Для чего нужен винты в микроскопе
Макровинт и микровинт микроскопа – что это такое?
Микроскоп – это множество мелких элементов, которые, работая вместе, позволяют изучать окружающий мир на значительном увеличении (до 2000 крат). В конструкции микроскопа принято выделять несколько частей: оптическую, осветительную и механическую. Оптическая – это окуляры и объективы, осветительная – источник освещения и дополнительные компоненты, механическая – связующие их узлы. Вот, что входит в механическую часть микроскопа: микровинт и макровинт (отвечают за фокусировку), предметный столик (на нем размещают микропрепараты), штатив (удерживает основание и тубус микроскопа). В этой статье мы подробнее осветим элементы фокусировки.
Макро- и микровинт микроскопа нужны для регулировки расстояния между объективом и микропрепаратом, размещенным на предметном столике. В зависимости от модели микроскопа они могут перемещать или тубус, или предметный столик. Макрометрический винт (макровинт) отвечает за грубую фокусировку, с его помощью производится предварительная настройка оптики. Микрометрический винт (микровинт) нужен для точной настройки резкости. Чаще всего его устанавливают только в лабораторные и профессиональные микроскопы, так как для домашних исследовании его возможности чрезмерны. Кроме того, микровинт – одна из самых легко повреждаемых частей микроскопа, и его не рекомендуется использовать для грубой настройки.
В нашем интернет-магазине вы найдете микроскопы как с грубой, так и с точной фокусировкой. Выбрать подходящую модель вам помогут наши консультанты. Звоните или пишите!
4glaza.ru
Февраль 2019
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Устройство микроскопа и правила работы с ним
Разрешающая способность микроскопа дает раздельное изображение двух близких друг другу линий. Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.
Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.
В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.
В микроскопе выделяют две системы: оптическую и механическую (рис. 1). К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).
Рис. 1. Устройство световых микроскопов:
Окуляр устроен намного проще объектива. Он состоит из 2-3 линз, вмонтированных в металлический цилиндр. Между линзами расположена постоянная диафрагма, определяющая границы поля зрения. Нижняя линза фокусирует изображение объекта, построенное объективом в плоскости диафрагмы, а верхняя служит непосредственно для наблюдения. Увеличение окуляров обозначено на них цифрами: х7, х10, х15. Окуляры не выявляют новых деталей строения, и в этом отношении их увеличение бесполезно. Таким образом, окуляр, подобно лупе, дает прямое, мнимое, увеличенное изображение наблюдаемого объекта, построенное объективом.
Для определения общего увеличения микроскопа следует умножить увеличение объектива на увеличение окуляра.
Осветительное устройство состоит из зеркала или электроосветителя, конденсора с ирисовой диафрагмой и светофильтром, расположенных под предметным столиком. Они предназначены для освещения объекта пучком света.
Зеркало служит для направления света через конденсор и отверстие предметного столика на объект. Оно имеет две поверхности: плоскую и вогнутую. В лабораториях с рассеянным светом используют вогнутое зеркало.
Электроосветитель устанавливается под конденсором в гнездо подставки.
Конденсор состоит из 2-3 линз, вставленных в металлический цилиндр. При подъеме или опускании его с помощью специального винта соответственно конденсируется или рассеивается свет, падающий от зеркала на объект.
Ирисовая диафрагма расположена между зеркалом и конденсором. Она служит для изменения диаметра светового потока, направляемого зеркалом через конденсор на объект, в соответствии с диаметром фронтальной линзы объектива и состоит из тонких металлических пластинок. С помощью рычажка их можно то соединить, полностью закрывая нижнюю линзу конденсора, то развести, увеличивая поток света.
Кольцо с матовым стеклом или светофильтром уменьшает освещенность объекта. Оно расположено под диафрагмой и передвигается в горизонтальной плоскости.
Механическая система микроскопа состоит из подставки, коробки с микрометренным механизмом и микрометренным винтом, тубуса, тубусодержателя, винта грубой наводки, кронштейна конденсора, винта перемещения конденсора, револьвера, предметного столика.
Коробка с микрометренным механизмом, построенном на принципе взаимодействующих шестерен, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.
Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда. Центрированное положение объектива обеспечивает защелка, расположенная внутри револьвера.
Тубусодержатель несет тубус и револьвер.
Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.
Кронштейн конденсора подвижно присоединен к коробке микрометренного механизма. Его можно поднять или опустить при помощи винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.
Правила работы с микроскопом
При работе с микроскопом необходимо соблюдать операции в следующем порядке:
1. Работать с микроскопом следует сидя;
2. Микроскоп осмотреть, вытереть от пыли мягкой салфеткой объективы, окуляр, зеркало или электроосветитель;
3. Микроскоп установить перед собой, немного слева на 2-3 см от края стола. Во время работы его не сдвигать;
4. Открыть полностью диафрагму, поднять конденсор в крайнее верхнее положение;
5. Работу с микроскопом всегда начинать с малого увеличения;
6. Опустить объектив 8- в рабочее положение, т.е. на расстояние 1 см от предметного стекла;
7. Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;
8. Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;
9. Смотреть одним глазом в окуляр и вращать винт грубой наводки на себя, плавно поднимая объектив до положения, при котором хорошо будет видно изображение объекта. Нельзя смотреть в окуляр и опускать объектив. Фронтальная линза может раздавить покровное стекло, и на ней появятся царапины;
10. Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;
11. Если изображение не появилось, то надо повторить все операции пунктов 6, 7, 8, 9;
13. По окончании работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.
Микроскоп биологический стереоскопический МБС-1 (рис. 2) дает прямое и объемное изображение объекта в проходящем или отраженном свете. Он предназначен для изучения мелких объектов и препарирования их, так как имеет большое рабочее расстояние (расстояние от покровного стекла до фронтальной линзы).
Рис. 2. Устройство микроскопа МБС-1:
1- окуляр, 2- винт грубой наводки, 3- подставка, 4- зеркало, 5- предметный столик, 6- стойка, 7- оптическая головка, 8- объектив, 9- рукоятка переключения увеличения, 10- бинокулярная насадка, 11- лампа.
На верхнюю часть головки установлена бинокулярная насадка. Окуляры имеют увеличения х6, х8, х12,5. Для установки удобного для глаз расстояния между окулярами надо раздвинуть или сдвинуть тубусы.
К задней стенке корпуса головки прикреплен кронштейн с реечным механизмом передвижения. Подъем и опускание корпуса головки осуществляется вращением винта. Кронштейн надет на стойку, прикрепленную к подставке.
Для работы в проходящем свете, в корпус подставки вмонтирован отражатель света, с зеркальной и матовой поверхностями. С передней стороны корпуса имеется окно для доступа дневного света. Для искусственного освещения предназначена лампа, которую вставляют или в отверстие с задней стороны корпуса (для проходящего света), или в кронштейн, укрепленный на объективе (для отраженного света).
Столик установлен в круглом окне на верхней поверхности корпуса подставки. Он может быть либо стеклянным (при проходящем свете), либо металлическим, с белой и черной поверхностями (при отраженном свете).
Для чего нужен винты в микроскопе
фЕНБ: хУФТПКУФЧП НЙЛТПУЛПРБ Й РТБЧЙМБ ТБВПФЩ У ОЙН
нБФЕТЙБМЩ Й ПВПТХДПЧБОЙЕ. нЙЛТПУЛПРЩ: нвт-1, вйпмбн, нйлнед-1, нву-1; ЛПНРМЕЛФ РПУФПСООЩИ НЙЛТПРТЕРБТБФПЧ «бОБФПНЙС ТБУФЕОЙК».
тБЪТЕЫБАЭБС УРПУПВОПУФШ НЙЛТПУЛПРБ ДБЕФ ТБЪДЕМШОПЕ ЙЪПВТБЦЕОЙЕ ДЧХИ ВМЙЪЛЙИ ДТХЗ ДТХЗХ МЙОЙК. оЕЧППТХЦЕООЩК ЮЕМПЧЕЮЕУЛЙК ЗМБЪ ЙНЕЕФ ТБЪТЕЫБАЭХА УРПУПВОПУФШ ПЛПМП 1/10 НН ЙМЙ 100 НЛН. мХЮЫЙК УЧЕФПЧПК НЙЛТПУЛПР РТЙНЕТОП Ч 500 ТБЪ ХМХЮЫБЕФ ЧПЪНПЦОПУФШ ЮЕМПЧЕЮЕУЛПЗП ЗМБЪБ, Ф. Е. ЕЗП ТБЪТЕЫБАЭБС УРПУПВОПУФШ УПУФБЧМСЕФ ПЛПМП 0,2 НЛН ЙМЙ 200 ОН.
тБЪТЕЫБАЭБС УРПУПВОПУФШ Й ХЧЕМЙЮЕОЙЕ ОЕ ПДОП Й ФПЦЕ. еУМЙ У РПНПЭША УЧЕФПЧПЗП НЙЛТПУЛПРБ РПМХЮЙФШ ЖПФПЗТБЖЙЙ ДЧХИ МЙОЙК, ТБУРПМПЦЕООЩИ ОБ ТБУУФПСОЙЙ НЕОЕЕ 0,2 НЛН, ФП, ЛБЛ ВЩ ОЕ ХЧЕМЙЮЙЧБФШ ЙЪПВТБЦЕОЙЕ, МЙОЙЙ ВХДХФ УМЙЧБФШУС Ч ПДОХ. нПЦОП РПМХЮЙФШ ВПМШЫПЕ ХЧЕМЙЮЕОЙЕ, ОП ОЕ ХМХЮЫЙФШ ЕЗП ТБЪТЕЫЕОЙЕ.
ч ХЮЕВОЩИ МБВПТБФПТЙСИ ПВЩЮОП ЙУРПМШЪХАФ УЧЕФПЧЩЕ НЙЛТПУЛПРЩ, ОБ ЛПФПТЩИ НЙЛТПРТЕРБТБФЩ ТБУУНБФТЙЧБАФУС У ЙУРПМШЪПЧБОЙЕН ЕУФЕУФЧЕООПЗП ЙМЙ ЙУЛХУУФЧЕООПЗП УЧЕФБ. оБЙВПМЕЕ ТБУРТПУФТБОЕОЩ УЧЕФПЧЩЕ ВЙПМПЗЙЮЕУЛЙЕ НЙЛТПУЛПРЩ: вйпмбн, нйлнед, нвт (НЙЛТПУЛПР ВЙПМПЗЙЮЕУЛЙК ТБВПЮЙК), нвй (НЙЛТПУЛПР ВЙПМПЗЙЮЕУЛЙК ЙУУМЕДПЧБФЕМШУЛЙК) Й нву (НЙЛТПУЛПР ВЙПМПЗЙЮЕУЛЙК УФЕТЕПУЛПРЙЮЕУЛЙК). пОЙ ДБАФ ХЧЕМЙЮЕОЙЕ Ч РТЕДЕМБИ ПФ 56 ДП 1350 ТБЪ. уФЕТЕПНЙЛТПУЛПР (нву) ПВЕУРЕЮЙЧБЕФ РПДМЙООП ПВЯЕНОПЕ ЧПУРТЙСФЙЕ НЙЛТППВЯЕЛФБ Й ХЧЕМЙЮЙЧБЕФ ПФ 3,5 ДП 88 ТБЪ.
ч НЙЛТПУЛПРЕ ЧЩДЕМСАФ ДЧЕ УЙУФЕНЩ: ПРФЙЮЕУЛХА Й НЕИБОЙЮЕУЛХА (ТЙУ. 1). л ПРФЙЮЕУЛПК УЙУФЕНЕ ПФОПУСФ ПВЯЕЛФЙЧЩ, ПЛХМСТЩ Й ПУЧЕФЙФЕМШОПЕ ХУФТПКУФЧП (ЛПОДЕОУПТ У ДЙБЖТБЗНПК Й УЧЕФПЖЙМШФТПН, ЪЕТЛБМП ЙМЙ ЬМЕЛФТППУЧЕФЙФЕМШ).
тЙУ. 1. хУФТПКУФЧП УЧЕФПЧЩИ НЙЛТПУЛПРПЧ:
пЛХМСТ ХУФТПЕО ОБНОПЗП РТПЭЕ ПВЯЕЛФЙЧБ. пО УПУФПЙФ ЙЪ 2-3 МЙОЪ, ЧНПОФЙТПЧБООЩИ Ч НЕФБММЙЮЕУЛЙК ГЙМЙОДТ. нЕЦДХ МЙОЪБНЙ ТБУРПМПЦЕОБ РПУФПСООБС ДЙБЖТБЗНБ, ПРТЕДЕМСАЭБС ЗТБОЙГЩ РПМС ЪТЕОЙС. оЙЦОСС МЙОЪБ ЖПЛХУЙТХЕФ ЙЪПВТБЦЕОЙЕ ПВЯЕЛФБ, РПУФТПЕООПЕ ПВЯЕЛФЙЧПН Ч РМПУЛПУФЙ ДЙБЖТБЗНЩ, Б ЧЕТИОСС УМХЦЙФ ОЕРПУТЕДУФЧЕООП ДМС ОБВМАДЕОЙС. хЧЕМЙЮЕОЙЕ ПЛХМСТПЧ ПВПЪОБЮЕОП ОБ ОЙИ ГЙЖТБНЙ: И7, И10, И15. пЛХМСТЩ ОЕ ЧЩСЧМСАФ ОПЧЩИ ДЕФБМЕК УФТПЕОЙС, Й Ч ЬФПН ПФОПЫЕОЙЙ ЙИ ХЧЕМЙЮЕОЙЕ ВЕУРПМЕЪОП. фБЛЙН ПВТБЪПН, ПЛХМСТ, РПДПВОП МХРЕ, ДБЕФ РТСНПЕ, НОЙНПЕ, ХЧЕМЙЮЕООПЕ ЙЪПВТБЦЕОЙЕ ОБВМАДБЕНПЗП ПВЯЕЛФБ, РПУФТПЕООПЕ ПВЯЕЛФЙЧПН.
дМС ПРТЕДЕМЕОЙС ПВЭЕЗП ХЧЕМЙЮЕОЙС НЙЛТПУЛПРБ УМЕДХЕФ ХНОПЦЙФШ ХЧЕМЙЮЕОЙЕ ПВЯЕЛФЙЧБ ОБ ХЧЕМЙЮЕОЙЕ ПЛХМСТБ.
пУЧЕФЙФЕМШОПЕ ХУФТПКУФЧП УПУФПЙФ ЙЪ ЪЕТЛБМБ ЙМЙ ЬМЕЛФТППУЧЕФЙФЕМС, ЛПОДЕОУПТБ У ЙТЙУПЧПК ДЙБЖТБЗНПК Й УЧЕФПЖЙМШФТПН, ТБУРПМПЦЕООЩИ РПД РТЕДНЕФОЩН УФПМЙЛПН. пОЙ РТЕДОБЪОБЮЕОЩ ДМС ПУЧЕЭЕОЙС ПВЯЕЛФБ РХЮЛПН УЧЕФБ.
ъЕТЛБМП УМХЦЙФ ДМС ОБРТБЧМЕОЙС УЧЕФБ ЮЕТЕЪ ЛПОДЕОУПТ Й ПФЧЕТУФЙЕ РТЕДНЕФОПЗП УФПМЙЛБ ОБ ПВЯЕЛФ. пОП ЙНЕЕФ ДЧЕ РПЧЕТИОПУФЙ: РМПУЛХА Й ЧПЗОХФХА. ч МБВПТБФПТЙСИ У ТБУУЕСООЩН УЧЕФПН ЙУРПМШЪХАФ ЧПЗОХФПЕ ЪЕТЛБМП.
ьМЕЛФТППУЧЕФЙФЕМШ ХУФБОБЧМЙЧБЕФУС РПД ЛПОДЕОУПТПН Ч ЗОЕЪДП РПДУФБЧЛЙ.
лПОДЕОУПТ УПУФПЙФ ЙЪ 2-3 МЙОЪ, ЧУФБЧМЕООЩИ Ч НЕФБММЙЮЕУЛЙК ГЙМЙОДТ. рТЙ РПДЯЕНЕ ЙМЙ ПРХУЛБОЙЙ ЕЗП У РПНПЭША УРЕГЙБМШОПЗП ЧЙОФБ УППФЧЕФУФЧЕООП ЛПОДЕОУЙТХЕФУС ЙМЙ ТБУУЕЙЧБЕФУС УЧЕФ, РБДБАЭЙК ПФ ЪЕТЛБМБ ОБ ПВЯЕЛФ.
йТЙУПЧБС ДЙБЖТБЗНБ ТБУРПМПЦЕОБ НЕЦДХ ЪЕТЛБМПН Й ЛПОДЕОУПТПН. пОБ УМХЦЙФ ДМС ЙЪНЕОЕОЙС ДЙБНЕФТБ УЧЕФПЧПЗП РПФПЛБ, ОБРТБЧМСЕНПЗП ЪЕТЛБМПН ЮЕТЕЪ ЛПОДЕОУПТ ОБ ПВЯЕЛФ, Ч УППФЧЕФУФЧЙЙ У ДЙБНЕФТПН ЖТПОФБМШОПК МЙОЪЩ ПВЯЕЛФЙЧБ Й УПУФПЙФ ЙЪ ФПОЛЙИ НЕФБММЙЮЕУЛЙИ РМБУФЙОПЛ. у РПНПЭША ТЩЮБЦЛБ ЙИ НПЦОП ФП УПЕДЙОЙФШ, РПМОПУФША ЪБЛТЩЧБС ОЙЦОАА МЙОЪХ ЛПОДЕОУПТБ, ФП ТБЪЧЕУФЙ, ХЧЕМЙЮЙЧБС РПФПЛ УЧЕФБ.
лПМШГП У НБФПЧЩН УФЕЛМПН ЙМЙ УЧЕФПЖЙМШФТПН ХНЕОШЫБЕФ ПУЧЕЭЕООПУФШ ПВЯЕЛФБ. пОП ТБУРПМПЦЕОП РПД ДЙБЖТБЗНПК Й РЕТЕДЧЙЗБЕФУС Ч ЗПТЙЪПОФБМШОПК РМПУЛПУФЙ.
нЕИБОЙЮЕУЛБС УЙУФЕНБ НЙЛТПУЛПРБ УПУФПЙФ ЙЪ РПДУФБЧЛЙ, ЛПТПВЛЙ У НЙЛТПНЕФТЕООЩН НЕИБОЙЪНПН Й НЙЛТПНЕФТЕООЩН ЧЙОФПН, ФХВХУБ, ФХВХУПДЕТЦБФЕМС, ЧЙОФБ ЗТХВПК ОБЧПДЛЙ, ЛТПОЫФЕКОБ ЛПОДЕОУПТБ, ЧЙОФБ РЕТЕНЕЭЕОЙС ЛПОДЕОУПТБ, ТЕЧПМШЧЕТБ, РТЕДНЕФОПЗП УФПМЙЛБ.
лПТПВЛБ У НЙЛТПНЕФТЕООЩН НЕИБОЙЪНПН, РПУФТПЕООПН ОБ РТЙОГЙРЕ ЧЪБЙНПДЕКУФЧХАЭЙИ ЫЕУФЕТЕО, РТЙЛТЕРМЕОБ Л РПДУФБЧЛЕ ОЕРПДЧЙЦОП. нЙЛТПНЕФТЕООЩК ЧЙОФ УМХЦЙФ ДМС ОЕЪОБЮЙФЕМШОПЗП РЕТЕНЕЭЕОЙС ФХВХУПДЕТЦБФЕМС, Б, УМЕДПЧБФЕМШОП, Й ПВЯЕЛФЙЧБ ОБ ТБУУФПСОЙС, ЙЪНЕТСЕНЩЕ НЙЛТПНЕФТБНЙ. рПМОЩК ПВПТПФ НЙЛТПНЕФТЕООПЗП ЧЙОФБ РЕТЕДЧЙЗБЕФ ФХВХУПДЕТЦБФЕМШ ОБ 100 НЛН, Б РПЧПТПФ ОБ ПДОП ДЕМЕОЙЕ ПРХУЛБЕФ ЙМЙ РПДОЙНБЕФ ФХВХУПДЕТЦБФЕМШ ОБ 2 НЛН. чП ЙЪВЕЦБОЙЕ РПТЮЙ НЙЛТПНЕФТЕООПЗП НЕИБОЙЪНБ ТБЪТЕЫБЕФУС ЛТХФЙФШ НЙЛТПНЕФТЕООЩК ЧЙОФ Ч ПДОХ УФПТПОХ ОЕ ВПМЕЕ ЮЕН ОБ РПМПЧЙОХ ПВПТПФБ.
тЕЧПМШЧЕТ РТЕДОБЪОБЮЕО ДМС ВЩУФТПК УНЕОЩ ПВЯЕЛФЙЧПЧ, ЛПФПТЩЕ ЧЧЙОЮЙЧБАФУС Ч ЕЗП ЗОЕЪДБ. гЕОФТЙТПЧБООПЕ РПМПЦЕОЙЕ ПВЯЕЛФЙЧБ ПВЕУРЕЮЙЧБЕФ ЪБЭЕМЛБ, ТБУРПМПЦЕООБС ЧОХФТЙ ТЕЧПМШЧЕТБ.
фХВХУПДЕТЦБФЕМШ ОЕУЕФ ФХВХУ Й ТЕЧПМШЧЕТ.
чЙОФ ЗТХВПК ОБЧПДЛЙ ЙУРПМШЪХАФ ДМС ЪОБЮЙФЕМШОПЗП РЕТЕНЕЭЕОЙС ФХВХУПДЕТЦБФЕМС, Б, УМЕДПЧБФЕМШОП, Й ПВЯЕЛФЙЧБ У ГЕМША ЖПЛХУЙТПЧЛЙ ПВЯЕЛФБ РТЙ НБМПН ХЧЕМЙЮЕОЙЙ.
лТПОЫФЕКО ЛПОДЕОУПТБ РПДЧЙЦОП РТЙУПЕДЙОЕО Л ЛПТПВЛЕ НЙЛТПНЕФТЕООПЗП НЕИБОЙЪНБ. еЗП НПЦОП РПДОСФШ ЙМЙ ПРХУФЙФШ РТЙ РПНПЭЙ ЧЙОФБ, ЧТБЭБАЭЕЗП ЪХВЮБФПЕ ЛПМЕУП, ЧИПДСЭЕЕ Ч РБЪЩ ТЕКЛЙ У ЗТЕВЕОЮБФПК ОБТЕЪЛПК.
рТБЧЙМБ ТБВПФЩ У НЙЛТПУЛПРПН
рТЙ ТБВПФЕ У НЙЛТПУЛПРПН ОЕПВИПДЙНП УПВМАДБФШ ПРЕТБГЙЙ Ч УМЕДХАЭЕН РПТСДЛЕ:
1. тБВПФБФШ У НЙЛТПУЛПРПН УМЕДХЕФ УЙДС;
2. нЙЛТПУЛПР ПУНПФТЕФШ, ЧЩФЕТЕФШ ПФ РЩМЙ НСЗЛПК УБМЖЕФЛПК ПВЯЕЛФЙЧЩ, ПЛХМСТ, ЪЕТЛБМП ЙМЙ ЬМЕЛФТППУЧЕФЙФЕМШ;
3. нЙЛТПУЛПР ХУФБОПЧЙФШ РЕТЕД УПВПК, ОЕНОПЗП УМЕЧБ ОБ 2-3 УН ПФ ЛТБС УФПМБ. чП ЧТЕНС ТБВПФЩ ЕЗП ОЕ УДЧЙЗБФШ;
4. пФЛТЩФШ РПМОПУФША ДЙБЖТБЗНХ, РПДОСФШ ЛПОДЕОУПТ Ч ЛТБКОЕЕ ЧЕТИОЕЕ РПМПЦЕОЙЕ;
5. тБВПФХ У НЙЛТПУЛПРПН ЧУЕЗДБ ОБЮЙОБФШ У НБМПЗП ХЧЕМЙЮЕОЙС;
7. хУФБОПЧЙФШ ПУЧЕЭЕОЙЕ Ч РПМЕ ЪТЕОЙС НЙЛТПУЛПРБ, ЙУРПМШЪХС ЬМЕЛФТППУЧЕФЙФЕМШ ЙМЙ ЪЕТЛБМП. зМСДС ПДОЙН ЗМБЪПН Ч ПЛХМСТ Й РПМШЪХСУШ ЪЕТЛБМПН У ЧПЗОХФПК УФПТПОПК, ОБРТБЧЙФШ УЧЕФ ПФ ПЛОБ Ч ПВЯЕЛФЙЧ, Б ЪБФЕН НБЛУЙНБМШОП Й ТБЧОПНЕТОП ПУЧЕФЙФШ РПМЕ ЪТЕОЙС. еУМЙ НЙЛТПУЛПР УОБВЦЕО ПУЧЕФЙФЕМЕН, ФП РПДУПЕДЙОЙФШ НЙЛТПУЛПР Л ЙУФПЮОЙЛХ РЙФБОЙС, ЧЛМАЮЙФШ МБНРХ Й ХУФБОПЧЙФШ ОЕПВИПДЙНХА СТЛПУФШ ЗПТЕОЙС;
8. рПМПЦЙФШ НЙЛТПРТЕРБТБФ ОБ РТЕДНЕФОЩК УФПМЙЛ ФБЛ, ЮФПВЩ ЙЪХЮБЕНЩК ПВЯЕЛФ ОБИПДЙМУС РПД ПВЯЕЛФЙЧПН. зМСДС УВПЛХ, ПРХУЛБФШ ПВЯЕЛФЙЧ РТЙ РПНПЭЙ НБЛТПЧЙОФБ ДП ФЕИ РПТ, РПЛБ ТБУУФПСОЙЕ НЕЦДХ ОЙЦОЕК МЙОЪПК ПВЯЕЛФЙЧБ Й НЙЛТПРТЕРБТБФПН ОЕ УФБОЕФ 4-5 НН;
9. уНПФТЕФШ ПДОЙН ЗМБЪПН Ч ПЛХМСТ Й ЧТБЭБФШ ЧЙОФ ЗТХВПК ОБЧПДЛЙ ОБ УЕВС, РМБЧОП РПДОЙНБС ПВЯЕЛФЙЧ ДП РПМПЦЕОЙС, РТЙ ЛПФПТПН ИПТПЫП ВХДЕФ ЧЙДОП ЙЪПВТБЦЕОЙЕ ПВЯЕЛФБ. оЕМШЪС УНПФТЕФШ Ч ПЛХМСТ Й ПРХУЛБФШ ПВЯЕЛФЙЧ. жТПОФБМШОБС МЙОЪБ НПЦЕФ ТБЪДБЧЙФШ РПЛТПЧОПЕ УФЕЛМП, Й ОБ ОЕК РПСЧСФУС ГБТБРЙОЩ;
10. рЕТЕДЧЙЗБС РТЕРБТБФ ТХЛПК, ОБКФЙ ОХЦОПЕ НЕУФП, ТБУРПМПЦЙФШ ЕЗП Ч ГЕОФТЕ РПМС ЪТЕОЙС НЙЛТПУЛПРБ;
11. еУМЙ ЙЪПВТБЦЕОЙЕ ОЕ РПСЧЙМПУШ, ФП ОБДП РПЧФПТЙФШ ЧУЕ ПРЕТБГЙЙ РХОЛФПЧ 6, 7, 8, 9;
13. рП ПЛПОЮБОЙЙ ТБВПФЩ У ВПМШЫЙН ХЧЕМЙЮЕОЙЕН, ХУФБОПЧЙФШ НБМПЕ ХЧЕМЙЮЕОЙЕ, РПДОСФШ ПВЯЕЛФЙЧ, УОСФШ У ТБВПЮЕЗП УФПМЙЛБ РТЕРБТБФ, РТПФЕТЕФШ ЮЙУФПК УБМЖЕФЛПК ЧУЕ ЮБУФЙ НЙЛТПУЛПРБ, ОБЛТЩФШ ЕЗП РПМЙЬФЙМЕОПЧЩН РБЛЕФПН Й РПУФБЧЙФШ Ч ЫЛБЖ.
нЙЛТПУЛПР ВЙПМПЗЙЮЕУЛЙК УФЕТЕПУЛПРЙЮЕУЛЙК нву-1 (ТЙУ. 2) ДБЕФ РТСНПЕ Й ПВЯЕНОПЕ ЙЪПВТБЦЕОЙЕ ПВЯЕЛФБ Ч РТПИПДСЭЕН ЙМЙ ПФТБЦЕООПН УЧЕФЕ. пО РТЕДОБЪОБЮЕО ДМС ЙЪХЮЕОЙС НЕМЛЙИ ПВЯЕЛФПЧ Й РТЕРБТЙТПЧБОЙС ЙИ, ФБЛ ЛБЛ ЙНЕЕФ ВПМШЫПЕ ТБВПЮЕЕ ТБУУФПСОЙЕ (ТБУУФПСОЙЕ ПФ РПЛТПЧОПЗП УФЕЛМБ ДП ЖТПОФБМШОПК МЙОЪЩ).
тЙУ. 2. хУФТПКУФЧП НЙЛТПУЛПРБ нву-1:
оБ ЧЕТИОАА ЮБУФШ ЗПМПЧЛЙ ХУФБОПЧМЕОБ ВЙОПЛХМСТОБС ОБУБДЛБ. пЛХМСТЩ ЙНЕАФ ХЧЕМЙЮЕОЙС И6, И8, И12,5. дМС ХУФБОПЧЛЙ ХДПВОПЗП ДМС ЗМБЪ ТБУУФПСОЙС НЕЦДХ ПЛХМСТБНЙ ОБДП ТБЪДЧЙОХФШ ЙМЙ УДЧЙОХФШ ФХВХУЩ.
л ЪБДОЕК УФЕОЛЕ ЛПТРХУБ ЗПМПЧЛЙ РТЙЛТЕРМЕО ЛТПОЫФЕКО У ТЕЕЮОЩН НЕИБОЙЪНПН РЕТЕДЧЙЦЕОЙС. рПДЯЕН Й ПРХУЛБОЙЕ ЛПТРХУБ ЗПМПЧЛЙ ПУХЭЕУФЧМСЕФУС ЧТБЭЕОЙЕН ЧЙОФБ. лТПОЫФЕКО ОБДЕФ ОБ УФПКЛХ, РТЙЛТЕРМЕООХА Л РПДУФБЧЛЕ.
дМС ТБВПФЩ Ч РТПИПДСЭЕН УЧЕФЕ, Ч ЛПТРХУ РПДУФБЧЛЙ ЧНПОФЙТПЧБО ПФТБЦБФЕМШ УЧЕФБ, У ЪЕТЛБМШОПК Й НБФПЧПК РПЧЕТИОПУФСНЙ. у РЕТЕДОЕК УФПТПОЩ ЛПТРХУБ ЙНЕЕФУС ПЛОП ДМС ДПУФХРБ ДОЕЧОПЗП УЧЕФБ. дМС ЙУЛХУУФЧЕООПЗП ПУЧЕЭЕОЙС РТЕДОБЪОБЮЕОБ МБНРБ, ЛПФПТХА ЧУФБЧМСАФ ЙМЙ Ч ПФЧЕТУФЙЕ У ЪБДОЕК УФПТПОЩ ЛПТРХУБ (ДМС РТПИПДСЭЕЗП УЧЕФБ), ЙМЙ Ч ЛТПОЫФЕКО, ХЛТЕРМЕООЩК ОБ ПВЯЕЛФЙЧЕ (ДМС ПФТБЦЕООПЗП УЧЕФБ).
уФПМЙЛ ХУФБОПЧМЕО Ч ЛТХЗМПН ПЛОЕ ОБ ЧЕТИОЕК РПЧЕТИОПУФЙ ЛПТРХУБ РПДУФБЧЛЙ. пО НПЦЕФ ВЩФШ МЙВП УФЕЛМСООЩН (РТЙ РТПИПДСЭЕН УЧЕФЕ), МЙВП НЕФБММЙЮЕУЛЙН, У ВЕМПК Й ЮЕТОПК РПЧЕТИОПУФСНЙ (РТЙ ПФТБЦЕООПН УЧЕФЕ).
ьМЕЛФТПООЩК НЙЛТПУЛПР (ТЙУ. 3) РПЪЧПМСЕФ ТБУУНПФТЕФШ УФТПЕОЙЕ ПЮЕОШ НЕМЛЙИ УФТХЛФХТ, ОЕЧЙДЙНЩИ Ч УЧЕФПЧПН НЙЛТПУЛПРЕ, ОБРТЙНЕТ, ФЙМБЛПЙД Ч ИМПТПРМБУФБИ. еЗП ТБЪТЕЫБАЭБС УРПУПВОПУФШ Ч 400 ТБЪ ВПМШЫЕ, ЮЕН Х УЧЕФПЧПЗП НЙЛТПУЛПРБ. ьФП ДПУФЙЗБЕФУС ЪБ УЮЕФ РПФПЛБ ЬМЕЛФТПОПЧ, ЧНЕУФП ЧЙДЙНПЗП УЧЕФБ. тБЪМЙЮБАФ ДЧБ ФЙРБ ЬМЕЛФТПООЩИ НЙЛТПУЛПРПЧ: ФТБОУНЙУУЙПООЩК (РТПУЧЕЮЙЧБАЭЙК) Й УЛБОЙТХАЭЙК (ДБАЭЙК ПВЯЕНОПЕ ЙЪПВТБЦЕОЙЕ НЙЛТПРТЕРБТБФПЧ) (ТЙУ. 4).
тЙУ. 3. ьМЕЛФТПООЩК НЙЛТПУЛПР.
тЙУ. 4. уОЙНЛЙ, УДЕМБООЩЕ ОБ ЬМЕЛФТПООЩИ НЙЛТПУЛПРБИ:
ъБДБОЙЕ 1. йУРПМШЪХС НЙЛТПУЛПРЩ, ФБВМЙГЩ Й РТБЛФЙЛХНЩ, ЙЪХЮЙФШ ХУФТПКУФЧП УЧЕФПЧЩИ НЙЛТПУЛПРПЧ (нйлнед-1, вйпмбн Й нву-1) (ТЙУ. 1, 2). ъБРПНОЙФШ ОБЪЧБОЙС Й ОБЪОБЮЕОЙЕ ЙИ ЮБУФЕК.
ъБДБОЙЕ 2. рТЙ НБМПН Й ВПМШЫПН ХЧЕМЙЮЕОЙСИ НЙЛТПУЛПРБ ОБХЮЙФШУС ВЩУФТП ОБИПДЙФШ ПВЯЕЛФЩ ОБ РПУФПСООЩИ НЙЛТПРТЕРБТБФБИ.
1. юФП ФБЛПЕ ТБЪТЕЫБАЭБС УРПУПВОПУФШ НЙЛТПУЛПРБ?
2. лБЛ НПЦОП ПРТЕДЕМЙФШ ХЧЕМЙЮЕОЙЕ ТБУУНБФТЙЧБЕНПЗП РПД НЙЛТПУЛПРПН ПВЯЕЛФБ?
3. ч ЮЕН ПФМЙЮЙЕ НЙЛТПУЛПРПЧ вйпмбн Й нву-1?
4. рЕТЕЮЙУМЙФШ ЗМБЧОЩЕ ЮБУФЙ НЙЛТПУЛПРБ вйпмбн Й нйлнед-1. ч ЮЕН ЙИ ОБЪОБЮЕОЙЕ?
Конструкция микроскопа
В микроскопе можно выделить оптическую и механическую части. Оптика микроскопа включает в себя объективы, окуляры, а также осветительную систему. Штатив, тубус, предметный столик, крепления конденсора и светофильтров, механизмы для регулировки предметного столика и тубусодержателя составляют механическую часть микроскопа.
Начнем, пожалуй, с оптической части.
· Окуляр. Та часть оптической системы, которая непосредственно связана с глазами наблюдателя. В простейшем случае объектив состоит из одной линзы. Иногда для большего удобства, или, как принято говорить, «эргономичности», объектив может быть снабжен, например, «наглазником» из резины либо мягкого пластика. В стереоскопических (бинокулярных) микроскопах имеется два окуляра.
· Осветитель. Очень часто используется обыкновенное зеркало, позволяющее направлять на исследуемый образец дневной свет. В настоящее время часто применяют специальные галогенные лампы, имеющие спектр, близкий к естественному белому свету и не вызывающие грубых искажений цвета.
· Диафрагма. В основном в микроскопах применяют так называемые «ирисовые» диафрагмы, названные так потому, что содержат лепестки, подобные лепесткам цветка ириса. Сдвигая или раздвигая лепестки, можно плавно регулировать силу светового потока, поступающего не исследуемый образец.
· Коллектор. С помощью коллектора, расположенного вблизи светового источника, создается световой поток, который заполняет апертуру конденсора.
· Конденсор. Данный элемент, представляющий собой собирающую линзу, формирует световой конус, направленный на объект. Интенсивность освещения при этом регулируется диафрагмой. Чаще всего в микроскопах используется стандартный двухлинзовый конденсор Аббе.
Что касается оптической системы в целом, то в зависимости от ее строения принято выделять прямые микроскопы (объективы, насадка, окуляры располагаются над объектом), инвертированные микроскопы (вся оптическая система располагается под объектом), стереоскопические микроскопы (бинокулярные микроскопы, состоящие по сути из двух микроскопов, расположенных под углом друг к другу и формирующие объемное изображение).
Теперь перейдем к механической части микроскопа.
· Тубус. Тубус представляет собой трубку, в которую заключается окуляр. Тубус должен быть достаточно прочным, не должен деформироваться, что ухудшит оптические свойства, потому только в самых дешевых моделях тубус делается из пластмассы, чаще же используются алюминий, нержавеющая сталь либо специальные сплавы. Для ликвидации «бликов» тубус внутри, как правило, покрывается черной светопоглощающей краской.
· Основание. Обычно выполняется достаточно массивным, из металлического литья, для обеспечения устойчивости микроскопа во время работы. На данном основании крепится тубусодержатель, тубус, держатель конденсора, ручки фокусировки, револьверное устройство и насадка с окулярами.
· Револьверная головка для быстрой смены объективов. Как правило, в дешевых моделях, имеющих всего один объектив, этот элемент отсутствует. Наличие револьверной головки позволяет оперативно регулировать увеличение, меняя объективы простым ее поворотом.
· Крепления, которыми предметные стекла фиксируются на предметном столике.
· Винт грубой настройки фокусировки. Позволяет, изменяя расстояние от объектива до исследуемого образца, добиваться наиболее четкого изображения.
· Винт точной фокусировки. То же самое, только с меньшим шагом и меньшим «ходом» резьбы для максимально точной регулировки.
1. Учебные и рабочие микроскопы предназначены для выполнения основных операций и, как правило, оснащены минимально достаточным для работы набором объективов и аксессуаров.
2. Лабораторные микроскопы ориентированы напроведение наблюдений по стандартным методикам. В их комплектацию включены дополнительные объективы и приспособления, например мощные настраиваемыеосветители,препаратоводители, измерительные устройства.
3. Исследовательская модель микроскопа – наиболее сложная и функционально наполненная модель. Сочетает в себе сбалансированные конструкторские и технологические решения по достижению наивысшего оптического качества изображения на микроскопе, использованию всех известных методик микроскопических анализов.