Для чего нужен трансформатор напряжения на подстанции
Что такое трансформатор напряжения и как он работает?
Для передачи электроэнергии на большие расстояния напряжения электрического тока с помощью силовых трансформаторов повышают до сотен тысяч вольт. Поскольку высокие напряжения очень опасны, то для работы электроприборов используют ток после силового понижающего трансформатора. Однако на всей протяженности ЛЭП установлено множество защитных устройств. Для отделения напряжений цепей этих приборов от потенциалов линий электропередач применяют трансформатор напряжения (ТН).
Приборы этого типа часто используются для безопасного способа подключения измерительных приборов. Задача ТН состоит в преобразовании высоковольтных токов линий (свыше 6 кВ) до безопасного уровня. Применение таких трансформаторов удешевляет эксплуатацию энергосистем за счет снижения затрат на изоляцию оборудования, работающего в низковольтных сетях.
Устройство и принцип действия
Конструктивно ТН особо не отличается от других типов преобразующих устройств. Его устройство:
Внешний вид и схематическое изображение изделия смотрите на рис.1. На картинке изображено устройство с одной (основной) вторичной обмоткой. На некоторых моделях есть дополнительная вторичная обмотка, которая может использоваться, например, для подключения приборов измерения.
Рис. 1. Трансформатор напряжения. Строение
Обратите внимание на то, что между выводами первичных обмоток и вторичными катушками отсутствует гальваническая связь. Это главное отличие измерительных трансформаторов от конструкции обычного понижающего трансформатора.
Защитные кожухи изготовляются из разных материалов. В моделях, используемых для обслуживания высоковольтных ЛЭП, применяют диэлектрики, изготовленные из фарфора (рис. 2),
Для охлаждения обмоток таких высоковольтных агрегатов применяют специальные трансформаторные масла.
В сетях средней мощности применяют модели с корпусами на основе эпоксидных смол (рис. 3).
Рис. 3. ТН наружного типа
Трехфазные ТН с нулевыми выводами выполняются на магнитопроводе с пятью стержнями. Такая конструкция защищает обмотки от перегрева, так как при однофазных замыканиях в цепях высоковольтных проводов цепь линий суммарного магнитного потока в самом трансформаторе замыкается по стали сердечника.
Принцип действия также мало отличается от работы силового понижающего трансформатора. Магнитный поток, возникающий в первичной катушке, распространяется по магнитопроводу, вызывая напряжение ЭДС во вторичной обмотке. Величина напряжения зависит от соотношения числа витков в катушках. Поскольку вторичные обмотки состоят из малого количества витков, то и выходное напряжение небольшое (обычно оно не превышает 100 В).
Принцип работы ТН объясняет схема на рисунке 4.
Рис. 4. Принцип работы трансформатора напряжения
Важной задачей при изготовлении трансформаторов данного типа является выполнение требований по достижению необходимых амплитудных и угловых параметров синусоиды, определяющих соответствующий класс точности: 0,5; 1; 3. В эталонных образцах применяется класс точности 0,2. Для измерительных приборов важно чтобы класс точности был максимально высоким. Чем он выше, тем меньшая погрешность измерения прибора.
Точность параметров преобразованных переменных токов зависит от нагрузки. Чем выше нагрузка вторичной цепи, тем больше погрешность трансформатора напряжения (снижается класс точности). Оптимальные параметры напряжения на выходе трансформатора достигаются при номинальных нагрузках. В этом режиме эффективность преобразования тока возрастает по мере приближения к номинальному коэффициенту трансформации.
Работа ТН эффективна при малых номинальных мощностях во вторичных цепях. Для этих устройств длительное состояние в режиме холостого хода является нормой. Поэтому они эффективно используются в системах защиты линий, которые большую часть времени находятся в режиме ожидания и потребляют мало тока.
Разновидности
По конструкции и способам подключения трансформаторы напряжения классифицируются следующим образом:
Можно отдельно выделить низковольтные конструкции, которые используются в некоторых электронных устройствах. Данный класс электронных трансформаторов применяют в тех случаях, когда в электронных схемах необходима развязка, отделяющая цепи высоких напряжений от низких.
Расшифровка маркировки
Для различения разновидностей моделей к ним применяют буквенную маркировку:
Технические параметры
Основные сведения указываются на шильдике трансформатора напряжения.
Технические параметры трансформаторов:
К важным сведениям относится параметры номинальной частоты и класс точности для номинального коэффициента трансформации. На некоторых моделях изготовители указывают угловые погрешности и допустимые погрешности напряжений.
Схемы подключения
Простейшая схема подключения применяется в пунктах обслуживания линий под напряжением 6 – 10 кВ. Подключенные по такой схеме трансформаторы используются для включения вольтметра и подачи напряжений на реле устройства АВР. Пример такой схемы показан на рис. 7.
Рис. 7. Простая схема подключения трансформатора напряжения
На рисунке 8 приведена схема, применяемая для включения однофазных трансформаторов с целью подачи безопасного напряжения на нагрузки, запитанные от вторичных обмоток. В данной схеме использовано группу однофазных трансформаторов, катушки которых соединены по принципу звезды. Обратите внимание, что первичные обмотки соединены с глухозаземленной нейтралью.
Рис. 8. Еще пример схемы подключения
Данная схема применяется в сетях 0,5 – 10 кВ для подключения измерительных приборов, счетчиков. По аналогичной схеме подключаются вольтметры, используемые для контроля изоляции.
Схема эффективна для приема сигналов, свидетельствующих об однофазных замыканиях на землю. Существуют и другие схемы подключений, в частности по типу соединения открытого треугольника. Особенность таких схем в том, что мощность группы из двух ТН меньше мощности трех устройств соединенных по схеме полного треугольника не в 1,5 раза, а в √3 раз.
В некоторых схемах применяется комбинированное соединение обмоток. Для этого подходит соединение «треугольник – звезда». В работе таких схем номинальное напряжение составляет 173 В. Указанный способ подключения применяется в системах регулирования возбуждения обмоток генераторов и компенсаторов.
Применение
Основное применение первичных преобразователей напряжений – подача питания на обмотки измерительных приборов и подключение реле защиты в сетях 380 В и выше. Трансформаторы позволяют расширить диапазоны измерений и изоляцию реле от высоких межфазных потенциалов. Включение выводов первичных обмоток между фазой и землей дает возможность градуировать шкалы приборов с учетом коэффициента трансформации, что позволяет контролировать первичные параметры линий ЛЭП.
Изменение параметров напряжений в первичных цепях влияет на поведение переменных магнитных потоков. Эти возмущения фиксируются вторичными обмотками, которые реагируют изменением амплитуды тока и частоты колебаний. Сигналы поступают на различные защитные устройства, которые автоматически отключают участки линий с КЗ и с другими критичными отклонениями.
Назначение и принцип действия измерительных трансформаторов
На предприятиях в энергетических установках требуется постоянный контроль режимов функциональности оборудования. Контроль выполняют с помощью учета электроэнергии и наблюдением за показаниями приборов нагрузки и рабочего и сетевого напряжения.
Приборы для измерения тока нагрузки, рабочего напряжения в высоковольтных установках подключаются через трансформаторы тока и напряжения. Кроме измерения трансформаторы нужны для присоединения защитных устройств и реле.
Для чего нужны измерительные трансформаторы тока и напряжения
Трансформатор принадлежит к классу статических электромагнитных аппаратов, который преобразует ток одного напряжения в переменный ток другого напряжения. Измерительные трансформаторы признаны одними из самых надежных элементов в системе энергообеспечения.
Помимо определения показателей нагрузки и напряжения служат для присоединения аппаратуры автоматического регулирования и защитных устройств. С помощью измерительных трансформаторов:
снижают габариты и вес приборов измерения;
повышают уровень безопасного обслуживания оборудования;
предупреждают последствия от ошибочных действий электротехнического персонала;
расширяют пределы измерения переменного тока.
Назначение трансформаторов напряжения
Подобное оборудование относится к однофазным устройствам, через которые присоединяют киловольтметры, фазометры для обозначения правильности чередования фаз, ваттметры для определения мощности и для подключения защитных реле в цепях напряжения 3, 6, 10 кВ промышленной частоты.
Обмотки первичного и вторичного напряжения трансформатора ТН отличаются сопротивлением большой величины и малой мощностью. Работа происходит в режиме холостого хода. Стандартное номинальное напряжение вторичной обмотки не бывает более 100 В и имеет рабочий ток от 1 до 5 А.
Рис. №1. Трансформатор напряжения масляный 6 кВ. НТМИ
Рассмотрим какие бывают трансформаторы напряжения.
Классификация трансформаторов напряжения
Типы измерительных трансформаторов напряжения включают в линейку изделия, классифицируемых следующим образом:
однофазные трансформаторы с одним заземленным концом первичной обмотки. К заземляемым относятся и трехфазные тр-ры с заземленной нейтралью катушки первичного напряжения;
незаземляемые тр-ры напряжения с полностью изолированными от «земли» участками, зажимами «первички»;
каскадный тип с обмоткой первичного напряжения, разделенной на несколько последовательных секций. В конструкции предусмотрены обмотки, выравнивающие напряжение. В наличии есть связующая катушка, которая служит для передачи мощности к обмотке вторичного напряжения;
емкостный ТН с делителем;
двухобмоточный ТН с одной обмоткой вторичного напряжения;
трехобмоточный ТН с двумя обмотками: основного напряжения и дополнительной.
Рис. №2. Трансформатор напряжения, литого типа, опорный с заземленным выводом первичной обмотки, 3НОЛ-СВЭЛ-6. Используется для КРУН, КРУ, КСО
Рис. №3. Трехфазный антирезонансный масляный трансформатор для сетей с изолированной нейтралью
Чтобы понять для каких задач нужны измерительные трансформаторы рассмотрим назначение и разберем принцип действия оборудования.
Устройство трансформаторов напряжения
Конструкцию ТН рассмотрим на примере лабораторных трансформаторов НЛЛ, используемыми для проверки работы большинства трансформаторов измерения и приборов.
Трансформаторы напряжения на 3, 6 или 10 кВ имеет магнитопровод с конструкцией из электротехнической стали в основном стержневого типа. На магнитопроводе расположена внутренняя вторичная обмотка. Первичка представляет собой две секции, которые соединены между собой.
Изоляции представляет собой заливку компаудом, что создает монолитный блок с высокой степенью электрической прочности от попадания влаги и внешних повреждений.
Выводы первичной обмотки размещаются вверху корпуса трансформатора.
С торца трансформатора на клеммнике размещены выводы вторичной обмотки и контакты заземления.
Измерительные трансформаторы напряжения, условия безопасной эксплуатации
Для обеспечения рабочих условий эксплуатации клеммы вторичной обмотки присоединяют к измерительными приборам или защитному оборудованию. Одну из клемм и основание оборудования заземляют.
Цепи при вторичной работе не замыкают, иначе может произойти термическое разрушение.
Если существует не использованная вторичная обмотка ее оставляют открытой, заземлив одну из клемм. Разомкнутая треугольная цепь должна включать резистор соответствующего напряжения и номинальной мощности вторички. Заземление цепи производится по техническим рекомендациям.
Нейтральный вывод первичной обмотки однофазного трансформатора заземляется только в нейтральную систему замыкания.
Будьте уверены, что правильный выбор и эксплуатация измерительных трансформаторов приведут вас к объективным показателям нагрузки и качества электрической сети.
Рис. №6. Схема подключения трансформатора напряжения где: 1 – первичная обмотка, 2 – магнитопровод, 3 – обмотка вторичного напряжения
Рис. №7. Размещение трансформатор напряжения в ячейке КРУН, подключение к питающей сети через предохранители
Назначение и принцип действия трансформаторов тока
Трансформаторы тока преобразуют первичный ток во вторичный ток меньшей величины в процессе гальванического разделения цепи. Они служат для включения амперметров и токовых катушек приборов измерения, отличающихся очень малым сопротивлением.
Трансформаторы тока постоянно работают в режиме короткого замыкания. Вторичная цепь защищается от сильных токов за счет эффекта насыщения стального сердечника.
Применяются ТТ там, где затруднительно произвести замеры токовых величин напрямую.
С использованием измерительных трансформаторов выполняют учет потребления электроэнергии.
О измерительных трансформаторах напряжения иы вкратце узнали. За более подробной информацией обращайтесь к менеджеру компании «КубаньЭлектрощит» Задавайте вопросы на сайте. Мы ответим в самые короткие сроки.
Классификация трансформаторов тока
Типы измерительных трансформаторов тока подразделяют на следующие классы:
по функциональности: на измерительные и защитные;
по току: постоянного и переменного тока;
по коэффициенту трансформации: одно и многодиапазонные;
по способу монтажа: внутреннего и наружного размещения, встроенные, накладные;
по напряжению: низкого и среднего;
по типу изготовления и диэлектрическому материалу: газо- и маслонаполненные, сухие.
Рис. №4. Внешний вид трансформатора тока ТОЛ-СЭЩ-20
Рис. №5. Опорный трансформатор тока ТОЛ-СЭЩ-10, внешний вид
Измерительные подключают напрямую к считывающему, записывающему и вычисляющему измерительному оборудованию. Также их подключают к защите от сверхтоков. Разделяются на однопроводниковые ТТ и трансформаторы с первичной обмоткой. Однопроводниковый трансформатор – это устройство с проемом для первичной цепи, он устанавливается на первичный проводник.
Мощность трансформаторов тока зависит от коэффициента трансформации и поперечного сечения сердечника.
При низком токе первичной обмотки применяется трансформатор тока с высокой пропускной способностью. Для того чтобы получить трансформатор тока с первичной обмоткой через однопроводниковый трансформатор несколько раз пропускают первичный проводник.
Маркировка клемм первичной обмотки: Р1 (К) и Р2 (L), вторичной S1 (k) S2 (i). Полярность соответствует направлению прохождению тока.
Трансформатор постоянного тока
Трансформатор для измерения постоянного тока работает по принципу магнитного усилителя и включает в свою конструкцию ферромагнитный сердечник и две обмотки постоянного и переменного тока.
Устройство трансформаторов тока
Большинство измерительных трансформаторов тока выполнены в виде литой и опорной конструкции. Изоляция, например, как у трансформаторов тока ТОЛ-СЭЩ-10-IV выполнена из циклоалифатической смолы, защищающей обмотки от влаги и всех внешних повреждений. Катушки первичного напряжения выполнены из 2, 3 или 4 магнитопроводов со вторичными обмотками.
Эксплуатационные условия для трансформаторов тока
Важно. Трансформаторы тока запрещено включать в линию без измерительного прибора.
Для безопасной эксплуатации
Чтобы увеличить степень надежности ТТ и обеспечить безопасную эксплуатацию кожух трансформатора и одну из клемм «вторички» необходимо заземлить.
Вторичная обмотка не эксплуатируется при разомкнутой цепи, а та обмотка, которая не используется закорачивается и заземляется.
Трансформаторы тока с ответвителем емкостного делителя присоединяются к индикатору. Неиспользованное ответвление заземляют.
Обслуживание измерительных трансформаторов
Перед началом работы с поверхности трансформаторов удаляется смазка, пыль и прочие загрязнения. Протирка производится с использованием уайт-спирита. Ветошь не должна оставлять ворс.
Трансформатор исследуется на наличие сколов, трещин и наличие следов коррозии.
После визуального осмотра трансформатор подвергают испытанию или проверяют прибором/мегомметром (2500 В) на достаточность сопротивления изоляции. Вторичная обмотка проверяется мегомметром со шкалой деления на 1000 В.
Ток холостого хода проверяется со стороны вторичной обмотки под напряжением равным 1,2 от номинального. Отличие полученного результата не должно быть отличным от паспортного больше чем на ±10%.
Основное требование к трансформаторам – номинальная мощность не должна быть больше указанных в паспорте изделия.
Качество электроэнергии в сети должно быть соответствующим требованиям ГОСТ 32144.
Установка трансформатора должна производиться на место с обеспеченным доступом к клеммным контактам.
При обслуживании трансформатора измерения проверяют надежность контактного соединения.
Разомкнутые треугольные обмотки однофазных индукционных ТН обеспечивают безаварийность кабельных систем распределения энергии.
Для повышения надежности разомкнутых треугольных обмоток трансформатора напряжения в цепь добавляют стабилизаторы напряжения, ограничители, стабилитроны. Эти устройства поддерживают работоспособность систем распределения электроэнергии после аварий и сбоев.
Работы по обслуживанию измерительных трансформаторов производятся по наряду в соответствии с технологическими картами. Капитальный ремонт, например, у трансформаторов тока не делают. Если испытания и замеры сопротивления основной изоляции показали неудовлетворительные результаты трансформатор меняют на другой. Основная изоляция должна иметь сопротивление не менее 300 МОм.
Вторичная обмотка в отключенном и отсоединенном состоянии должна показать сопротивление не менее 50 МОм, с подключенными вторичными цепями не менее 1 МОм.
При обслуживании трансформаторов тока проверяют переходное сопротивление болтового контактного соединения. Оно не должно превышать 33 мкОм для контактов на 2000 А и не выше 60 мкОм для контактных соединений на 630 А.
Технология ремонта измерительных трансформаторов: разборка магнитопровода, демонтаж и ремонт катушек, перемотка обмоток, замена пластин магнитопровода и прочее схожи с ремонтом силовых трансформаторов. На время ремонта трансформатора обмотки закорачивают между собой, чтобы исключить возможный контакт и обратную трансформацию и напряжение при выполнении ремонтных работ.
Важные примечания
В индукционных однополюсных измерительных трансформаторах тока при замыкании цепи и во время затухания токов замыкания на «землю» возникает феррорезонанс, следствием которого является перегрев, появляется высокое напряжение, а сам трансформатор может разрушиться. Для предупреждения феррорезонанса в разомкнутую треугольную цепь трех обмоток трансформатора напряжения включают резистор. Заземление выполняют только в одной точке. В контакты разомкнутого треугольника присоединяют приборы, которые следят за токами замыкания не землю.
Приобретение и установка измерительного трансформатора в соответствии с паспортными данными нагрузки и напряжения электроустановки гарантируют бесперебойную и точную работу приборов и оборудования.
Назначение трансформаторов напряжения и их типы.
ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ
Область применения
Требования данной инструкции по эксплуатации трансформаторов напряжения распространяются на трансформаторы напряжения, установленные на подстанциях электрических сетей такие как: НКФ-110, ЗНОМ-35, НОМ-35, НТМИ-6, НАМИ-10.
Инструкция составлена на основании действующих «Правил технической эксплуатации электрических станций и сетей», «Правил устройства электроустановок», Техническое описание и инструкция по эксплуатации ТН различных типов – ИТЛУ.
Назначение трансформаторов напряжения и их типы.
Трансформаторы напряжения (ТН) предназначены для понижения высокого напряжения до значения, равного 100 В, необходимого для питания измерительных приборов, цепей автоматики, сигнализации и защитных устройств.
Для питания защитных устройств применяются трехобмоточные трансформаторы с дополнительной вторичной обмоткой.
Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя пределы измерения; обмотки реле, включаемых через ТН, также могут иметь стандартные исполнения.
Трансформатор напряжения изолирует измерительные приборы и реле от высокого напряжения, благодаря чему обеспечивается безопасность их обслуживания.
ТН применяются в наружных или внутренних электроустановках переменного тока напряжением 0,38 – 110 кВ и номинальной частотой 50 Гц от их работы зависит точность электрических измерений и учета электроэнергии, а также надежность действия релейной защиты и противоаварийной автоматики.
ТН с двумя вторичными обмотками предназначается не только для питания измерительных приборов и реле, но и для работы в устройстве сигнализации замыкания на землю в сети с изолированной нейтралью.
Трехобмоточные трансформаторы серии ЗНОМ, НОМ и НТМИ, НАМИ предназначены для сетей с изолированной нейтралью, серии НКФ – с заземленной нейтралью.
Типовое обозначение трансформаторов напряжения расшифровывается следующим образом:
НКФ – трансформатор напряжения каскадный в фарфоровой покрышке;
НОМ – трансформатор напряжения однофазный масляный;
ЗНОМ – трансформатор напряжения однофазный масляный с заземленным выводом первичной обмотки;
НТМИ – трансформатор напряжения трехфазный масляный с дополнительной вторичной обмоткой (для контроля изоляции сети);
НАМИ – трансформатор напряжения антирезонансный масляный с обмоткой для контроля изоляции;
НТМК – трансформатор напряжения трехфазный масляный с компенсирующей обмоткой для уменьшения угловой погрешности;
Цифровая часть в обозначении трансформаторов напряжения обозначает – класс напряжения.
Таблица 2 – Погрешности трансформаторов напряжения.
Класс точности | Предельные значения | |
погрешности напряжения, % | угловой погрешности | |
0,5 | ± 0,5 | ± 20 |
1,0 | ± 1,0 | ± 40 |
3,0 | ± 3,0 | не нормируется |
Наибольшее распространение имеют однофазные трансформаторы, выпускаемые на рабочие напряжения от 380 В до 500 кВ. Широко распространены также трехфазные трансформаторы напряжения, которые выпускаются на рабочие напряжения до 18 кВ.
Однофазные и трехфазные трансформаторы напряжения могут иметь одну или две вторичные обмотки.
К первичной обмотке трансформатора напряжения с двумя вторичными обмотками, включенной на напряжение фаза — земля в нормальном режиме, приложено фазное напряжение. При замыкании на землю в сети с изолированной нейтралью напряжение фаза — земля может возрасти до линейного. Поэтому трансформаторы напряжения с двумя вторичными обмотками, предназначенные для использования в сети с изолированной нейтралью и имеющие номинальное напряжение, равное фазному напряжению сети, рассчитываются на длительную работу под линейным напряжением.
Трансформаторы напряжения с двумя вторичными обмотками, выпускаемые для работы в сети с заземленной нейтралью, должны без повреждений выдерживать в течение 30 с повышение первичного фазного напряжения до 1,5 UФ.НОМ.
Конструктивные размеры и масса трансформаторов напряжения определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами ее выводов высокого напряжения. Это объясняется тем, что при малой мощности трансформатора напряжения, работающего, как правило, в режиме, близком к холостому ходу, объем изоляции высокого напряжения значительно превосходит требуемый по мощности объем меди первичной обмотки. Для обеспечения необходимой механической прочности первичной обмотки приходится завышать и сечение ее провода. Увеличение объема обмотки высокого напряжения против необходимого по мощности, естественно, вызывает и увеличение размеров магнитопровода. В результате размеры и масса трансформатора напряжения, выполненного на более высокое напряжение, всегда больше, чем трансформатора той же конструкции и мощности с меньшим номинальным напряжением первичной обмотки.
Для уменьшения размеров и массы трансформаторов напряжения 110 кВ и выше применяется каскадное (ступенчатое) исполнение их. При этом рабочее напряжение распределяется между каскадами и изоляция каждого из них выполняется на более низкое напряжение. С той же целью на высоком напряжении применяются трансформаторы напряжения на 10—15 кВ, включаемые через емкостный делитель напряжения.
Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком). У трансформаторов напряжения 10—500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло). Имеются также исполнения трансформаторов напряжения на 2—6 кВ с масляной изоляцией и на 6—24 кВ с сухой (литой) изоляцией.
Для уменьшения влияния атмосферных перенапряжений на витки верхних (входных) слоев первичной обмотки они защищаются во всех трансформаторах напряжения 3 кВ и выше электростатическими экранами, соединенными с линейными вводами. Экран выполняется в виде металлической полосы, охватывающей обмотку с небольшим зазором между его краями (во избежание образования короткозамкнутого витка).
Однофазные трансформаторы напряжения. Изоляция первичной обмотки и ее обоих выводов выполняется на полное рабочее напряжение только у трансформаторов с одной вторичной обмоткой, которые могут включаться на междуфазное напряжение. Трансформаторы напряжения с двумя вторичными обмотками, включаемые на напряжение фаза — земля, имеют только один вывод первичной обмотки, рассчитанный на полное рабочее напряжение; второй ее конец выводится через ввод низкого напряжения. Участок первичной обмотки, близкий к заземленному выводу, обычно выполняется с пониженной изоляцией относительно земли и вторичной обмотки.
Трехфазные трансформаторы напряжения. На рис.1 приведена схема трансформатора напряжения (с одной вторичной обмоткой на каждой фазе) с трехстержневым магнитопроводом. Первичные обмотки (выводы А, В, С) соединены в звезду, благодаря чему к каждой из них приложено фазное напряжение. Вторичные обмотки также соединены в звезду, и их начала выведены на зажимы а, Ь, с, а нейтраль — на зажимы 0.
На рис. 2 показана схема трехфазного трансформатора напряжения с двумя вторичными обмотками на каждой фазе. Основные вторичные обмотки соединены в звезду и имеют выводы а, b, с, 0. Дополнительные обмотки всех трех фаз соединены последовательно (как на рис. 5), и цепь 3Uo выведена на зажимы аД, хД. Для обеспечения действия реле сигнализации замыканий на землю, включаемого на напряжение 3U0, нулевая точка первичных обмоток должна быть заземлена.
Трансформаторы с двумя вторичными обмотками выполняются на пятистержневых магнитопроводах (рис. 2). Крайние стержни, свободные от обмоток, предназначены для замыкания магнитного потока несимметрии, пропорционального напряжению 3U0 и возникающего при однофазных замыканиях на землю, когда первичная обмотка одной из фаз закорочена и вследствие этого магнитный поток в ее стержне отсутствует, а магнитные потоки в двух других стержнях возрастают в раз.
При применении вместо пятистержневого трехстержневого магнитопровода магнитный поток несимметрии мог бы замыкаться только по воздуху и через кожух трансформатора, т. е. по пути с большим магнитным сопротивлением, что привело бы к значительному возрастанию токов намагничивания неповрежденных фаз и опасному перегреву их первичных обмоток. Поэтому во избежание повреждений трансформаторов с трехстержневыми магнитопроводами заземление нулевой точки их первичных обмоток не допускается. Их первичные и вторичные обмотки выполняются на фазное напряжение; нуль первичной обмотки не выводится.
Каскадные трансформаторы напряжения. Принцип выполнения поясняется схемой трансформатора, состоящего из двух каскадов (I и II), приведенной на рис. 3. Каждый каскад представляет собой трансформатор с номинальным напряжением, равным половине рабочего напряжения, которое приложено к выводам А и X обмотки ВН. Трансформатор каждого из каскадов размещается в фарфоровом кожухе, залитом трансформаторным маслом, причем кожух первого каскада устанавливается непосредственно на кожухе второго, вследствие чего ввод высокого напряжения А имеет двойную изоляцию относительно земли.
Сердечник первого каскада соединен с концом обмотки ВН, что позволяет выполнить ее изоляцию на половину рабочего напряжения с ослаблением в слоях, ближних к концу.
Вторичная обмотка низкого напряжения с выводами а, х расположена на заземленном сердечнике нижнего второго каскада.
Для распределения вторичной нагрузки, отдаваемой обмоткой НН между трансформаторами нижнего и верхнего каскадов, на каждом из них имеются связующие обмотки Р, соединенные между собой. Для первого каскада обмотка Р является вторичной, а для второго — дополнительной первичной. Благодаря наличию связующих обмоток нагрузка делится между каскадами пополам. Половина нагрузки трансформируется в обмотку НН из обмотки ВН, а вторая половина — из обмотки Р.
Трансформаторы напряжения с двумя вторичными обмотками предназначаются не только для питания измерительных приборов и реле, но и для работы в устройстве сигнализации замыканий на землю в сети с изолированной нейтралью или защиты от замыканий на землю в сети с заземленной нейтралью.
Схема трансформатора напряжения с двумя вторичными обмотками показана на рис. 4. Выводы второй (дополнительной) обмотки, используемой для сигнализации или защиты при замыканиях на землю, обозначены ад и хд. На рис. 5 приведена схема включения трех таких трансформаторов напряжения в трехфазной сети. Первичные и основные вторичные обмотки соединены в звезду. Нейтраль первичной обмотки заземлена. На измерительные приборы и реле от основных вторичных обмоток могут быть поданы три фазы и нуль. Дополнительные вторичные обмотки соединены по схеме разомкнутого треугольника. От них на устройства сигнализации или защиты подается сумма векторов фазных напряжений всех трех фаз. При нормальной работе сети, в которой включен трансформатор напряжения, эта сумма равна нулю. Это видно из векторных диаграмм рис. 6, где UА, UВ и UС — векторы фазных напряжений, приложенных к первичным обмоткам.
В реальных условиях обычно на выходе разомкнутого треугольника имеется ничтожно малое напряжение небаланса, не превышающее 2—3% номинального напряжения. Этот небаланс создается всегда имеющимися незначительной несимметрией вторичных фазных напряжений и небольшим отклонением формы их кривой от синусоиды. Напряжение, обеспечивающее срабатывание реле, подключаемых к цепи разомкнутого треугольника, возникает только при замыканиях на землю со стороны первичной обмотки трансформатора напряжения. При этом векторная сумма фазных напряжений не равна нулю и согласно методу симметричных составляющих является утроенным напряжением нулевой последовательности 3U0. Выходные цепи разомкнутого треугольника, подаваемые на реле сигнализации или защиты, также обозначаются 3Uo (рис. 5).
Наибольшее значение напряжение ЗU0 имеет при однофазном замыкании на землю. При этом следует иметь в виду, что максимальное значение напряжения 3U0 в сети с изолированной нейтралью значительно больше, чем в сети с заземленной нейтралью.
Если напряжение на дополнительных вторичных обмотках в нормальном трехфазном режиме равно номинальному напряжению этих обмоток, то при возникновении однофазного замыкания на землю максимальное значение 3Uо в сети с заземленной нейтралью будет равно этому номинальному напряжению, а в сети с изолированной нейтралью — в 3 раза больше.
Меры безопасности.
При обслуживании и эксплуатации трансформаторов напряжения необходимо соблюдать «Правила техники безопасности при эксплуатации электроустановок» и «Правила пожарной безопасности для энергетических предприятий».
Осмотр ТН можно производить под напряжением, на безопасном расстоянии от токоведущих частей. Пользоваться лестницами при осмотрах запрещается.
Все ремонтные работы (в т.ч. доливка масла и чистка изоляции) должны выполняться только при снятом с ТН напряжении по наряду или по распоряжению.
При проведении профилактических испытаний ТН их первичные и вторичные цепи необходимо отсоединять.
Запрещено включать трансформаторы напряжения с незаземленным цоколем.
Лица, ответственные за противопожарное состояние электрооборудования ПС, обязаны своевременно устранять дефекты ТН, могущие привести к возгоранию и пожару, обеспечивать функциональное состояние установок и средств пожаротушения.