Для чего нужен тахогенератор на двигателе постоянного тока
Слово «тахогенератор» происходит от двух слов — от греческого «тахос», означающего «быстрый» и от латинского «генератор». Тахогенератор представляет собой измерительную электрическую микромашину переменного или постоянного тока, которая монтируется на вал оборудования, и преобразует текущее значение частоты вращения вала в электрический сигнал, определенный параметр которого несет информацию о частоте вращения.
Таким параметром может выступать величина генерируемой ЭДС или значение частоты сигнала. Выходной сигнал с тахогенератора может подаваться на средство визуального отображения (например на дисплей) или на устройство автоматического управления частотой вращения вала, на котором работает данный тахогенератор.
Тахогенераторы бывают нескольких типов, в зависимости от вида сигнала, генерируемого на выходе: с сигналом переменного напряжения или тока (асинхронные или синхронные тахогенераторы), либо с сигналом постоянного тока.
Тахогенератор постоянного тока
Тахогенератор постоянного тока представляет собой коллекторную машину с возбуждением либо от постоянных магнитов (встречаются чаще), либо от обмотки возбуждения (встречаются реже), располагаемых на ее статоре. Измерительная ЭДС наводится на обмотку ротора тахогенератора, и оказывается прямо пропорциональна угловой скорости вращения ротора, по сути — скорости изменения магнитного потока, в точном соответствии с законом электромагнитной индукции.
Выходной сигнал — напряжение, величина которого также прямо пропорциональна угловой скорости вращения ротора — снимается через щетки с коллектора. Поскольку в работе участвуют коллектор и щетки, такой агрегат подвержен более скорому износу, чем тахогенератор переменного тока. Проблема еще и в том, что щеточно-коллекторный узел в процессе своей работы порождает импульсные помехи в выходном сигнале такого тахогенератора.
Тем не менее, в некоторых случаях тахогенераторы постоянного тока оказываются удобны формой представления выходного сигнала, а также закономерным явлением смены полярности данного сигнала в соответствии с изменением направления вращения вала.
Тахогенераторы постоянного тока характеризуются «коэффициентом преобразования» St, который выражает отношение снимаемого напряжения Uout к соответствующей данному напряжению частоте вращения Frot. Этот параметр дается в технической документации на тахогенератор, и измеряется в милливольтах, умноженных на обороты в минуту. Зная данный параметр и выходное напряжение с тахогенератора, можно вычислить текущую частоту по формуле:
Электродвигатель со встроенным тахогенератором:
Асинхронный тахогенератор переменного тока
Асинхронные тахогенераторы переменного тока похожи по устройству на асинхронные двигатели с короткозамкнутым ротором. Ротор здесь изготавливается в виде полого цилиндра (обычно медного или алюминиевого), а статор содержит две обмотки, расположенные под прямым углом друг к другу. Одна из обмоток статора — обмотка возбуждения, вторая — выходная. На обмотку возбуждения подается переменный ток с определенной амплитудой и частотой, а выходная обмотка присоединяется к измерительному прибору.
Когда короткозамкнутый ротор вращается, он периодически нарушает изначальную ортогональность магнитных потоков двух обмоток, в результате искажения картины магнитных полей, в выходной обмотке периодически наводится ЭДС. Если же ротор неподвижен, то магнитный поток обмотки возбуждения не искажается, и в выходной обмотке ЭДС не наводится. Здесь величина генерируемой ЭДС пропорциональна частоте вращения вала.
Синхронный тахогенератор переменного тока
Ротор синхронного тахогенератора переменного тока может быть выполнен в виде многополюсного магнита, и на один оборот вала давать в выходном сигнале несколько импульсов подряд. Такие тахогенераторы, наравне с асинхронными, отличаются более длительным сроком службы, поскольку в них нет щеточно-коллекторного узла, склонного к механическому износу.
Детектирование по частоте
Поскольку у синхронного тахогенератора частота на выходе от температуры и других факторов не зависит, то измерения частоты с ним получаются более точными. Вычисление осуществляется очень просто, достаточно знать количество пар полюсов p на роторе:
Но есть и нюанс. Чтобы точность вычислений получилось достаточно высокой, необходимо затратить время, за которое теоретически скорость может уже измениться, а это значит, что пока импульсы считаются, нарастает погрешность измерения, что вредно.
Дабы погрешность при измерении снизить, ротор делают многополюсным, чтобы вычисления можно было осуществить быстрее, тогда и реакция регулирующей системы может последовать более скоро. Для одного полюса частота вычисляется по следующей формуле:
У синхронного тахогенератора амплитуда сигнала изменяется в зависимости от скорости, поэтому при проектировании выходного частотного детектора важно учесть весь возможный диапазон амплитуд выходных напряжений тахогенератора.
Детектирование по амплитуде
При амплитудном способе определения частоты схема частотного детектора будет проще, но здесь важно учесть влияние таких факторов, как: температура, изменение немагнитного зазора и т. д. Чем выше частота — тем больше амплитуда выходного сигнала, поэтому схема детектора обычно представляет собой выпрямитель и НЧ-фильтр, где коэффициент преобразования, измеряемый в мВ*об/мин, позволяет определить частоту по следующей формуле:
Кроме рассмотренных в данной статье традиционных типов тахогенераторов, в современной технике также применяются импульсные датчики на базе оптронов, датчиков Холла и т. д. Достоинство тахогенераторов заключается в том, что в паре с детектором они не требуют никаких дополнительных источников питания. К недостаткам традиционных тахогенераторов машинного типа относятся: плохая чувствительность на низких скоростях и вносимый тормозящий момент.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое тахогенератор и зачем он нужен?
Тахогенератором принято называть маломощную электрическую машину, предназначенную для преобразования скорости (частоты) механического вращения вала в электрический сигнал выходного напряжения.
Путём механического соединения (муфта, шкив, и т.п.) вала тахогенератора с валом какого-либо другого ведущего устройства, можно определять частоту вращения последнего по значениям выходного напряжения. В идеале, значение выходного напряжения должно пропорционально соответствовать частоте вращения вала, т. е.:
где k – постоянная (mV/мин-¹), называемая крутизной выходной характеристики; n – частота вращения (мин-¹);
Тахогенераторы в основном применяют для измерения частоты вращения, выработки управляющих сигналов (ускоряющих или замедляющих), решения задач интегрирования и дифференцирования, для обратной связи по скорости и т.д.. Возможность реализации вышеуказанных функций вызвало большой спрос на разработку и использование различных типов тахогенераторов в автоматических системах управлении и регулирования, электроприводах, в схемах счётно-решающих устройств.
В зависимости от способа получения выходного сигнала и конструктивных особенностей, тахогенераторы изготавливают следующих типов:
Принцип действия тахогенератора постоянного тока основан на вращении якоря (ротора) обычного типа с обмотками (например, барабанного типа) в постоянном магнитном поле, создаваемом магнитами или обмотками возбуждения статора. Выходной сигнал снимается с помощью щёточно-коллекторного узла и представляет собой аналоговую величину, полярность которой зависит от направления вращения.
Действие асинхронного тахогенератора переменного тока основано на вращении полого немагнитного ротора в переменном магнитном поле постоянной частоты, создаваемом обмоткой возбуждения статора. Выходной сигнал снимается с генераторной обмотки расположенной на статоре и сдвинутой на 90° относительно обмотки возбуждения, и представляет собой переменное напряжение, частота которого соответствует частоте возбуждения, а амплитудное значение зависит от скорости вращения ротора. Не имеет щёточно-коллекторного узла.
Принцип действия синхронного тахогенератора переменного тока основан на вращении
ротора с постоянными магнитами, наводящими переменную ЭДС (напряжение) в обмотках статора. Выходной сигнал снимается с обмотки статора и представляет собой переменное напряжение, частота и амплитуда которого, зависят от скорости вращения ротора. Это даёт возможность применять как частотный метод определения скорости, так и амплитудный. Также как и асинхронный тахогенератор переменного тока не имеет щёточно-коллекторного узла.
Основные требования, предъявляемые к тахогенератору:
— зависимость выходного напряжения (Uвых) от частоты оборотов (n) вала должна как можно точнее соответствовать линейной характеристике;
— выходная характеристика не должна изменяться под воздействием внешних факторов: температуры, влажности, давления и т.п.;
— при n=0 (вал не вращается), напряжение на выходе тахогенератора должно принимать минимальное значение. Это напряжение принято называть остаточным;
— выходное напряжение (Uвых) должно принимать одинаковые абсолютные значения при вращении вала тахогенератора в разных направлениях (по или против часовой стрелке) на одинаковых частотах, т.е. быть симметричными;
— пульсации выходного напряжения должны быть минимальными и не создавать помех, вызываемых электромагнитными процессами во время его работы;
— выходная мощность должна соответствовать подключаемой к нему нагрузке (прибора, устройства, схемы и т.п.), или быть достаточной для нормальной работы;
Примеры простых и достаточно надёжных случаев применения тахогенератора:
— пара, тахогенератор и подключенный к нему вольтметр, представляют собой тахометр для измерения скорости (частоты) вращения ;
— крыльчатка, связанная с валом тахогенератора выполняют функцию расходомера вещества “протекающего” по трубопроводу;
— для шлифовальных станков в качестве датчика контроля превышения допустимой линейной скорости вращения шлифовального круга, когда при превышении максимально допустимого порога скорости происходит автоматическое аварийное отключение привода и отвод шлиф. круга от детали, тем самым устраняется возможность разрыва шлиф. круга представляющая смертельную опасность;
В настоящее время разработано и внедряется множество электронных устройств, функциональных аналогов тахогенератора. Например, это: устройства собранные на схемах с оптронами (реагирующими на прерывание лучей света крыльчаткой расположенной на валу); фотоимпульсные датчики (энкодеры); бесконтактные индукционные датчики; датчики на основе эффекта Холла и т.д. В случаях, где это целесообразно, тахогенераторы заменяют на эти “новые” датчики.
Тахогенераторы постоянного тока – область применения, принципы работы
Несомненно, развитие человечества в последние столетия неразрывно связано с освоением источников энергии и их эффективным применением. Более того, можно сказать, что уровень развития той или иной страны напрямую зависит от объема производимой энергии.
Первым источником энергии, совершившим промышленную революцию, стал пар, но вскоре его гегемония сменилась на власть электрических машин. Сегодня мы с вами поговорим про тахогенераторы постоянного тока — устройства, внесшие огромную лепту в прогресс человечества.
Немного исторической информации
19 век стал для человечества поворотной точкой в истории. Он знаменателен величайшими научными открытиями, в том числе и в электротехнике.
Интересно знать! До изысканий Яблочкова всем научным мировым сообществом считалось, что использовать переменный ток невозможно и опасно.
Микромашины в электротехнике
Помимо мощных агрегатов также потребовались и машины малой мощности, называемые еще микромашинами. Они активно применяются в устройствах вычислительной техники и автоматики в качестве функциональных элементов.
Принцип работы тахогенераторов и их строение
Тахогенератор – устройство оборудованное валом, которое, при его вращении, выдает на выходе электрическое напряжение, величина которого прямо пропорциональна скорости, с которой вал вращается. Эта особенность означает, что двигатель постоянного тока с тахогенератором, по сути, оснащен датчиком, с постоянными магнитами или независимым внешним возбуждением.
Интересно знать! На низких оборотах шумы тахогенератора сравниваются с полезным сигналом.
Тахогенераторы Long Life
Особняком стоят тахогенераторы, собранные по «Long life». Эти устройства предназначены для работы в тех сферах, где требуется длительная бесперебойная работа. Они невероятно износоустойчивы, поэтому служат очень долго.
Схемы постоянной автоматики
Итак, мы уже говорили, что тахогенераторы используются в автоматических схемах, теперь давайте подробнее разберем, как они там задействованы.
Совет! Чтобы генератор не выдавал криволинейную выходную характеристику, не нужно запускать его на максимально возможных оборотах, а в качестве нагрузки использовать только приборы, внутреннее сопротивление которых небольшое.
Асинхронный тахогенератор
Конструкция асинхронного тахогенератора точно такая же, как у асинхронного электродвигателя с немагнитным ротором (полым).
Погрешности асинхронных тахогенераторов
Выходное напряжение, выдаваемое данным типом тахогенераторов – комплексная величина, что говорит о фазовой и амплитудной погрешностях.
Также как и в случае фазовой погрешности, уменьшение данного эффекта возможно за счет правильной настройки и калибровки асинхронного тахогенератора.
Интересно знать! На практике доказано, что при низких оборотах вращения тахогенератора асинхронного типа оба типа погрешностей достаточно малы, из-за чего диапазоны вращения устройств ограничивают конкретными значениями.
Данные типы погрешностей хоть и являются основными, но они далеко не единственные:
В завершение
Итак, мы разобрали принципы и назначение тахогенератора. Устройства эти применяются для сугубо специфических целей, но, как стало ясно, их строение практически не отличается от классического генератора постоянного тока. Есть некоторые нюансы относительно точности прибора, но в остальном все сходится.
Просмотрите видео в этой статье, чтобы увидеть практическое применение этих агрегатов.
Тахогенераторы постоянного тока
Тахогенераторы постоянного тока — это маломощные электрические машины, работающие в генераторном режиме с возбуждением от независимой обмотки (электродинамические) или постоянных магнитов (магнитоэлектрические) и отличающиеся от других типов тахогенераторов, прежде всего, наличием щёточно-коллекторного узла. В своём классе, машин постоянного тока, мало чем отличаются от них по конструкции, но по сравнению с ними выделяется малыми габаритными размерами.
Выходным сигналом является аналоговое напряжение, величина и полярность которого зависят от частоты и направления вращения ротора, соответственно.
Где : Uout – выходное напряжение (Uвых – на рисунке 1); Frot – частота вращения ротора в Гц; St –крутизна выходной характеристики в mV/мин-¹, характеризующая чувствительность тахогенератора.
Зная величины Uout и St, можно легко вычислить частоту вращения ротора в Гц:
На практике, выходная характеристика тахогенератора не имеет точной линейной зависимости, что иногда является существенным недостатком. Основные причины: неточности при изготовлении — неравномерность воздушных зазоров, нелинейное сопротивления переходного контакта (щётка-коллектор), размагничивающее действие обусловленное реакцией якоря, непостоянное значение тока обмотки возбуждения, причиной которого является изменением её электрического сопротивления из-за температурных колебаний (нагревов и т.п.,). Если идеализировать, что магнитный поток тахогенератора и сопротивление нагрузки не меняют своих значений в процессе проведения измерений, то получим результат (сплошные линии на рисунке 2, а) в виде линейных характеристик различной крутизны, в зависимости от значений сопротивления нагрузки, из которого видно — чем больше значение сопротивления нагрузки тем больше крутизна выходной характеристики тахогенератора.
Следует также обратить внимание и на рисунок 2, б, где показано зону нечувствительности тахогенератора (отрезок 0-а), обусловленную наличием щёточно-коллекторного узла. Для того чтобы уменьшить зону нечувствительности надо прежде всего стараться применять щётки с минимальным сопротивлением, содержать их в чистоте, а также по возможности применять нагрузку, имеющую как можно большее сопротивление.
В подавляющего большинства тахогенераторов постоянного тока крутизна выходной характеристики находится в пределах St =3…1000 mV/мин-¹ ( с постоянными магнитами обычно имеют меньшие значения крутизны), номинальные частоты вращения в пределах Frot =1000…10000 мин-¹. Наибольшее распространение получили машины где Frot=1500…3000 мин-¹.
Несмотря на указанные выше недостатки, тахогенераторы постоянного тока широко применяются в системах автоматического регулирования, электроприводе, для измерений скорости вращения, а также в качестве датчиков обратной связи и так далее.
Пример конструкции тахогенераторов постоянного тока изображен на рисунке приведенном ниже. На рисунке 3, а) – с возбуждением от постоянных магнитов (магнитоэлектрический), на рисунке 3, б) — с возбуждением от независимой обмотки (электродинамический).
Тахогенератор: что это такое и зачем он нужен
Если говорить о том, что такое тахогенератор – это устройства, которые внесли существенную лепту в человеческий прогресс.
В последнее время развитие человечества плотно связывают с освоением энергоисточников, действенностью задействования их. Кроме того, экспертами справедливо подмечено, что уровень развития каждого государства непосредственно зависит от того объема энергии, которая производится.
Автоматизация выдвинула иные, более прогрессивные требования к обратным связям различных механизмов, оборудования. Появление тахогенераторов внесло свою лепту в развитие энергоснабженческих систем.
Поэтому купить тахогенераторы https://energo1.com/catalog/takhogeneratory/ потребуется, если необходимо:
Получаемая возможность реализации всего вышеозначенного функционала вызывает огромный спрос на применение разных видов таких электрических машин в системах автомат-управления, регулировки, прочих.
Узнаем все о таком оборудовании, как работает тахогенератор, так далее.
Что такое тахогенератор
Это маломощные электрогенераторы, имеющие мощность от 10 до 50 Вт. Предназначение их основано на преобразовании вращательной частотности (перемещение механического плана вращением вала) в электрические сигналы (напряжения) в автомат-системах. Так, на тепловозах, имеющих электрическую передачу, оборудование применяется для регулировки мощности в автоматическом режиме.
Устройство являет собой часть электродвигателя, присоединяемого либо монтируемого к валу. Исходящий сигнал агрегата подается либо на специальный прибор автомат-регулирования (управления частотностью вращения вала электродвигателя), либо прибор визуального отображения. Таким образом, можно ответить на вопрос – на чем основан принцип работы тахогенератора.
Виды тахогенераторов
Такие электромашины существуют: переменного тока (они, в свою очередь, подразделяются на синхронные и асинхронные), а также – тока постоянного.
Тахогенератор постоянного тока
Это маломощные устройства, отличающиеся возбуждением либо от постоянных магнитов, либо электромагнитными независимыми. У таких агрегатов небольшой вес и размеры, при большей выходной мощности нет фазовой погрешности. Задействование их подразумевает эксплуатацию без источника питания для цепи возбуждения.
Асинхронный тахогенератор переменного тока
В схемах автоматики такой тип оборудования имеет функционал, аналогичный устройствам постоянного тока. Асинхронные электромашины также подразделяются на:
Асинхронные электрические микромашины называют бесконтактными (в отличие от оборудования постоянного тока, к тому же – менее надежного). То есть, у первых отсутствуют контакты скольжения.
Конструкционно асинхронная электромеханика не отличается от аналогичных двигателей-исполнителей, имеющих полый немагнитный ротор. На статоре у них также располагаются 2 обмотки, сдвинутые на 90 градусов: одна обмотка ОЗ подключается к кругу – это возбуждающая обмотка, со второй (ОГ), имеющей название генераторная (она же исходная), снимается исходящее из измерительного генератора напряжение.
Характеристика такого вида оборудования видоизменяется при наличии непостоянного остаточного магнетизма, изменении насыщения, а также – характера, величины нагрузки, тому подобного. Нестабильность выходной характеристики – частая причина дополнительных погрешностей, вызванных независимыми факторами:
Рассматриваемый тип тахогенератора обладает рядом положительных характеристик:
Также такое оборудование отличается высокой надежностью.
А методы борьбы с погрешностями асинхронных электромашин разнообразны. Как правило, большинство сводится к стабилизации частоты, нагрузок, входного напряжения, прочее.
Синхронный тахогенератор переменного тока
Это безколлекторное оборудование, изготовляемое однофазным. Имеет звездообразный ротор, состоящий из постоянных магнитов. Функционирует такой тип устройства с переменной частотностью, поэтому его задействование в простых схемах затруднительно. Применяется такое устройство для приводов механизмов, что имеют малую вращательную скорость.
Зачем нужен тахогенератор
Разберемся, где применяются тахогенераторы. Задействуются они в качестве измеряющих и контролирующих скорость датчиков. Это достаточно информативная электромашина.
Сферами ее применения являются:
Также задействуется оборудование непосредственно для замеров скорости вращения механизмов, машин.
Резюме
Каким бы ни был тип тахогенератора, каждый из них имеет свои плюсы и недостатки. Поэтому, выбирая оборудование, исходят из определенных условий его функционирования, а также требований со стороны предназначаемого для него автомат-устройства.
Для чего нужен тахогенератор? Мы выяснили, что агрегаты нашли применение в автомат-устройствах, а также – в системах управления в виде безынерционного элемента. Для систем, где величина выхода является углом поворота, такое оборудование выступает «в роли» абсолютного дифференциатора. В электроцепи, к которой оно присоединяется, инерция принимается как дополнительное апериодическое звено.