Для чего нужен трв
Терморегулирующие вентили
Глава 14 «Терморегулирующие вентили» из книги «Руководство по техническому обслуживанию холодильных установок и установок для кондиционирования воздуха». Автор Антонио Бриганти.
https://www.formula-iq.com valve index комплект купить: Valve index kit купить.
В установках для кондиционирования воздуха и холодильных установках широко используются два типа терморегулирующих вентилей:
Как автоматические клапаны расширения, так и терморегулирующие вентили являются инструментами пропорциональной регулировки и обеспечивают регулировку потока холодильного агента на входе в испаритель.
Автоматические барорегрирующие вентили
Автоматические барорегулирующие вентили являются предшественниками терморегулирующих вентилей. Они регулируют поток холодильного агента на входе в испаритель, обеспечивая постоянное давление в самом испарителе. Они могут использоваться только в установках, имеющих постоянный режим загрузки.
Калибровка клапана может регулироваться в некотором диапазоне значений, зависящем от условий функционирования.
В контуре должен иметься термостат испарителя, останавливающий работу компрессора при достижении требуемой температуры испарения (не путать с температурой в помещении). Точнее, он должен быть отрегулирован таким образом, чтобы температура срабатывания была примерно на 5°С выше температуры испарения. При остановке компрессора в нем поднимается давление, и автоматический клапан расширения закрывается. На рисунке 14.1 показана принципиальная схема холодильного контура, в котором установлен автоматический клапан расширения.
Рисунок 14.1. Пример установки автоматического клапана расширения в холодильной группе для небольшой холодильной камеры. |
Терморегулирующие вентили (ТРВ)
Терморегулирующие вентили регулируют поток холодильного агента на входе в испаритель в зависимости от определенного значения перегрева газообразного холодильного агента на выходе. В испаритель поступает необходимое количество холодильного агента для его испарения в зависимости от тепловой нагрузки, чтобы обеспечить полное использование площади поверхности теплообмена. ТРВ могут использоваться на линиях с одним или несколькими испарителями.
На рисунке 14.2 показана принципиальная схема холодильного контура, в котором установлен ТРВ.
Рисунок 14.2. Пример установки ТРВ в холодильном контуре для автономного кондиционера с водоохлаждаемым конденсатором |
В зависимости от показателя давления используются две основные модификации:
Внутреннее выравнивание давления
На рисунке 14.3 показана схема функционирования и векторы давления, действующие на ТРВ с внутренним выравниванием давления. На мембрану клапана с одной стороны действует давление, передаваемое с датчика (ру), а с противоположной — сумма давлений испарителя (р0) и прижимной пружины (р3). При выравнивании этих трех векторов давления клапан остается постоянно открытым, и, соответственно, постоянным остается поток проходящего через него холодильного агента. В этих условиях количество холодильного агента, поступающего в испаритель, точно соответствует необходимому для восприятия тепловой нагрузки. Если же нагрузка понижается, происходят два процесса: холодильного агента становится избыточно много, а его давление повышается; понижается температура газа на выходе и пропорционально этому понижается давление в датчике. Вследствие этих процессов сумма давлений испарителя и пружины превышает давление, оказываемое на датчик клапана, что приводит к закрыванию клапана с уменьшением зазора для прохождения холодильного агента. Наоборот, если тепловая нагрузка в испарителе возрастает, количества холодильного агента в нем оказывается недостаточно, и давление его уменьшается; одновременно увеличивается температура газа на выходе из испарителя, что вызывает соответствующее повышение давления на датчик клапана.
В результате давление в клапане смещает мембрану вниз, что приводит к открытию зазора для прохождения жидкого холодильного агента, увеличивая объем его поступления в испаритель.
Клапаны с внутренним выравниванием давления применяются в основном в установках малой мощности.
Рисунок 14.3. Принцип функционирования ТРВ с внутренним выравниванием давления. |
Внешнее выравнивание давлений в ТРВ
ТРВ с внешним выравниванием давления имеют подвод давления из испарителя посредством соответствующей линии (капиллярной трубки), которая отходит от него несколько ниже датчика клапана. Соответствующая схема показана на рисунке 14.4. Сохраняют силу все ранее упомянутые положения, за исключением того, что давление р0в испарителе определяется при помощи капиллярной трубки.
Клапаны расширения с внешним выравниванием давления обычно применяются на агрегатах средней и большой мощности.
Рисунок 14.4. Принцип функционирования ТРВ с внешним выравниванием давления. Вверху виден вход капиллярной трубки от линии выравнивания ниже гармошки клапана. Значение условных знаков то же, что и на рисунке 14.3. |
На рисунке 14.5 показана схема правильной установки клапана с соответствующей линией внешнего выравнивания давления; для сравнения на рисунке 14.6 приводится неправильное размещение компонентов: отвод давления линии выравнивания всегда должен производиться несколько ниже датчика клапана с верхней стороны горизонтальной трубки.
Рисунок 14.5. Правильная установка ТРВ. Отвод канала выравнивания расположен до датчика клапана. | |
Рисунок 14.6. Неправильная установка ТРВ. Отвод канала давления выполнен с нижней стороны трубки. |
Перегрев газа на выходе
Терморегулирующий вентиль обеспечивает определенный перегрев газа на выходе из испарителя, необходимый для полного испарения возможно имеющихся капель несущей жидкости (жидкий холодильный агент не в коем случае не должен возвращаться в компрессор, поскольку способен вызвать серьезные неисправности). На рисунке 14.7 показана часть испарителя при нормальных условиях работы. Как можно заметить, смесь жидкость-пар, поступающая в испаритель в точке А, должна полностью испариться до точки Е.
Отсюда и до датчика клапана (точка F) происходит только перегрев газа. Перегрев заключается в повышении температуры газа выше температуры его насыщения (см. далее). Этот участок, то есть дополнительная поверхность испарителя не влияет на увеличение холодильного эффекта, но служит для защиты компрессора и устойчивого функционирования клапана.
Рисунок 14.7. Схема части испарителя, в котором установлен ТРВ с внутренним выравниванием давления: участок от Е до F не производит полезного холодильного эффекта, а служит исключительно для придания определенного перегрева газу на выходе. Значение условных знаков то же, что и на рисунке 14.3. |
Производительность
Производительность терморегулирующего вентиля определяется двумя компонентами:
На производительность ТРВ и, как следствие, на прохождение жидкости и холодильный эффект влияют следующие факторы:
Падение давления на клапане
Давление холодильного агента быстро уменьшается при прохождении через клапан, в результате чего часть быстро испаряется, препятствуя прохождению другой партии жидкости (рисунок 14.8).
Чем выше величина падения давления при прохождении через клапан, тем больше количество образуемого пара, наличие которого препятствует увеличению подачи, возрастающей при увеличении перепада давлений.
При большом падении давления в процессе прохождении холодильного агента через клапан уменьшается холодильный эффект, поскольку при этом испаряется большее количество жидкого холодильного агента.
Рисунок 14.8. Прохождение холодильного агента через ТРВ: быстрое испарение жидкости с образованием пара несколько затрудняет прохождение новой партии жидкости. | |
Рисунок 14.9. Рабочая характеристика терморегулирующего вентиля: с увеличением давления на клапане повышается его производительность, но только до определенного предела, после которого начинается снижение производительности. |
Увеличение падения давления при прохождении через клапан повышает его производительность до определенного предела, после которого при любом повышении перепада давлений начинается снижение производительности (см. рисунок 14.9). Предельное значение перепада давлений, после превышения которого производительность клапана начинает снижаться, зависит от типа холодильного агента.
Состояние холодильного агента
Наличие пара на входе в клапан приводит к уменьшению его производительности, поскольку пар при равном весе занимает больший объем, чем жидкость, с вытекающим отсюда уменьшением объема прохождения жидкости.
Наличие пара может быть вызвано как отсутствием холодильного агента в контуре, так и высоким падением давления, ввиду чего на входе в клапан поддерживается значительно меньшее давление, чем давление в конденсаторе. Другой причиной может быть сильный перепад высот между конденсатором и терморегулирующим вентилем, в этом случае применяют метод переохлаждения жидкости.
Переохлаждение
Переохлаждение жидкого холодильного агента также повышает производительность терморегулирующего вентиля, это вызвано следующими причинами:
Перегрев
На рисунке 14.10 показана кривая, соответствующая изменению производительности клапана при изменении параметра перегрева.
Рисунок 14.10. Изменение производительности ТРВ относительно изменения показателя перегрева: в этом примере, как и в предыдущем, производительность возрастает с увеличением перегрева, но только до определенного предела. |
Этот процесс, в зависимости от модели клапана и его производительности, может быть разбит на следующие этапы:
Значение перегрева установки выводится на основе разницы значений температуры испарения и температуры охлаждаемой жидкости: когда эта разница небольшая, лучшим способом рационального использования испарителя является выбор низкой температуры перегрева; при значительной разнице температур, необходимо обеспечить защиту от возможных возвратов жидкости, повышая в этих целях температуру перегрева.
Если терморегулирующий вентиль подобран правильно, при функционировании с номинальной мощностью он не должен полностью открываться; тем самым ТРВ будет иметь некоторый запас производительности, который будет задействован только при высоких значениях перегрева.
Калибровка ТРВ
При вращении регулировочного стержня по часовой стрелке давление пружины возрастает, что соответствует повышению показателя статического перегрева и понижению производительности клапана.
Температура испарения
Кривые «давление-температура» всех холодильных агентов при заданном увеличении температуры имеют более заметные колебания давления на участке высоких температур. Вследствие этого при низкой температуре испарения небольшое изменение температуре на датчике клапана приводит к незначительным колебаниям давления на верхней стороне диафрагмы: это приводит к меньшему открытию клапана и меньшим изменениям его проходимости.
Термостатический заряд
Показатели «давление-температура» различных термостатических зарядов имеют свои отличительные особенности: при одинаковом показателе перегрева не происходит одинакового открытия клапана при изменении типа заряда.
Функционирование при изменении нагрузки
В различных типах холодильных установок и установок для кондиционирования воздуха большой мощности, имеющих несколько компрессоров, имеется возможность снижать холодильную мощность при уменьшении нагрузки путем прогрессивного отключения работающих компрессоров и/или их отдельных цилиндров. К сожалению, производительность ТРВ не может быть так же легко изменена, поэтому при остановке компрессоров или их частичной дезактивации производительность клапана оказывается избыточной. В разумных пределах регулировка клапана возможна, и он по-прежнему в состоянии обеспечить необходимые параметры потока холодильного агента. Понятно также, что при функционировании с малой нагрузкой тщательной регулировки клапана не требуется, поскольку не весь испаритель оказывается задействованным, и опасности возврата жидкости не возникает. Предусмотреть заранее режим функционирования ТРВ, когда система работает на пониженном режиме, трудно ввиду множества факторов, влияющих на его работу. Ниже приводится перечень мер предосторожности, при соблюдении которых обеспечивается нормальное функционирования клапана даже при снижении нагрузки до 65%.
ТРВ следует подбирать таким образом, чтобы при максимальных нагрузках он оставался как можно более открытым. В частности, когда запланированный режим предусматривает в основном работу с пониженной нагрузкой, рекомендуется выбирать клапан с производительностью на 10—15% меньше максимальных рабочих параметров установки.
Производительность распределителя
При использовании распределителя рекомендуется подбирать его таким образом, чтобы производительность точно соответствовала производительности установки при полной нагрузке; это позволяет избежать излишне большой производительности при пониженных режимах работы компрессора.
Калибровка перегрева
Калибровка величины перегрева должна обеспечивать максимально большое допустимое при максимальной нагрузке значение перегрева.
В установке, где частичное снижении показателя нагрузки превышает 65% ее мощности, должны применяться другие меры, перечисленные ниже.
Два или более испарителей с одинаковыми параметрами
На рисунке 14.11 показаны два независимых испарителя, каждый из которых питается через собственный ТРВ с распределителем. На каждый испаритель приходится половина общей нагрузки.
Рисунок 14.11 Независимое питание двух параллельных испарителей равной мощности, работа каждого из которых регулируется собственным ТРВ и распределителем: следует обратить внимание, что первый участок линии всасывания находится под некоторым уклоном в сторону сифона, что делается для предотвращения отстоя холодильного агента и масла, искажающих показания датчика клапанов расширения. |
Соленоидные клапаны соединены с устройством для понижения производительности компрессора таким образом, что один из них закрывается, при сокращении нагрузки на компрессор на 50%, отсекая один из терморегулирующих вентилей. Остающийся ТРВ обеспечивает поддержание производительности на требуемом уровне.
Такая же простая система применима к различным испарителям при различных уровнях частичного понижения производительности компрессора. Различные типы компрессоров могут подсоединяться параллельно или последовательно; в этом случае необходимо учитывать, что компрессоры, находящиеся первыми, будут испытывать более высокую нагрузку, чем последующие, поэтому производительность различных клапанов и распределителей должна быть отрегулирована с учетом этого.
Единичный испаритель
На рисунке 14.12 показана схема установки двух терморегулирующих вентилей и двух распределителей на одном испарителе.
Рисунок 14.12. Одинарный испаритель с двумя независимыми контурами, регулируемыми двумя соленоидными клапанами, ТРВ и распределителями. При снижении нагрузки охлаждения один из соленоидных клапанов закрывается, позволяя частично снизить вырабатываемую холодильную мощность. |
Каждый контур испарителя имеет подвод двух трубок распределения, каждая из которых, в свою очередь, проходит через свой распределитель. Соленоидные клапаны управляются устройством регулировки частичной загрузки компрессора, как это было описано ранее.
Если ТРВ, соленоидный клапан и распределитель контура А выбираются таким образом, чтобы покрывать 67% общей производительности, а 33% общей максимальной нагрузки будет приходиться на контур В, при переключении соленоидных клапанов будут обеспечиваться рабочие параметры, приведенные в таблице 14.1.
Таблица 14.1. Последовательность переключения соленоидных клапанов при изменении тепловой нагрузки.
Тепловая нагрузка (%) | Клапан А | Клапан В | Использование установленных ТРВ (%) |
---|---|---|---|
100 83 | Открыт | Открыт | 100 83 |
67 50 | Закрыт | 100 75 | |
33 16 | Закрыт | Открыт | 100 50 |
Техническое обслуживание о монтаж
Терморегулирующий вентиль должен устанавливаться как можно ближе ко входу в испаритель. Если применяется распределитель, рекомендуется монтировать его непосредственно на выходе ТРВ. Очень важно обеспечить правильное расположение термобаллона, от чего в некоторых случаях зависит хорошая или неудовлетворительная работа всей холодильной установки. Для того, чтобы клапан соответствующим образом регулировал прохождение холодильного агента, необходимо обеспечить хороший тепловой контакт между термобаллоном и трубой всасывания. Для этого термобаллон следует закрепить двумя скобами на чистом и ровном участке трубы. Рекомендуется устанавливать чувствительный элемент на горизонтальном участке трубы всасывания. Если невозможно избежать вертикального монтажа, это необходимо сделать таким образом, чтобы выход капиллярной трубки был направлен вверх.
Рисунок 14.13. Примеры возможной установки термобаллона на трубе диаметром 22 мм или более. | |
Рисунок 14.14. Расположение линии всасывания на выходе из батареи испарителя. Возможны два варианта расположения компрессора: под испарителем (сплошная линия) и над испарителем (пунктирная линия). |
При диаметре линии всасывания в 7/8″ (22 мм) или более, температура по периметру окружности трубы может заметно разниться. В связи с этим следует размещать термобаллон в точке окружности трубы, соответствующей значениям 16 и 20 ч на часовом циферблате (см. рисунок 14.13). Когда компрессор расположен над испарителем, рекомендуется производить подсоединение линии всасывания, как это показано на рисунке 14.14. На выходе из испарителя должен располагаться горизонтальный участок трубы, на котором крепится термобаллон; сразу за ним должен быть установлен сифон-накопитель для сбора возможно присутствующей жидкости и возможно имеющегося масла, циркулирующего по установке.
Установки с несколькими испарителями
Когда компрессор расположен под испарителем, необходимо выше испарителя установить накопитель для предотвращения возврата жидкости, возвращающейся под действием гравитации в компрессор. На установках с несколькими испарителями трубы всасывания должны располагаться таким образом, чтобы не допускать воздействия одного ТРВ на датчик другого. Пример правильного расположения труб показан на рисунке 14.15. В этом случае не допускается воздействие одного контура на другой и обеспечивается хороший режим функционирования и регулировки каждого ТРВ.
Рисунок 14.15. Схема расположения линий всасывания и положения ТРВ на установках с несколькими соединенными между собой испарителями на одном коллекторе; наклон последнего не должен быть менее 1%. |
Подсоединение устройства внешнего выравнивания давления
Клапаны с внешним выравниванием давления могут функционировать только при обеспечении такого подсоединения. Штуцер соединения устройства для выравнивания давления (эквалайзера) должен располагаться на трубе всасывания через несколько сантиметров после термобаллона, как уже было показано на рисунке 14.12.
Регулировка клапана
Каждый терморегулирующий вентиль перед поставкой калибруется на заводе-изготовителе. Эта калибровка является правильной и в большинстве случаев не требует переналадки. Однако при наличии особых условий или при определенных типах применения клапана возможно изменение его калибровки для того, чтобы обеспечить желаемые показатели перегрева.
Во многих видах ТРВ отсутствует возможность регулировки: они калибруются на заводе-изготовителе, и показатель их перегрева не может быть изменен. Часто нерегулируемые клапаны являются модификациями обычных с фиксированным давлением пружины. Имеются приспособления, позволяющие регулировать и такие виды клапанов, но такая необходимость возникает редко.
Если надо понизить величину перегрева, следует вращать стержень регулировки клапана против часовой стрелки, для увеличения — по часовой стрелке. При изменении калибровки клапана для предотвращения ошибок калибровки не рекомендуется делать более одного оборота стержня регулировки за один раз и подождать по крайней мере тридцать минут, прежде чем производить новую коррекцию.
Общим правилом является то, что величина перегрева зависит от разницы температур между испарителем и охлаждаемым веществом. При очень больших значениях разницы этих температур, как в случае установок для кондиционирования воздуха, перегрев может достигать 10°С без излишнего снижения производительности испарителя. Для низкотемпературных холодильных установок, где разница между температурой испарения и температурой охлаждаемого вещества незначительна, показатель перегрева может уменьшаться до 5°С для того, чтобы максимально использовать площадь поверхности испарителя.
Определение величины перегрева
Определить величину перегрева возможно, выполнив перечисленные ниже операции. Разница между температурой на входе в испаритель и температурой на выходе из испарителя не позволяет получить точное значение перегрева, поэтому этот метод не рекомендуется использовать, так как падение давления в испарителе приводит к погрешностям в определении величины перегрева.
Принцип работы трв холодильной установки
В зависимости от показателя давления в испарительной системе, используются две основные модификации ТРВ:
– с внутренним выравниваем давления;
– с внешним выравниванием давления.
Заполнение испарителя ТРВ с внутренним выравниванием. Для регулирования заполнения испарителей в малых холодильных машинах чаще всего применяют терморегулирующие вентили. ТРВ поддерживает заданный перегрев паров холодильного агента, выходящего из испарителя. При увеличении перегрева, что говорит о недостаточном заполнении испарителя, клапан ТРВ автоматически открывается, увеличивая подачу жидкого холодильного агента на испаритель.
Схема регулирования заполнения испарителя по перегреву, с помощью ТРВ с внутренним (а) и внешним віравниванием (б) приведена на рис. 4.
Обозначения в схеме:
Схема б) – с внешним выравниванием: 1 – регулировочный винт, 2 – регулировочная гайка, 3 – регулировочная пружина, 4 – иглодержатель, 5 – регулирующая игла, 6 – толкатели, 7 – мембрана, 8 – капиллярная трубка. 9 – уравнительная трубка, 10 – перегородка, 11 – сужающее устройство, Г – термобаллон.
Под действием этой разности давлений, мембрана 7 прогибается вниз и через толкатели 6 нажимает па иглодержатель 4, открывая клапан до тех пор, пока усилие сжатой пружины 3 не уравновесит силу давления па мембрану. Заданное начальное значение перегрева, обеспечивающее требуемое открытие клапана, устанавливается соответствующим натяжением пружины 3. При повороте винта 1 гайка 2 перемещается вверх по прорезям в корпусе, сжимает пружину 3 и перегрев паров холодильного агента увеличивается.
Заполнение испарителя ТРВ с внешним выравниванием. При большом гидравлическом сопротивлении испарителя давление паров холодильного агента на выходе ниже, чем на входе. Температура кипения и температура перегретого пара на выходе также ниже, чем на входе. Давление в термобаллоне снижается. Следовательно, тот же перегрев вызывает теперь меньшую разность давлений и клапан прикрывается. Обеспечить требуемое открытие клапана в этом случае можно только при увеличенном перегреве, т. е. при неполностью заполненном испарителе. Поэтому, когда гидравлическое сопротивление испарителя превышает 0,02 МПа, применяют ТРВ с внешней уравнительной трубкой (рис. 4,6). Благодаря диафрагме 10 на мембрану снизу давит холодильный агент не со стороны входа (РА), а со стороны выхода холодильного агента из испарителя по уравнительной трубке 9. Поскольку давление пара холодильного агента на выходе из испарителя более низкое, чем па входе, разность давлений на мембрану при том же значении перегрева будет больше, чем в ТРВ на рис. 4,а. Диафрагма позволяет также на выходе из ТРВ установить дополнительное постоянное дроссельное устройство.
Поясненне. Это некоторое усложнение конструкции дает следующие преимущества:
– после клапана можно поддерживать повышенное давление (Р ), что позволяет разгрузить его и увеличить площадь проходного сечения;
– поскольку перепад давлений на клапане уменьшается, то после клапана поддерживается повышенное давление (и температура) холодильного агента, что уменьшает охлаждение всего прибора и предотвращает возможную конденсацию пара над мембраной.
Конструктивно ТРВ с внутренним віравниванием, типа 12ТРВ-16, (без уравнительной трубки) изображен на рис. 5. Мембрана 8 находится под воздействием двух давлений: сверху на нее действует давление в термосистеме, состоящей из термобалона 16, соединительного капилляра 15 и коробки 14, а снизу – давление кипения, подводимое через штуцер 13 (внешний отбор давления кипения). Усилие от мембраны через упор 7 передается штоку 10 и далее клапану 6. Снизу, через стакан 12 к клапану прикладывается сила, развиваемая пружиной 4. Начальный натяг пружины создается гайкой 2 при вращении винта 3 задатчика.
При изменении воспринимаемого ТРВ перегрева клапан 6 перемещается вверх или вниз, в результате чего изменяется поток хладагента, проходящего через сопло 11. Сальник 9, уплотняющий шток, предотвращает попадание хладагента из выходного отверстия в полость под мембраной. Детали ТРВ смонтированы в корпусе 5. Головка винта задатчика закрыта крышкой 1.
Конструкция ТРВ мембранного типа с линией внешнего выравнивания (с внешним отбором), типа ТРВА-10М приведена на рис. 6.
Тип вентиля – проходной. Конструктивно вентиль выполнен с одним центральным штоком. Давление конденсации в этом вентиле действует на клапан, закрывая его. Вентиль состоит из термочувствительной системы: 1 – термобаллон, 2 – капилляр, 3 – мембрана, 4 – головка вентиля; корпуса; механизма клапана; механизма настройки перегрева начала открытия клапана и элементов для присоединения трубопровода. В корпус ввертываются термочувствительная система, штуцер линии внешнего уравнивания и дополнительное дроссельное сечение (дюза) 9 для разгрузки основного клапана (уменьшая перепад давлений на него) и ограничение производительности.
Деформация мембраны термочувствительной системы через жесткий центр 5 передается штоку 6, на котором жестко укреплен конусный клапан 12. При перемещении клапан открывает или закрывает проход в седле 10, которое запрессовано в корпус вентиля.
Шток снабжен сальником 7, который отделяет полость под мембраной (полость линии внешнего уравнивания) от полости, расположенной над клапаном.
Механизм настройки перегрева начала открытия клапана состоит из стакана 11, пружины 13, винта настройки 15, втулки-гайки 17, которая может перемещаться только вверх или вниз, сальника винта настройки 16 и заглушки 14. При вращении винта 15 по часовой стрелке (если смотреть на головку винта) втулка 17 перемещается вниз, уменьшая натяжение пружины 13, при этом перегрев начала открытия клапана уменьшается. При вращении винту 15 против часовой стрелки втулка 17 перемещается вверх и сжимает пружину, увеличивая перегрев начала открытия клапана. Присоединение трубопровода (вход, выход) осуществляется с помощью стальных фланцев 8, которые стягиваются двумя шпильками 25 и гайками 26. Во входном патрубке ТРВ встроен фильтр 27.
Терморегулирующим вентилям присваиваются индексы, содержащие обозначения (например, для 13ТРВ-1Н):
– сокращенное буквенное обозначение наименование прибора – ТРВ;
– условное обозначение холодильного агента, для которого предназначен вентиль, указывается вначале соответствующей цифрой: для фреона-12 – 12ТРВ, для фреона-13 – 13ТРВ, для фреона-22 – 22ТРВ; для аммиака – ТРВА и т.д.;
– буквы В и Н в конце индекса (после номинальной производительности) означают для верхней или нижней ступени.
ТРВ Danfoss
Все холодильные установки комплектуются терморегулирующими вентилями (ТРВ), с помощью которых корректируется количество хладагента, подающегося в испарители холодильного оборудования. Терморегулирующий вентиль danfoss – одно из лучших устройств нашего времени, которое производится известным одноименным датским концерном.
Меню:
Принцип работы и задача, которую выполняет терморегулирующий вентиль состоит в том, чтобы обеспечить испаритель необходимым количеством хладагента объемом, определяющимся тепловой нагрузкой на агрегат в данное время. Например, терморегулирующий вентиль кондиционера поддерживает выходные перегретые пары в определенных пределах.
Соответственно функционального назначения, трв danfoss разделяют на такие виды:
Терморегулирующие электроприводные клапаны ETS
Функциональное предназначение: подача охлаждающей жидкости в испарители холодильного оборудования и кондиционеров. Благодаря полной сбалансированности клапана и корпуса, охладительная жидкость протекает в обоих направлениях. Клапан закрывается очень плотно.
Преимущества:
Терморегулирующие электроприводные клапаны AKV
С их помощью хладагент впрыскивается в испарители. Регулировка осуществляется широтно-импульсным методом. Это значит, что широта импульсов, которые посылает контроллер агрегата, определяет степень открывания вентиля.
Преимущества:
Терморегулирующий вентиль Т2 и ТЕ2
Для наполнения «сухих» (незатопленных) испарителей, рассчитанных на небольшую мощность, пользуются терморегулирующими вентилями T2 и TE2. Номинальная холодопроизводительность таких агрегатов составляет порядка от 380 Вт до 9 100 Вт при R404A/R507. Применяются в обычных холодильных установках, тепловых насосах, воздухоохладителях, чиллерах, транспортных рефрижераторах, льдогенераторах.
Они отличаются:
Терморегулирующий вентиль РНТ
ТРВ TU/TC
Качество работы клапанов TU/TC зависит от:
Поэтому, регулировка таких терморегулирующих вентилей сводится к тому, чтобы постоянно поддерживать равновесие между уровнем давления в баллоне, которое образуется по одну сторону от мембраны, и величиной суммарного давления между напряжением пружины и кипением, действующих с другой стороны.
Применяются такие установки в обычном холодильном оборудовании, тепловых насосах, кондиционерах, кулерах и пр.
Они отличаются:
Настройка перегрева данного вида трв danfoss может осуществляться регулировочным винтом.
Терморегулирующий вентиль (трв) TGE
Данная серия характерна наличием незаменяемых клапанных узлов. Такие клапаны разработали в коммерческих целях: их используют в высокопроизводительных системах кондиционирования.
Устройства способны пропускать жидкий хладагент в испарители «сухого» типа, в которых тепловая нагрузка на испарителе прямо пропорционально зависит от перегрева хладагентов.
К плюсам агрегата можно отнести:
ТРВ TE5 – TE55
С помощью агрегатов регулируется подача хладагента в среднее по мощности холодильное оборудование. Вентили предназначены для наполнения хладагентом «сухих» (незатопленных) испарителей, о расходе которого можно судить по степени перегрева во время выхода из испарителя.
Благодаря наличию сменного клапанного узла, обеспечивается:
Замена ТРВ
Если холодильное оборудование функционирует с перебоями, то сначала необходимо выяснить причину возможной поломки.
Например, когда отсутствует поступление горячего или холодного воздуха с кондиционера, то одной из причин его плохой работы может быть засорение воздушного фильтра.
Для возобновления нормальной работы, следует почистить фильтр, а также другие аксессуары и не допускать, насколько это возможно, попадание в них грязи и пыли.
Если трв например не может выровнять давление в контурах, то лучше всего провести его замену. Кстати, такой технологический процесс устранения неисправности как замена трв – простая процедура, которую можно осуществить самому.
Кроме этого, предлагаем перечень наиболее распространенных поломок холодильного оборудования, когда необходима замена устройства:
Вентиль ТРВ 2
Терморегулирующий вентиль трв tn 2 r 134 – достаточно точный агрегат, с помощью которого регулируется подача хладагентов, в зависимости от интенсивности их кипения в испарителях. Регулировка потока осуществляется наличием конкретных температурных показателей и давления хладагента парообразного типа при выходе с испарителя.
Терморегулирующие клапаны моделей трв 2 типа tes 2 с внешним выравниванием обычно изготавливаются из латуни и рассчитаны на функционирование в системах с оптимальным давлением 34 бар. Они легко выдерживают внешнее воздействие и отличаются длительным сроком службы.
Соленоидный
Соленоидный вентиль danfoss достаточно популярный среди аналогичных устройств. Без соленоидных клапанов нельзя представить полноценное функционирование холодильных установок, кондиционеров, газоснабжающих и отопительных систем.
Главными составляющими соленоидного трв danfoss являются катушка и сердечник (поршневой или дисковый), которые размещаются в пластиковом или металлическом корпусе. С помощью сердечника трв danfoss осуществляется регулировка потока рабочих сред или перекрытие прохода рабочих веществ.
При настройке трв соленоидного типа нужно учитывать направление потоков хладагентов, которое указанное стрелками на корпусах, иначе – агрегат функционировать не будет.
Если необходимо установить клапан перед терморегулирующим вентилем, то они должны находиться очень близко друг от друга. Такое размещение исключает возможность возникновения гидравлических ударов во время возможных открытий.
Существует два вида регулировки агрегатами: электронное управление трв danfoss и механическое.
Второй вид можно разделить на 2 модификации:
К изделиям, конструкция которых предвидит наличие заменяемых клапанных узлов, относят устройства расширительного типа, оснащенные автоматикой, предназначенной для регулирования подачи хладагента с наличием хлора и фтора.
Терморегулирующий вентиль danfoss r410a относится к угловым устройствам, как с внешним выравниванием, так и без внешнего уравнителя которые можно купить в комплекте с дюзой (аналог клапанного узла). Правильный подбор дюзы для трв danfoss определяет дальнейшее функционирование целого агрегата.
Для терморегулирующего вентиля (трв) danfoss 068u4261 характерно наличие стандартной заводской настройки статического перегрева 5 K.
Номинальная мощность при функционировании трв danfoss tcbe 068u4504 возможна при температурах:
Терморегулирующий вентиль danfoss tex 5 067b3250 осуществляет регулировку расхода хладагента с наличием фтора в испарителях охлаждающих конструкций.
Трв danfoss tes 5:
Обладает входным соединением на 3/8 ” под отбортовку. Рассчитан на эффективное функционирование при давлениях до 34 атмосфер.
Шаровый
Шаровые вентили danfoss врезаются в системы способом пайки или с помощью резьбового соединения.
Основной принцип ТРВ – поддержание необходимого давления на испарителе, через пропускную способность жидкого хладагента и регулирование расхода жидкого хладагента, в зависимости от температуры.
ТРВ ставится до испарителя по ходу движения хладагента. Фреон после ТРВ дросселируется (расширяется) в результате чего происходит резкое понижение давления и температуры холодильного агента. Хладагент закипает и по мере кипения отбирает тепло у воздуха в камере. В самом корпусе ТРВ есть отверстие, в которое вставляется так называемая дюза (форсунка или сопло). Основная функция дюза поддерживать то количество хладагента, подаваемого в испаритель, которое нам необходимо.
Конструкция ТРВ
Механический терморегулирующий вентиль
Мембрана соединяется капиллярной трубкой с термобаллоном. Капиллярная трубка намотана витками для экономии пространства, трубка должна быть длинной для того, чтобы выполнять свою функцию. Она понижает давление фреона перед испарителем и дозирует фреон. Т.к. чем ниже давление фреона тем меньше нужна температура для его закипания. Чем длиннее и тоньше капиллярная трубка, тем сильнее падает давление и понижается температура парожидкостной смеси.
Термобаллон имеет гораздо больший диаметр относительно капиллярной трубки, он располагается на выходе фреона из испарителя, в том месте, где фреон уже должен выкипеть. Термобаллон заправлен тем же фреоном, которым заправлена система.
Проще говоря, за счёт собственной температуры ТРВ уменьшает или увеличивает проход хладагента. Дюза прижимается, поток уменьшается, температура в термобаллоне нормализуется и ТРВ работает в том же режиме, нагрузка увеличивается и ТРВ открывается.
В сложных системах холодоснабжения есть многорядные испарители, в них производительность испарителей периодически меняется и подобные ТРВ в этом случае не справляются. Существуют ТРВ с внешним уравниванием, у них тот же принцип работы, но есть уравнивающая линия. Корпус ТРВ ставится выше, в термобаллоне есть врезка в медную трубу после испарителя, часть газа после того как фреон выкипел, попадает в ТРВ и ТРВ в этом случае работает точнее при перепадах производительности испарителя.