.

Общие требования для протокола HTTP

Для правильной работы пакета NetX Web HTTP требуется установить NetX Duo 5.10 или более поздней версии. Кроме того, должен быть создан экземпляр IP, для которого включено использование протокола TCP. Для поддержки HTTPS также необходимо установить NetX Secure TLS 5.11 или более поздней версии (см. следующий раздел). Этот процесс показан в демонстрационном файле в разделе «Пример небольшой системы» главы 2.

Для HTTP-клиента из пакета NetX Web HTTP больше нет дополнительных требований.

Но HTTP-сервер из пакета NetX Web HTTP определяет еще несколько дополнительных требований. Во-первых, ему требуется полный доступ к известному TCP-порту 80 для обработки всех запросов HTTP-клиента (приложение может указать любой другой допустимый порт TCP). HTTP-сервер также разработан для работы с внедренной файловой системой FileX. Если система FileX недоступна, пользователь может перенести используемые разделы FileX в собственную среду. Этот процесс рассматривается в последующих разделах этого руководства.

Требования для протокола HTTPS

Для правильной работы протокола HTTPS на основе пакета NetX Web HTTP требуется, чтобы были установлены NetX Duo 5.10 или более поздней версии и NetX Secure TLS 5.11 или более поздней версии. Кроме того, должен быть создан экземпляр IP, для которого включено использование протокола TCP для работы с протоколом TLS. Сеанс TLS необходимо будет инициализировать с помощью соответствующих криптографических процедур и сертификата доверенного ЦС. Кроме того, потребуется выделить пространство для сертификатов, которые будут предоставляться удаленными узлами сервера во время подтверждения TLS. Этот процесс показан в демонстрационном файле в разделе «Пример небольшой системы HTTPS» главы 2.

Для HTTPS-клиента из пакета NetX Web HTTP больше нет дополнительных требований.

Но HTTPS-сервер из пакета NetX Web HTTP определяет еще несколько дополнительных требований. Во-первых, ему требуется полный доступ к известному TCP-порту 443 для обработки всех HTTPS-запросов клиента (как и в случае протокола HTTP без шифрования, приложение может изменить этот порт). Во-вторых, потребуется инициализировать сеанс TLS с помощью соответствующих криптографических процедур и сертификата удостоверения сервера (или общего ключа). HTTPS-сервер также разработан для работы с внедренной файловой системой FileX. Если система FileX недоступна, пользователь может перенести используемые разделы FileX в собственную среду. Использование FileX рассматривается в последующих разделах этого руководства.

Дополнительные сведения о параметрах конфигурации TLS см. в документации по NetX Secure.

Если не указано иное, все функции HTTP, описанные в этом документе, также относятся к протоколу HTTPS.

Ограничения протоколов HTTP и HTTPS

NetX Web HTTP реализует стандарт HTTP 1.1. Но существует ряд ограничений, которые приведены ниже:

URL-адрес HTTP (имена ресурсов)

Протокол HTTP разработан для передачи содержимого через Интернет. Запрашиваемое содержимое определяется URL-адресом. Это основной компонент каждого HTTP-запроса. URL-адреса всегда начинаются с символа «/» и обычно обозначают определенные файлы на HTTP-сервере. Ниже приведены типичные расширения файлов, используемые с протоколом HTTP:

Запросы HTTP-клиента

Эти команды ASCII обычно генерируются веб-браузерами и службами клиента NetX Web HTTP для выполнения операций HTTP на HTTP-сервере.

Ответы HTTP-сервера

Например, в ответ на успешно выполненный запрос PUT клиента для файла test.htm будет возвращено сообщение «HTTP/1.1 200 OK».

Взаимодействие по протоколу HTTP

HTTP-запрос GET

HTTP-запрос PUT

Проверка подлинности HTTP

Проверка подлинности HTTP является необязательной, то есть требуется не для всех веб-запросов. Существуют две разновидности проверки подлинности: обычная и на основе дайджеста. Обычная проверка подлинности по имени и паролю работает точно так же, как во многих других протоколах. При обычной проверке подлинности HTTP имя и пароли объединяются в одну строку и кодируются в формате Base64. Основным недостатком обычной проверки подлинности является то, что имя и пароль передаются в запросе в открытом виде. Это позволяет достаточно легко похищать такие имена и пароли. Дайджест-проверка подлинности устраняет эту проблему, так как при ней имя и пароль не передаются вместе с запросом. Вместо этого применяется специальный механизм вычисления 128-разрядного дайджеста по имени пользователя, паролю и некоторым другим параметрам. Сервер NetX Web HTTP поддерживает стандартный алгоритм дайджестов MD5.

Когда нужна проверка подлинности? HTTP-сервер самостоятельно решает, требуется ли проверка подлинности для запрошенного ресурса. Если проверка подлинности нужна, но в запросе от клиента нет необходимых данных проверки подлинности, то клиенту возвращается ответ «HTTP/1.1 401 Unauthorized» с указанием требуемого типа проверки подлинности. Ожидается, что клиент в этом случае сформирует новый запрос с правильными данными проверки подлинности.

При использовании протокола HTTPS HTTPS-сервер по-прежнему может использовать проверку подлинности HTTP. В этом случае для шифрования всего трафика HTTP используется протокол TLS, поэтому использование обычной проверки подлинности HTTP не обуславливает угрозу безопасности. Дайджест-проверка подлинности также допускается, но не обеспечивает значительного повышения безопасности по сравнению с обычной проверкой подлинности на основе протокола TLS.

Обратный вызов проверки подлинности HTTP

Как уже упоминалось, проверка подлинности HTTP является необязательной, то есть используется не при любой передаче данных через Интернет. Кроме того, проверка подлинности обычно зависит от конкретного ресурса. Один и тот же сервер может требовать проверку подлинности для доступа к некоторым ресурсам и не требовать для доступа к другим. Пакет HTTP-сервера Неткс позволяет приложению указать (с помощью вызова nx_web_http_server_create ) подпрограммы обратного вызова проверки подлинности, которая вызывается в начале обработки каждого HTTP-запроса клиента.

Эта подпрограмма обратного вызова предоставляет серверу NetX Web HTTP строковые значения имени пользователя, пароля и области, которые связаны с конкретным ресурсом, и возвращает необходимый тип проверки подлинности. Если для ресурса не требуется проверка подлинности, обратный вызов проверки подлинности должен возвращать значение NX_WEB_HTTP_DONT_AUTHENTICATE. Если для указанного ресурса требуется обычная проверка подлинности, эта подпрограмма должна возвращать NX_WEB_HTTP_BASIC_AUTHENTICATE. Наконец, если требуется дайджест-проверка подлинности MD5, подпрограмма обратного вызова должна возвращать NX_WEB_HTTP_DIGEST_AUTHENTICATE. Если ни для одного из ресурсов, предоставляемого HTTP-сервером, не требуется проверка подлинности, обратный вызов можно не указывать, передав в вызов для создания HTTP-сервера пустой указатель.

Формат подпрограммы обратного вызова проверки подлинности для приложения достаточно прост и определен ниже.

Входные параметры определяются следующим образом.

Возвращаемое значение подпрограммы проверки подлинности указывает, требуется ли проверка подлинности. Указатели на имя, пароль и область определения приложения не используются, если подпрограмма обратного вызова проверки подлинности возвращает значение NX_WEB_HTTP_DONT_AUTHENTICATE. В противном случае разработчик HTTP-сервера должен убедиться, что значения NX_WEB_HTTP_MAX_USERNAME и NX_WEB_HTTP_MAX_PASSWORD, определенные в файле nx_web_http_server.h, достаточно велики для размещения имени пользователя и пароля, указанных в обратном вызове проверки подлинности. По умолчанию оба значения равны 20 символам.

Обратный вызов для недопустимых значений имени пользователя или пароля HTTP

Чтобы зарегистрировать обратный вызов на HTTP-сервере, используется приведенная ниже служба, которая определена на сервере NetX Web HTTP.

Определены следующие типы запроса:

Обратный вызов для добавления заголовка даты GMT в HTTP

Этот необязательный обратный вызов на сервере NetX Web HTTP позволяет добавлять в ответные сообщения заголовок со значением даты. Он вызывается, когда HTTP-сервер отвечает на запрос PUT или GET.

Чтобы зарегистрировать обратный вызов для добавления даты GMT на HTTP-сервере, определена приведенная ниже служба.

Тип данных NX_WEB_HTTP_SERVER_DATE определяется следующим образом:

Обратный вызов для получения сведений из кэша HTTP

HTTP-сервер поддерживает обратный вызов для запроса ограничений по возрасту и датам для определенного ресурса в приложении HTTP. Эти сведения позволяют определить, будет ли HTTP-сервер отправлять всю страницу клиенту по запросу GET. Если в запросе клиента нет строки «if modified since» (если изменено позднее) или это значение не совпадает с датой «last modified» (последнее изменение), полученной в обратном вызове запроса сведений из кэша, то клиенту отправляется вся страница.

Чтобы зарегистрировать обратный вызов на HTTP-сервере, определена приведенная ниже служба.

Поддержка поблочного кодирования HTTP

Если определить общую длину сообщения HTTP перед отправкой невозможно, то можно использовать функцию поблочного кодирования для отправки сообщений в виде серий блоков без поля заголовка Content-Length. Эта функция поддерживается во всех сообщениях HTTP-запросов и HTTP-ответов. Эта функция поддерживается на стороне получателя, а заголовок блока автоматически обрабатывается внутренней логикой. На стороне отправителя клиентом и сервером должны вызываться интерфейсы API nx_web_http_client_request_chunked_set и nx_web_http_server_response_chunked_set соответственно.

Дополнительные сведения об использовании этих служб можно найти в главе 3 «Описание служб HTTP».

Поддержка многокомпонентных сообщений HTTP

Протокол MIME изначально предназначался для взаимодействия с протоколом SMTP, но теперь он используется и с протоколом HTTP. Протокол MIME позволяет включать в одно сообщение смешанные типы данных (например, image/jpg и text/plain). Сервер NetX Web HTTP включает в себя службы для определения типа содержимого в полученных от клиента сообщениях HTTP, содержащих данные MIME. Чтобы включить поддержку многокомпонентных сообщений HTTP и использовать эти службы, необходимо определить параметр конфигурации NX_WEB_HTTP_MULTIPART_ENABLE.

Дополнительные сведения об использовании этих служб можно найти в главе 3 «Описание служб HTTP».

Поддержка многопоточности HTTP

Службы клиента NetX Web HTTP можно вызывать из нескольких потоков одновременно. Но запросы на чтение или запись для конкретного экземпляра HTTP-клиента должны выполняться последовательно из одного потока.

При использовании протокола HTTPS службы клиента NetX Web HTTP могут вызываться из нескольких потоков, но ввиду повышенной сложности базовых функций TLS каждый поток должен использовать отдельный, независимый экземпляр HTTP-клиента (структуру управления NX_WEB_HTTP_CLIENT).

Соответствие протокола HTTP положениям документов RFC

NetX Web HTTP соответствует требованиям документов RFC 1945 «Hypertext Transfer Protocol/1.0» (Протокол передачи гипертекста, версия 1.0), RFC 2616 «Hypertext Transfer Protocol/1.1» (Протокол передачи гипертекста, версия 1.1), RFC 2581 «TCP Congestion Control» (Контроль перегрузки TCP), RFC 1122 «Requirements for Internet Hosts» (Требования к Интернет-узлам) и других связанных с ними документов RFC.

Реализация протокола HTTPS в NetX Web HTTP соответствует требованиям документа RFC 2818 «HTTP over TLS» (Передача данных HTTP по протоколу TLS).

Источник

Для чего нужен протокол http

HyperText Transfer Protocol (HTTP) — это протокол высокого уровня (а именно, уровня приложений), обеспечивающий необходимую скорость передачи данных, требующуюся для распределенных информационных систем гипермедиа. HTTP используется проектом World Wide Web с 1990 года.

Практические информационные системы требуют большего, чем примитивный поиск, модификация и аннотация данных. HTTP/1.0 предоставляет открытое множество методов, которые могут быть использованы для указания целей запроса. Они построены на дисциплине ссылок, где для указания ресурса, к которому должен быть применен данный метод, используется Универсальный Идентификатор Ресурсов (Universal Resource Identifier — URI), в виде местонахождения (URL) или имени (URN). Формат сообщений сходен с форматом Internet Mail или Multipurpose Internet Mail Extensions (MIME-Многоцелевое Расширение Почты Internet).

HTTP/1.0 используется также для коммуникаций между различными пользовательскими просмотрщиками и шлюзами, дающими гипермедиа доступ к существующим Internet протоколам, таким как SMTP, NNTP, FTP, Gopher и WAIS. HTTP/1.0 разработан, чтобы позволять таким шлюзам через proxy серверы, без какой-либо потери передавать данные с помощью упомянутых протоколов более ранних версий.

Общая Структура

HTTP основывается на парадигме запросов/ответов. Запрашивающая программа (обычно она называется клиент) устанавливает связь с обслуживающей программой-получателем (обычно называется сервер) и посылает запрос серверу в следующей форме: метод запроса, URI, версия протокола, за которой следует MIME-подобное сообщение, содержащее управляющую информацию запроса, информацию о клиенте и, может быть, тело сообщения. Сервер отвечает сообщением, содержащим строку статуса (включая версию протокола и код статуса — успех или ошибка), за которой следует MIME-подобное сообщение, включающее в себя информацию о сервере, метаинформацию о содержании ответа, и, вероятно, само тело ответа. Следует отметить, что одна программа может быть одновременно и клиентом и сервером. Использование этих терминов в данном тексте относится только к роли, выполняемой программой в течение данного конкретного сеанса связи, а не к общим функциям программы.

В Internet коммуникации обычно основываются на TCP/IP протоколах. Для WWW номер порта по умолчанию — TCP 80, но также могут быть использованы и другие номера портов — это не исключает возможности использовать HTTP в качестве протокола верхнего уровня.

Для большинства приложений сеанс связи открывается клиентом для каждого запроса и закрывается сервером после окончания ответа на запрос. Тем не менее, это не является особенностью протокола. И клиент, и сервер должны иметь возможность закрывать сеанс связи, например, в результате какого-нибудь действия пользователя. В любом случае, разрыв связи, инициированный любой стороной, прерывает текущий запрос, независимо от его статуса.

Общие понятия

Запрос — это сообщение, посылаемое клиентом серверу.
Первая строка этого сообщения включает в себя метод, который должен быть применен к запрашиваемому ресурсу, идентификатор ресурса и используемую версию протокола. Для совместимости с протоколом HTTP/0.9, существует два формата HTTP запроса:

Если HTTP/1.0 сервер получает Простой-Запрос, он должен отвечать Простым-Ответом HTTP/0.9. HTTP/1.0 клиент, способный обрабатывать Полный-Ответ, никогда не должен посылать Простой-Запрос.

Строка Статус

Строка Статус начинается со строки с названием метода, за которым следует URI-Запроса и использующаяся версия протокола. Строка Статус заканчивается символами CRLF. Элементы строки разделяются пробелами (SP). В Строке Статус не допускаются символы LF и CR, за исключением заключающей последовательности CRLF.

Следует отметить, что отличие Строки Статус Полного-Запроса от Строки Статус Простого- Запроса заключается в присутствии поля Версия-HTTP.

Метод

В поле Метод указывается метод, который должен быть применен к ресурсу, идентифицируемому URI-Запроса. Названия методов чувствительны к регистру. Существующий список методов может быть расширен.

Список методов, допускаемых отдельным ресурсом, может быть указан в поле Заголовок-Содержание «Баллов». Тем не менее, клиент всегда оповещается сервером через код статуса ответа, допускается ли применение данного метода для указанного ресурса, так как допустимость применения различных методов может динамически изменяться. Если данный метод известен серверу, но не допускается для указанного ресурса, сервер должен вернуть код статуса «405 Method Not Allowed», и код статуса «501 Not Implemented», если метод не известен или не поддерживается данным сервером. Общие методы HTTP/1.0 описываются ниже.

Метод GET служит для получения любой информации, идентифицированной URI-Запроса. Если URI- Запроса ссылается на процесс, выдающий данные, в качестве ответа будут выступать данные, сгенерированные данным процессом, а не код самого процесса (если только это не является выходными данными процесса).

Метод GET изменяется на «условный GET», если сообщение запроса включает в себя поле заголовка «If-Modified-Since». В ответ на условный GET, тело запрашиваемого ресурса передается только, если он изменялся после даты, указанной в заголовке «If-Modified-Since». Алгоритм определения этого включает в себя следующие случаи:

Использование метода условный GET направлено на разгрузку сети, так как он позволяет не передавать по сети избыточную информацию.

Метод HEAD аналогичен методу GET, за исключением того, что в ответе сервер не возвращает Тело- Ответа. Метаинформация, содержащаяся в HTTP заголовках ответа на запрос HEAD, должна быть идентична информации HTTP заголовков ответа на запрос GET. Данный метод может использоваться для получения метаинформации о ресурсе без передачи по сети самого ресурса. Метод «Условный HEAD», аналогичный условному GET, не определен.

Метод POST используется для запроса сервера, чтобы тот принял информацию, включенную в запрос, как субординантную для ресурса, указанного в Строке Статус в поле URI-Запроса. Метод POST был разработан, чтобы была возможность использовать один общий метод для следующих функций:

Реальная функция, выполняемая методом POST, определяется сервером и обычно зависит от URI- Запроса. Добавляемая информация рассматривается как субординатная указанному URI в том же смысле, как файл субординатен каталогу, в котором он находится, новая статья субординатна группе новостей, в которую она добавляется, запись субординатна базе данных.

Клиент может предложить URI для идентификации нового ресурса, включив в запрос заголовок «URI». Тем не менее, сервер должен рассматривать этот URI только как совет и может сохранить тело запроса под другим URI или вообще без него.

Если в результате обработки запроса POST был создан новый ресурс, ответ должен иметь код статуса, равный «201 Created», и содержать URI нового ресурса.

Метод PUT запрашивает сервер о сохранении Тело-Запроса под URI, равным URI-Запроса. Если URI-Запроса ссылается на уже существующий ресурс, Тело-Запроса должно рассматриваться как модифицированная версия данного ресурса. Если ресурс, на который ссылается URI-Запроса не существует, и данный URI может рассматриваться как описание для нового ресурса, сервер может создать ресурс с данным URI. Если был создан новый ресурс, сервер должен информировать направившего запрос клиента через ответ с кодом статуса «201 Created». Если существующий ресурс был модифицирован, должен быть послан ответ «200 OK», для информирования клиента об успешном завершении операции. Если ресурс с указанным URI не может быть создан или модифицирован, должно быть послано соответствующее сообщение об ошибке.

Фундаментальное различие между методами POST и PUT заключается в различном значении поля URI-Запроса. Для метода POST данный URI указывает ресурс, который будет управлять информацией, содержащейся в теле запроса, как неким придатком. Ресурс может быть обрабатывающим данные процессом, шлюзом в какой нибудь другой протокол, или отдельным ресурсом, допускающим аннотации. В противоположность этому, URI для запроса PUT идентифицирует информацию, содержащуюся в Содержание-Запроса. Использующий запрос PUT точно знает какой URI он собирается использовать, и получатель запроса не должен пытаться применить этот запрос к какому-нибудь другому ресурсу.

DELETE

Метод DELETE используется для удаления ресурсов, идентифицированных с помощью URI-Запроса. Результаты работы данного метода на сервере могут быть изменены с помощью человеческого вмешательства (или каким-нибудь другим способом). В принципе, клиент никогда не может быть уверен, что операция удаления была выполнена, даже если код статуса, переданный сервером, информирует об успешном выполнении действия. Тем не менее, сервер не должен информировать об успехе до тех пор, пока на момент ответа он не будет собираться стереть данный ресурс или переместить его в некоторую недостижимую область.

Метод LINK устанавливает взаимосвязи между существующим ресурсом, указанным в URI-Запроса, и другими существующими ресурсами. Отличие метода LINK от остальных методов, допускающих установление ссылок между документами, заключается в том, что метод LINK не позволяет передавать в запросе Тело-Запроса, и в том, что в результате работы данного метода не создаются новые ресурсы.

UNLINK

Метод UNLINK удаляет одну или более ссылочных взаимосвязей для ресурса, указанного в URI- Запроса. Эти взаимосвязи могут быть установлены с помощью метода LINK или какого-нибудь другого метода, поддерживающего заголовок «Link». Удаление ссылки на ресурс не означает, что ресурс прекращает существование или становится недоступным для будущих ссылок.

Поля Заголовок-Запроса

Поля Заголовок-Запроса позволяют клиенту передавать серверу дополнительную информацию о запросе и о самом клиенте.

Кроме того через механизм расширения могут быть определены дополнительные заголовки; приложения, которые их не распознают, должны трактовать эти заголовки, как Заголовок-Содержание.

Ниже будут рассмотрены некоторые поля заголовка запроса.

В случае присутствия поля From, оно должно содержать полный E-mail адрес пользователя, который управляет программой-агентом, осуществляющей запросы. Этот адрес должен быть задан в формате, определенном в RFC 822. Формат данного поля следующий: From = «From» «:» спецификация адреса. Например:

Данное поле может быть использовано для функций захода в систему, а также для идентификации источника некорректных или нежелательных запросов. Оно не должно использоваться, как несекретная форма разграничения прав доступа. Интерпретация этого поля состоит в том, что обрабатываемый запрос производится от имени данного пользователя, который принимает ответственность за применяемый метод. В частности, агенты-роботы должны использовать этот заголовок для того, чтобы можно было связаться с тем человеком, который отвечает за работу робота, в случае возникновения проблем. Почтовый Internet адрес, указывающийся в этом поле, не обязан соответствовать адресу того хоста, с которого был послан данный запрос. По возможности, адрес должен быть доступным Internet адресом вне зависимости от того, является ли он в действительности Internet E-mail адресом или Internet E-mail представлением адреса других почтовых систем.

Замечание: Клиент не должен использовать поле заголовка From без позволения пользователя, так как это может войти в конфликт с его частными интересами или с местной, используемой им, системой безопасности. Настоятельно рекомендуется предоставление пользователю возможности запретить, разрешить или модифицировать это поле в любой момент перед запросом.

If-Modified-Since

Поле заголовка If-Modified-Since используется с методом GET для того, чтобы сделать его условным: если запрашиваемый ресурс не изменялся во времени, указанного в этом поле, копия этого ресурса не будет возвращена сервером; вместо этого, будет возвращен ответ «304 Not Modified» без Тела- Ответа.

Пример использования заголовка:

Целью этой особенности является предоставление возможности эффективного обновления информации локальных кэшей с минимумом передаваемой информации. Тот же результат может быть достигнут применением метода HEAD с последующим использованием GET, если сервер указал, что содержимое документа изменилось.

User-Agent

Поле заголовка User-Agent содержит информацию о пользовательском агенте, пославшем запрос. Данное поле используется для статистики, прослеживания ошибок протокола, и автоматического распознавания пользовательских агентов. Хотя это не обязательно, пользовательские агенты должны всегда включать это поле в свои запросы. Поле может содержать несколько строк, представляющих собой название программного продукта, необязательную косую черту с указанием версии продукта, а также другие программные продукты, составляющие важную часть пользовательского агента. По соглашению, продукты указываются в списке в порядке убывания их значимости для идентификации приложения.

Строка, описывающая название продукта, должна быть короткой и давать информацию по существу — использование данного заголовка для рекламирования какой-либо другой, не относящейся к делу, информации не допускается и рассматривается, как не соответствующее протоколу. Хотя в поле версии продукта может присутствовать любая строка, данная строка должна использоваться только для указания версии продукта. Поле User-Agent может включать в себя дополнительную информацию в комментариях, которые не являются частью его значения.

Структура ответа

После получения и интерпретации запроса, сервер посылает ответ в соответствии со следующей формой:

Простой-Ответ должен посылаться только в ответ на HTTP/0.9 Простой-Запрос, или в том случае, если сервер поддерживает только ограниченный HTTP/0.9 протокол. Если клиент посылает HTTP/1.0 Полный-Запрос и получает ответ, который не начинается со Строки-Статус, он должен предполагать, что ответ сервера представляет собой Простой-Ответ, и обрабатывать его в соответствии с этим. Следует заметить, что Простой-Ответ состоит только из запрашиваемой информации (без заголовков) и поток данных прекращается в тот момент, когда сервер закрывает сеанс связи.

Строка Статус

Первая строка Полного-Запроса является Строкой-Статус, состоящей из версии протокола, за которой следует цифровой код статуса и ассоциированное с ним текстовое предложение. Все элементы Строки-Статус разделены пробелами. Не разрешены символы CR и LF, за исключением завершающей последовательности CRLF.

Так как Строка-Статус всегда начинается с версии протокола «HTTP/» 1*ЦИФРА «.» 1*ЦИФРА (например HTTP/1.0), существование этого выражения рассматривается как основное для определения того, является ли ответ Простым-Ответом, или Полным-Ответом. Хотя формат Простого-Ответа не исключает появления подобной строки (что привело бы к неправильной интерпретации сообщения ответа и принятию его за Полный-Ответ), вероятность такого появления близка к нулю.

Статус-Код и пояснение к нему

Элемент Статус-Код представляет собой 3-х цифровой целый код, идентифицирующий результат попытки интерпретации и удовлетворения запроса. Фраза-Об’яснение, следующая за ним, предназначена для краткого текстового описания Статус-Кода. Статус-Код нацелен на то, чтобы его использовала машина, а Фраза-Об’яснение предназначена для человека. Клиент не обязан исследовать и выводить на экран Фразу-Об’яснение.

Первая цифра Статус-Кода предназначена для определения класса ответа. Последние две цифры не выполняют никакой категоризирующей роли. Существует 5 значений для первой цифры:

Отдельные значения Статус-Кодов и соответствующие им Фразы-Об’яснения приведены ниже. Данные Фразы-Об’яснения только рекомендуются — они могут быть замещены любыми другими фразами, сохраняющими смысл и допускающимися протоколом.

От HTTP приложений не требуется понимание всех Статус-Кодов, хотя такое понимание, очевидно, желательно. Тем не менее, от приложений требуется способность распознавания классов Статус-Кодов (идентифицирующихся первой цифрой) и отношение ко всем Статус-Кодам статуса ответа, как если бы они были эквивалентны Статус-Коду x00.

Поля Заголовок-Ответа

Поля заголовка ответа позволяют серверу передать дополнительную информацию об ответе, которая не может быть внесена в Строку-Статус. Эти поля заголовков не предназначены для передачи информации о содержании ответа, передаваемого в ответ на запрос, но там может быть информация собственно о сервере.

Хотя дополнительные поля заголовка ответа могут быть реализованы через механизм расширения, приложения, которые не распознают эти поля, должны обрабатывать их как поля Заголовок-Содержание. Полное описание этих полей можно получить в спецификации протокола HTTP в CERN.

Общие Понятия

Полный-Запрос и Полный-Ответ может использоваться для передачи некоторой информации в отдельных запросах и ответах. Этой информацией является Содержание-Запроса или Содержание-Ответа соответственно, а также Заголовок-Содержания.

Поля Заголовок-Содержания

Поля Заголовок-Содержания содержат необязательную метаинформацию о Содержании-Запроса или Содержании-Ответа соответственно. Если тело соответствующего сообщения (запроса или ответа) не присутствует, то Заголовок-Содержания содержит информацию о запрашиваемом ресурсе.

Некоторые из полей заголовка содержания описаны ниже.

Allow

Поле заголовка Allow представляет собой список методов, которые поддерживает ресурс, идентифицированный URI-Запроса. Назначение этого поля — точное информирование получателя о допустимых методах, ассоциированных с ресурсом; это поле должно присутствовать в ответе со статус кодом «405 Method Not Allowed».

Конечно, клиент может попробовать использовать другие методы. Однако, рекомендуется следовать тем методам, которые указаны в данном поле. У этого поля нет значения по умолчанию; если оно оставлено неопределенным, множество разрешенных методов определяется сервером в момент каждого запроса.

Content-Length

Поле Content-Length указывает размер тела сообщения, посланного сервером в ответ на запрос или, в случае запроса HEAD, размер тела сообщения, которое было бы послано в ответ на запрос GET.

Хотя это не обязательно, но все же приложениям настоятельно рекомендуется использовать это поле для анализа размеров передаваемого сообщения, независимо от типа содержащейся в нем информации. Для поля Content-Length допустимым является любое целочисленное значение больше нуля.

Content-Type

Поле заголовка Content-Type идентифицирует тип информации в теле сообщения, которая посылается получающей стороне или, в случае метода HEAD, тип информации (среды), который был бы послан, если использовался метод GET.

Типы сред определены отдельно.
Пример:

Поле Content-Type не имеет значения по умолчанию.

Last-Modified

Поле заголовка содержит дату и время, в которое, по мнению отправляющей стороны, ресурс был последний раз модифицирован. Семантика данного поля определена в терминах, описывающих, как получатель должен его интерпретировать: если получатель имеет копию ресурса, которая старше, чем передаваемая в поле Last-Modified дата, то копия должна считаться устаревшей.

Точное значение этого поля заголовка зависит от реализации отправляющей стороны и сути самого ресурса. Для файлов, это может быть просто его время последней модификации. Для шлюзов к базам данных, это может быть время последнего обновления данных в базе. В любом случае, получатель должен беспокоиться лишь о результате — о том, что находится в данном поле, — и не беспокоиться о том, как результат был получен.

Тело сообщения

Под телом сообщения понимается Содержание-Запроса или Содержание-Ответа соответственно. Тело сообщения, если оно присутствует, посылается в HTTP/1.0 запросе или ответе в формате и кодировке, определяемыми полями Заголовок-Содержания.

Тело сообщения включается в запрос, только если метод запроса подразумевает его наличие. Для спецификации HTTP/1.0 такими методами являются POST и PUT. В общем, на присутствие тела сообщения указывает присутствие таких полей заголовка содержания, как Content-Length и/или Content- Transfer-Encoding, в передаваемом запросе.

Что касается сообщений-ответов, наличие тела сообщения в ответе зависит от метода, который был использован в запросе, и Статус-Кода. Все ответы на запросы HEAD не должны содержать тело сообщения, хотя наличие некоторых полей заголовка сообщения может указывать на возможное присутствие такового. Соответственно, ответы «204 No Content», «304 Not Modified», и «406 None Acceptable» также не должны включать в себя тело сообщения.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *