Для чего нужен ресивер в холодильной установке
Пособие для ремонтника
Нехватка хладагента в контуре может объясняться случайными утечками. В то же время, избыточная заправка как правило является следствием ошибочных действий персонала, вызванных его недостаточной квалификацией.
Чтобы ограничить число ошибок подобного рода, нам представляется небесполезным привести здесь некоторые уточнения обычных ответов на отдельные вопросы, касающиеся непростой темы заправки контура хладагентами.
А) Для чего нужен ресивер в холодильном контуре?
Для того, чтобы лучше понять назначение жидкостного ресивера, в качестве примера возьмем схему установки на рис 16.1, находящейся в рабочем состоянии.
Температура в охлаждаемом объеме относительно высокая и регулирующий термостат запускает компрессор.
В этот момент температура воздуха на входе в испаритель составляет 25°С.
Давление кипения стабилизировалось на уровне 5 бар, что для R22 соответствует температуре кипения, равной 6°С.
Сознательно пренебрегая потерями давления во всасывающей магистрали компрессора, можно считать, что полный температурный напор на испарителе Абполн составляет около 25 — 6=19К.
Если температура, измеренная в термобаллоне ТРВ, равна, например, 13°С, это означает, что установка отрегулирована на перегрев около 7 К.
Наконец отметим, что в момент, когда термостат запустил компрессор, воздух на входе в испаритель довольно горячий. Следовательно, кипение хладагента в испарителе весьма интенсивное и необходимо очень сильно открыть ТРВ, чтобы поддерживать перегрев на уровне 7 К
Поскольку ТРВ открыт сильно, давление кипения и массовый расход хладагента высокие. Следовательно, холодопроизводительность очень хорошая и в испарителе находится много жидкого хладагента (конечно, при нормальной заправке контура хладагентом в момент, когда его много в испарителе, количество хладагента в конденсаторе и ресивере сравнительно небольшое).
Вновь возьмем ту же самую установку немного позже, когда температура воздуха на входе в испаритель понизилась до 21°С, и посмотрим, как изменились значения ее основных параметров (для простоты будем считать, что давление конденсации хорошо отрегулировано и существенно не изменилось).
Поскольку температура воздуха на входе в испаритель понизилась на 4°С, теперь для того, чтобы поддерживать постоянным перегрев газа, который выходит из испарителя, необходим более длинный участок трубопровода.
Это означает, что ТРВ должен обязательно закрываться (см. раздел 7 «Влияние температуры охлаждаемого воздуха»).
Итак, для поддержания постоянной величины перегрева, равной 7 К, ТРВ обязательно должен быть открыт меньше, чем когда температура воздуха была равной 25°С (см. рис. 16.2).
Поскольку ТРВ закрыт сильнее, это означает, по сравнению с предыдущим вариантом, что давление кипения уменьшается и массовый расход хладагента становится меньше. Следовательно, холодопроизводительность падает, а в испарителе содержится меньше жидкости, чем ранее.
Таким образом, уменьшение количества жидкости в испарителе приводит к его увеличению в конденсаторе и в ресивере.
Заметим, что при температуре в охлаждаемом объеме 21°С не только увеличивается количество жидкости в ресивере и конденсаторе, но и падает массовый расход жидкости, циркулирующей в контуре, поэтому внизу конденсатора скорость циркуляции жидкости заметно уменьшиться.
Поскольку количество жидкости, находящееся в контакте с наружным воздухом, увеличивается и время контакта также возрастает, переохлаждение будет улучшаться.
Итак, в установке, снабженной ТРВ, чем больше падает температура воздуха на входе в испаритель, тем больше перекрывается ТРВ, снижая массовый расход и уменьшая холодопро-изводительность.
Одновременно в испарителе остается все меньше и меньше жидкости, а в ресивере уровень жидкости повышается.
Одно из назначений ресивера заключается в том, чтобы в точности \у^ компенсировать колебания массового расхода жидкости, обусловленные реакцией ТРВ на изменения тепловой нагрузки.
Б) Если емкость жидкостного ресивера слишком мала?
Представим себе, что емкость жидкостного ресивера очень мала, а установку заправляли в то время, когда температура в охлаждаемом объеме была относительно высокой.
По мере того, как температура в охлаждаемом объеме будет падать, ТРВ начнет закрываться, чтобы поддерживать заданный перегрев. Уровень жидкости в ресивере начнет подниматься, а поскольку емкость ресивера небольшая, он быстро наполнится.
С этого момента уровень жидкости внутри конденсатора начнет подниматься, приводя к снижению поверхности теплообмена и, следовательно, к повышению давления конденсации, сопровождаясь признаками чрезмерной заправки контура (см. раздел 36 «Регулировка вентилем высокого давления. Анализ неисправностей «).
Отметим, что при малой емкости жидкостного ресивера и заправке установки хладагентом при низкой температуре окружающей среды, мы будем наблюдать признаки нехватки хладагента в контуре, когда температура окружающей среды начнет повышаться.
В заключение укажем, что недостаточная емкость жидкостного ресивера никогда не позволит обеспечить удовлетворительную заправку установки.
В) Как определить размеры жидкостного ресивера?
С точки зрения чисто функциональной нет никаких технических противопоказаний к тому, чтобы снабдить установку жидкостным ресивером с емкостью большей, чем нужно.
Однако увеличение размеров ресивера приводит к увеличению размеров установки в целом и повышает ее стоимость. Более того, чем больше размеры ресивера, тем больше он будет содержать хладагента, намного превышая действительно потребное его количество, в то время, как стоимость хладагентов в настоящее время довольно высокая и есть опасения, что она будет увеличиваться все больше и больше!
Выбираемый многими конструкторами компромисс между маленьким и очень большим ресиверами заключается в том, чтобы объем ресивера мог вместить все количество хладагента, заправляемое в установку с целью максимального упрощения обычных операций по техническому обслуживанию. Это позволяет ремонтнику, закрыв выходной вентиль на жидкостном ресивере, отвакуумировать с помощью компрессора жидкостную и всасывающую магистрали, а также испаритель, как бы собирая всю жидкость в конденсаторе и жидкостном ресивере.
Если компрессор снабжен технологическими вентилями, не будет никаких проблем с обслуживанием любого элемента контура (за исключением конденсатора и ресивера), причем во время этого обслуживания потери хладагента будут минимальными (только в газовой фазе, оставшейся в жидкостной и всасывающей магистралях).
Г) Может ли давление конденсации подняться во время вакуумиро-вания?
При закрытом выходном вентиле жидкостного ресивера и вакуумировании жидкостной и всасывающей магистралей с помощью компрессора (до давления, например, равного 0,1 бар) давление на входе в ТРВ постоянно падает, пока не достигнет значения, равного 0,1 бар.
Это падение давления на входе в ТРВ приведет к резкому снижению холодопроизводи-тельности (см. раздел 8.1 «Производительность ТРВ «), а также к значительному падению тепловыделения в конденсаторе, который в этом случае быстро становится переразмеренным, а значит:
давление конденсации, напротив, будет иметь тенденцию к снижению во время вакуумировании (см. рис. 16.3)!
Поскольку конденсатор во время вакуумирования с помощью компрессора при закрытом выходном вентиле жидкостного ресивера является как бы переразмеренным, давление конденсации абсолютно не должно подниматься. В противном случае это указывает либо на недостаточную емкость жидкостного ресивера, либо на плохое прохождение жидкости из конденсатора в жидкостной ресивер, либо, что бывает наиболее часто, на избыток хладагента в установке.
Заметим также, что отдельные конструкторы предпочитают вместо установки жидкостного ресивера использовать переразмеренный конденсатор с воздушным охлаждением (см. рис. 16.4).
В этом случае нижняя часть конденсатора выполняет функции жидкостного ресивера.
В процессе функционирования нижние трубки такого конденсатора оказываются постоянно залитыми жидкостью и обдуваемыми холодным наружным воздухом.
Это позволяет обеспечить оптимальное охлаждение жидкости.
Такая конструкция дает возможность достичь гораздо более лучшего переохлаждения хладагента по сравнению с классическим вариантом жидкостного ресивера и тем самым заметно повысить КПД установки.
Д) Как узнать, достаточно пи хладагента заправлено в установку?
Анализ симптомов, вызванных, с одной стороны, недостатком хладагента в установке и, с другой стороны, чрезмерной заправкой (эти две неисправности рассматриваются в следующих разделах), позволяет в сочетании с пояснениями, которые мы сейчас дадим, довольно точно ответить на этот непростой вопрос.
Напомним, что заправка может считаться нормальной только тогда, когда испаритель заполнен жидкостью в достаточной степени, то есть перегрев находится в нормальных пределах (для испарителя с прямым циклом расширения это, как правило, составляет от 4 до 7 К), что предполагает правильную настройк> ТРВ и, следовательно, поддержание давления конденсации на должном уровне, поскольку от этого зависит производительность ТРВ.
Более того, мы видим, что благодаря колебаниям уровня жидкости в ресивере температура воздуха на входе в испаритель не должна быть ни слишком высокой, ни слишком низкой по отношению к нормальному эксплуатационному диапазону, предусмотренному для функционирования данной установки.
Напомним еще раз, что лучшим индикатором, указывающим на нормальную величину заправки хладагентом, является переохлаждение. Слабое переохлаждение говорит о том. что заправка недостаточна, сильное указывает на избыток хладагента. Заправка может считаться нормальной, когда переохлаждение жидкости на выходе из конденсатора с воздушным охлаждением поддерживается в нормальных для данной установки пределах (часто между 4 и 7 К) при температуре воздуха на входе в испаритель близкой к номинальным условиям эксплуатации.
Переохлаждение может рассматриваться как надежный индикатор правильности заправки только в установках с термостатическим расширительным вентилем. Проблемы заправки установок с прессоста-тическими расширительными вентилями изучаются в разделе 50, а с капиллярными расширительными устройствами — в разделе 51 «Капиллярные расширительные устройства».
Как работает холодильное оборудование?
Содержание
Содержание
Вы никогда не задумывались, почему в холодильнике — холодно, и что общего у морозильного шкафа и кондиционера? В этом материале разбираемся, как работает холодильное оборудование.
Замечали, что, когда вы выходите из душа, вам всегда прохладно? Дело в том, что влага при испарении поглощает тепло. А при конденсации, наоборот, тепло выделяется. На этих явлениях и основан принцип действия паровых компрессорных холодильных машин– в них по замкнутому кругу двигается специальная жидкость (хладагент). Хладагент испаряется в испарителе и конденсируется в конденсаторе. При этом испаритель охлаждается, а конденсатор греется.
Чтобы хладагент испарялся и конденсировался в нужных местах, в холодильном контуре должны присутствовать еще два элемента – компрессор и дросселирующее устройство.
Компрессор сжимает газообразный хладагент в конденсаторе, где он под действием высокого давления переходит в жидкую форму, выделяя тепло. А дросселирующее устройство (капиллярная трубка или терморегулирующий вентиль) затрудняет движение хладагента и поддерживает высокое давление в конденсаторе. После дросселя давление в контуре намного ниже, и попавший туда хладагент начинает испаряться внутри испарителя, поглощая тепло. Далее он, уже в газообразном виде, снова попадает в компрессор, и цикл повторяется.
Многие холодильные установки комплектуются дополнительными элементами.
Фильтр-осушитель устанавливается перед дросселирующим устройством. Его задачей является извлечение из хладагента воды и механических частиц. При его отсутствии капилляр может засориться или замерзнуть.
Терморегулятор (термостат) выключает компрессор при достижении необходимой температуры.
Ресивер повышает эффективность холодильной установки. Без терморегулирущего вентиля (с капиллярной трубкой) скорость выработки холода является постоянной. И, если она будет слишком большой, компрессор будет часто включаться–выключаться, а если слишком маленькой — охлаждение будет идти слишком долго. Использование ТРВ позволяет изменять скорость охлаждения в больших пределах, но требует наличия ресивера для компенсирования колебаний расхода хладагента.
Различные датчики температуры и давления, управляемые электроникой регуляторы давления и клапаны используются для повышения эффективности устройства и поддержания специфических режимов работы.
Из холода в жар
Чаще всего холодильная машина используется именно для охлаждения — испаритель расположен в охлаждаемом объеме, а конденсатор вынесен в окружающую среду. Так работают кондиционеры, холодильники и морозильники. Но холодильный контур не только поглощает тепло на испарителе, но и выделяет его на конденсаторе. Нельзя ли использовать холодильную машину «наоборот» — для обогрева, расположив конденсатор в обогреваемом помещении, а испаритель вынеся наружу?
Еще как можно. Холодильная машина использует электроэнергию не для непосредственного нагрева (как ТЭН), а для переноса тепла, поэтому эффективность ее выше, чем у обычного электронагревателя. Многие современные кондиционеры могут работать «наоборот», используя теплообменник внутреннего блока как конденсатор, а теплообменник внешнего блока – как испаритель. В таком режиме на 1 кВт потребленной мощности кондиционер может произвести 2–6 кВт тепла. Греть комнату кондиционером может быть значительно выгоднее, чем электрообогревателем!
В местах с более холодным климатом в последнее время все большую популярность получают тепловые насосы – паровые компрессорные холодильные машины, у которых испаритель помещен под землю на глубину, большую глубины промерзания. Поскольку там всегда сохраняется положительная температура, эффективность теплового насоса не зависит от времени года. Такие устройства намного экономичнее электрических обогревателей и могут использоваться для отопления жилища круглый год при любой температуре. К сожалению, высокая стоимость тепловых насосов пока препятствует их популярности.
Виды компрессоров
Поршневые компрессоры устанавливаются в основном в холодильниках и морозильниках. В большинстве моделей поршень приводится в движение обычным электродвигателем, двигающим поршень через шатунно-кривошипный, кулачковый или кулисный механизм.
Существуют также электромагнитные (линейные) поршневые компрессоры. В них цилиндр расположен внутри катушки, создающей электромагнитное поле, которое приводит в движение поршень.
Поршневые компрессоры способны создавать высокое давление, обеспечивая большой перепад температур на испарителе и конденсаторе. Кроме того, обычный поршневой компрессор имеет достаточно простую конструкцию, не требующую высокой точности изготовления деталей, соответственно стоят они недорого. Однако недостатков у поршневых компрессоров тоже хватает:
Поэтому поршневой компрессор можно повторно запускать только через несколько минут после остановки, когда давление в системе выровняется. Защитой от повторного пуска снабжены далеко не все модели, поэтому холодильное оборудование рекомендуется подключать через реле времени с задержкой включения в 5–10 минут.
Ротационные компрессоры (иногда называемые роторными) создают давление за счет изменяющегося зазора между вращающимся ротором и корпусом компрессора.
Существуют различные модификации этого вида компрессоров — с эксцентричным ротором, с подвижными лепестками, с качающимся ротором, спиральный и т. п.
Все они обладают небольшими габаритами, низким уровнем шума и увеличенным ресурсом за счет снижения количества подвижных деталей. К недостаткам этого вида можно отнести сложность изготовления (ротор и корпус должны быть изготовлены с высокой точностью) и низкое максимальное давление. Такие компрессоры чаще используются в климатической технике, для которой не требуется создавать очень низкую температуру.
Ротационными и поршневыми список компрессоров не исчерпывается — существуют еще центробежные, винтовые, кулачковые и другие. Но в бытовой технике они используются реже.
Вне зависимости от вида компрессор может быть неинверторным (стандартным) или инверторным. У обычных компрессоров скорость вращения двигателя постоянна, для поддержания заданной температуры он периодически включается и выключается. В инверторных компрессорах двигатель подключен через частотный преобразователь (инвертор), с помощью изменения частоты напряжения меняющий скорость вращения электродвигателя. Такой компрессор поддерживает заданную температуру выставлением нужной скорости вращения. Инверторные компрессоры дороже, но экономичнее, эффективнее и имеют больший ресурс.
Типы хладагентов
Чем ниже температура кипения хладагента, тем более низкую температуру можно получить на испарителе холодильной машины. Однако, понизить температуру в морозильнике, просто поменяв фреон на более «холодный», скорее всего, не выйдет — хладагенты с низкой температурой кипения требуют большего давления для конденсации. Компрессор, рассчитанный на фреон с высокой температурой кипения, просто не сможет создать такое давление. Поэтому при замене хладагента следует придерживаться рекомендаций из инструкции, и не заправлять хладагент с характеристиками, сильно отличающимися от рекомендованных.
В бытовых устройствах чаще всего используются следующие хладагенты:
Фреон R22 (хладон 22, хлордифторметан) до недавних пор часто использовался в холодильных и морозильных установках. Обладает достаточно низкой температурой кипения (-40,8°С), при утечке возможна дозаправка системы. Однако из-за вреда, наносимого окружающей среде (разрушение озонового слоя) R22 в последнее время используется редко, а во многих странах вообще запрещен.
R600a (изобутан) все чаще используется в холодильной технике вместо менее экологичного R134. Его преимуществами являются низкое давление конденсации и высокая удельная теплота парообразования – холодильники, использующие этот фреон, дешевле и экономичнее. Однако из-за высокой температуры кипения (-12°С) заправленную им технику нельзя использовать на улице при отрицательных температурах.
Следует также помнить о том, что каждый тип фреона требует использования определенного вида масла для смазки деталей компрессора. Обычно тип (а иногда и марка масла) приводятся в сопроводительной документации к фреону. Использование других масел может привести к поломке компрессора.
Как видно, ничего сложного в холодильной технике нет, а понимание принципов ее работы может значительно продлить жизнь технике, позволить сэкономить на электроэнергии и уберечь от неправильных действий, могущих привести к поломке прибора.
Какова роль ресивера в холодильном контуре?
Не принимая во внимание потери давления во всасывающей магистрали компрессора, можно считать, что полный температурный напор на испарителе:
Допустим, температура в термобаллоне ТРВ составляет 13 С, это означает, что установка работает на перегрев 7 К. Когда термостат начинает запускать компрессор, воздух на входе в испаритель слишком горячий. Из этого следует, что процесс кипения в испарителе проходит интенсивно и для поддержания перегрева на уровне 7 К необходимо сильно открыть ТРВ.
Если ТРВ сильно открыт, то массовый расход хладагента и давление кипения высокие. Полагается, что холодопроизводительность хорошая, в том случае, когда в испарителе находится много жидкого хладагента. Рассмотрим эту же установку, но спустя некоторое время, когда температура на входе в испаритель снизится до 21 С, и проследим за тем, как изменились значения ее основных параметров.
Так как температура воздуха на входе в испаритель снизилась на 4 С, то для поддержания постоянного перегрева газа потребуется более длинный участок трубопровода. Это значит, что ТРВ должен обязательно закрываться.
Для поддержания постоянного перегрева 7 К, ТРВ должен быть открытым меньше, чем при температуре воздуха 25 С (рис.16.2).
В данном случае терморегулирующий вентиль закрыт сильнее, что по сравнению с предыдущим примером означает уменьшение давления кипения и массового расхода хладагента. Поскольку в испарителе находится меньше жидкости, холодопроизводительность снижается. Уменьшение жидкости в испарителе приводит к ее увеличению в ресивере и конденсаторе.
При относительно стабильном давлении конденсации, полный температурный напор на испарителе остается на уровне 19 К, в то время как температура кипения составляет 21-19=2 С. Поскольку регулировка ТРВ произведена таким образом, чтобы поддерживать перегрев на уровне 7 К, а кипение происходит при 2 С, то температура термобаллона ТРВ будет равна 2+7=9 С.
Итак, мы видим, что в установке с ТРВ, чем сильнее падает температура на входе в испаритель, тем больше перекрывается сам ТРВ, уменьшая массовый расход и холодопроизводительность. Вместе с этим в испарителе становится все меньше жидкости, а в ресивере ее уровень увеличивается.
Основное назначение ресивера это компенсировать колебания массового расхода жидкости, которые вызваны реакцией ТРВ на перемены в тепловой нагрузке.
Недостаточная емкость жидкостного ресивера
С этого периода объем жидкости внутри конденсатора начнет увеличиваться, снижая поверхность теплообмена и увеличивая давление конденсации. Все это сопровождается признаками чрезмерной заправки контура.
Если емкость жидкостного ресивера слишком мала и заправку хладагента производят при низкой температуре окружающей среды, то наблюдаются признаки нехватки хладагента в контуре при повышении температуры окружающей среды.
Перед разработчиками холодильного оборудования всегда стоит задача выбора подходящего ресивера. Необходимо чтобы его объем позволял вместить весь хладагент, который заправляется в установку, что существенно упростит обслуживание ресивера. Таким образом, ремонтник, предварительно перекрыв вентиль на жидкостном ресивере, может произвести вакуумирование с помощью компрессора жидкостной и всасывающей магистрали, а также испарителя, собрав всю жидкость в жидкостном ресивере и конденсаторе.
В случае, когда компрессор оборудован технологическими вентилями, сложностей с обслуживанием любых элементов контура, (кроме конденсатора и ресивера) как правило, не возникает. При этом потери хладагента будут минимальными.
У Вас недостаточно прав для добавления комментариев.
Возможно, вам необходимо зарегистрироваться на сайте.