Для чего нужна алгебра логики
Алгебра логики
Законы алгебры логики
Алгебра логики это раздел математической логики, изучающий высказывания, рассматриваемые со стороны их логических значений (истинности или ложности), и логические операции над ними.
В алгебре логики принято отождествлять истинность высказывания с числом 1, а ложность — с числом 0 (А = 1 и С = 0 означает, что А истинно и что С ложно).
Что изучает алгебра логики?
Предметом изучения алгебры логики являются функции которые принимают лишь два значения: 0 или 1. Объединение простых высказываний в сложные в алгебре логики производится без учёта внутреннего содержания (смысла) этих высказываний.
К основным логическим операциям относятся операции: отрицания, логического умножения, или конъюнкции, логического сложения, или дизъюнкции, эквивалентности, импликации.
Любое сложное выражение, полученное из простых высказываний посредством основных логических операции, называется формулой алгебры логики.
Где используется алгебра логики?
Использование аппарата алгебры логики в теории устройств дискретного действия основано на том, что элементы этих устройств являются двух позиционными приборами, т. е. приборами, которые по условиям работы могут находиться лишь в одном из двух различных устойчивых состояний, например «контакт замкнут», «транзистор открыт».
Конъюнкция такого рода высказываний будет тогда средством выражения последовательного соединения элементов, а дизъюнкция — их параллельного соединения. На этом основана возможность применять средства алгебры логики к задачам анализа и синтеза переключателей схем. Алгебра логики используется в теории релейных схем, теории ЭВМ и в теории дискретных автоматов.
Алгебра логики
Из Википедии — свободной энциклопедии
Основоположником её является Дж. Буль, английский математик и логик, положивший в основу своего логического учения аналогию между алгеброй и логикой. Алгебра логики стала первой системой математической логики, в которой алгебраическая символика стала применяться к логическим выводам в операциях с понятиями, рассматриваемыми со стороны их объёмов. Буль ставил перед собой задачу решить логические задачи с помощью методов, применяемых в алгебре. Любое суждение он пытался выразить в виде уравнений с символами, в которых действуют логические законы, подобные законам алгебры.
Впоследствии усовершенствованием алгебры логики занимались У. С. Джевонс, Э. Шрёдер, П. С. Порецкий, Ч. Пирс, Г. Фреге, разработавший теорию исчисления высказываний, Д. Гильберт, добившийся успехов в области применения метода формализации в операциях с логическими высказываниями. Внесли свой вклад Б. Рассел, придавший вместе с А. Уайтхедом, математической логике современный вид; И. И. Жегалкин, заслугой которого явилась дальнейшая разработка исчисления классов и значительное упрощение теории операций логического сложения; В. И. Гливенко вынес предмет алгебры логики далеко за рамки изучения объёмных операций с понятиями.
Алгебра логики в её современном изложении занимается исследованием операций с высказываниями, то есть с предложениями, которые характеризуются только одним качеством — истинностным значением (истина, ложь). В классической алгебре логики высказывание одновременно может иметь только одно из двух истинностных значений: «истина» или «ложь». Алгебра логики исследует также высказывания — функции, которые могут принимать значения «истина» и «ложь» в зависимости от того, какое значение будет придано переменной, входящей в высказывание — функцию.
Курсовая работа: Применение алгебры логики в информатике (понятия, формулы)
Тема: Применение алгебры логики в информатике (понятия, формулы)
Тип: Курсовая работа | Размер: 448.51K | Скачано: 189 | Добавлен 26.11.13 в 12:41 | Рейтинг: +3 | Еще Курсовые работы
Вуз: Финансовый университет
Год и город: Владимир 2013
СОДЕРЖАНИЕ
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 4
1.1. Основные понятия и определения 4
1.2. Основные логические операции и элементы 6
1.3. Логические формулы. Законы алгебры логики 8
1.4. Применение алгебры логики в информатике 11
1.5. Реализация функций алгебры логики, электронные схемы 13
2. ПРАКТИЧЕСКАЯ ЧАСТЬ 18
2.1. Постановка задачи 18
2.1.1. Цель решения задачи 20
2.1.2. Условие задачи 20
2.2. Компьютерная модель решения задачи 21
2.2.1. Информационная модель решения задачи 21
2.2.2. Аналитическая модель решения задачи 21
2.2.3. Технология решения задачи 22
2.3. Результаты компьютерного эксперимента и их анализ 26
2.3.1. Результаты компьютерного эксперимента 26
2.3.2. Анализ полученных результатов 27
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 30
Введение
Логика в информатике – это направления исследований и отрасли знания, где логика применяется в информатике и искусственном интеллекте.
Современный прогресс, развитие науки и техники, достижения в компьютерных технологиях базируются на знаниях основ алгебры логики. Роль алгебры логики в информатике очень весома, так как принципы работы любого компьютера, его схем и функциональных блоков основаны на ее законах.
Математическая логика нашла широкое применение в языках программирования. Все языки программирования включают в себя базовые логические операции и некоторые логические функции: IMP, EQL, и так далее.
В данной работе будут рассмотрены основные аспекты алгебры логики, понятия, виды логических операций и таблиц истинности, логические формулы, а также законы алгебры логики. Заключительная часть посвящена использованию алгебры логики в компьютерных науках.
В практической части будет построена компьютерная модель решения задачи в среде MS Excel.
1. Теоретическая часть
1.1 Основные понятия и определения
Алгебра логики (алгебра высказываний) – раздел математической логики, изучающий строение (форму, структуру) сложных логических высказываний и способы установления их истинности с помощью алгебраических методов.
При этом под высказыванием (суждением) понимают повествовательное предложение, относительно которого можно сказать, истинно или ложно.
Алгебра логики возникла в середине ХIХ века в трудах английского математика Джорджа Буля. Её создание представляло собой попытку решать традиционные логические задачи алгебраическими методами.
Алгебра логики изучает свойства функций, у которых и аргументы, и значения принадлежат заданному двухэлементному множеству (например, <0,1>). Иногда вместо термина «алгебра логики» употребляют термин «двузначная логика».
операциями арифметики для реализации различных алгоритмов.
0, 1 F, T false, true ложь, истина Л, И
Связки «НЕ», «И», «ИЛИ» заменяются логическими операциями инверсия, конъюнкция, дизъюнкция. Это основные логические операции, при помощи которых можно записать любое логическое выражение.
1.2. Основные логические операции и элементы
Информатика не может существовать без такого важного раздела математики, который называется алгеброй логики. В данной статье будет рассказана основополагающая информация по данной теме, обозначены её главные правила и законы.
Что такое алгебра и алгебра логики
Алгебра — это раздел математики, который обобщенно можно охарактеризовать, как расширение и обобщение арифметики.
Алгебра логики — это раздел математической логики, который исследует операции над высказываниями.
Законы алгебры логики
Имеется большое количество правил в данной сфере деятельности, но сегодня будет рассмотрено несколько основных.
Основные законы алгебры логики представлены в таблице:
Логические выражения
В информатике предоставляется два вида высказываний: простое и сложное.
Простое — это утверждение, которое обычно обозначается в виде предложения и про него можно сказать — ложное оно или истинное.
Нью-Йорк — столица США (ложное);
в России 1117 городов (верное).
Сложное высказывание обозначает некий набор простых утверждений, которые связаны логическими процессами.
Идёт дождь, а у меня нет зонта.
Основные логические операции
Логические процессы подразделяются на несколько классов. Рассмотрим их последовательно.
Логическое отрицание (инверсия) —НЕ
Таблица истинности инверсии:
Результаты операции НЕ следующие:
если исходное выражение истинно, то результат его отрицания будет ложным;
если исходное выражение ложно, то результат его отрицания будет истинным.
Логическое сложение (дизъюнкция, объединение) — ИЛИ
Понятие «Логическое ИЛИ» также можно заменить понятием «Дизъюнкция». Данная операция обозначается знаками — ИЛИ, OR, ||, |.
Но есть небольшое отличие: в «Логическом И» результат отрицания равен единице, если оба обозначения равны единице, а в «Логическом ИЛИ» итог равен единице, если одно из обозначений равно единице.
Таблица истинности операции ИЛИ:
Логическое умножение(конъюнкция) — И
В истории данная операция также обозначается как логическое умножение и конъюнкция. Данная операция обозначается элементами — И, AND, &&, &.
За объект описания возьмём А и В. Оба данных выражения могут иметь или неверное значение, или правдивое значение. Для применения операции логическое умножение, и А, и В должны является истинными (то есть равными единице).
При всех остальных значениях операция будет ложной.
Таблица истинности операции И приведена ниже:
Логическое следование (импликация) — ЕСЛИ ТО
Данная программа имеет также название «Импликация». Она образуется из двух высказываний, которые соединяет: «если. то».
Необходимо запомнить, что данная операция ложна только тогда, когда из первого ложного утверждения следует ложный итог. На компьютерном языке данный процесс обозначается формулой: if. then.
Таблица истинности операции ЕСЛИ ТО выглядит так:
Данная операция определяется так: сложное высказывание будет истинно тогда и только тогда, когда и А, и В — истинные.
И наоборот: сложное высказывание будет ложным тогда и только тогда, когда и А, и В — ложные.
Таблица истинности операции эквивалентности:
АЛГЕБРА ЛОГИКИ
АЛГЕБРА ЛОГИКИ – одна из осн. частей математической логики, основанная на применении алгебраических методов к логике. Возникнув в сер. 19 в. в трудах Буля [БУЛЬ]и развиваясь затем в работах Джевонса, Шредера, Пирса [ПИРС], Порецкого и др., алгебра логики имела своим предметом классы (как объемы понятий), соотношения между классиками по объему и связанные с этим операции над ними. Позднее, в связи с появлением в 70-х гг. 19 в. множеств теории [МНОЖЕСТВ ТЕОРИЯ], поглотившей часть этих задач, предмет алгебры логики значительно изменился. Основным ее предметом стали высказывания (суждения, предложения), рассматриваемые со стороны их логических значений (истина, ложь, бессмыслица и т.п.), и логические операции над ними.
Кроме простых высказываний, обозначаемых отдельными буквами A, В. или И, Л, рассматриваются также сложные высказывания – результат соединения высказываний связками или отрицания их (соответствующего частице «не»). Сложные высказывания рассматривают как функции от входящих в них буквенных переменных А, B, С ит. д. Так появляется понятие функции алгебры логики – функции от аргументов, являющихся переменными высказываниями, т.е. принимающих значения И, Л, которая (функция) может принимать тоже лишь эти значения.
Вводятся алгебраич. операции над высказываниями: конъюнкция A·B (читается «А и В», другие обозначения: AB, A&B, А⋀В;другие названия: логическое умножение, булево умножение), дизъюнкция А⋁В («читается А или В»;другое обозначение: А+В;другие названия: логическое сложение, булево сложение), импликация А→В (читается: «Если А, то В» или «А влечет В», или «A имплицирует В», или «Из А следует В»;другое обозначение: A⊃B;другое название: логическое следование), эквиваленция А
В (читается: «А эквивалентно B» или «А равнозначно В», или «А, если и только если В»:другие обозначения: А≡В, А↔В;другие названия: эквивалентность, равнозначность, равносильность), отрицание А (читается: «не А», или «А ложно», или «неверно, что А», или «отрицание А»;другие обозначения: ¬А,
А, A´;другое название: инверсия), а также иногда и другие операции.
Одной из важных сторон формализации, принимаемой в алгебре логики, является то, что знаками этих операций (т.е. по смыслу, соответствующими им связками) можно соединять любые высказывания, без ограничения, в том числе и те, которые сами являются сложными.
При этом удается точно и строго описать класс всех рассматриваемых выражений алгебры логики. В данном случае он состоит из констант И и Л, переменных A, В. и всех тех выражений, которые получаются из них путем конечного числа соединений знаками «·», «⋁», «→» и «
Это связано с требованием, чтобы операции задавались таблично как функции и значение сложного высказывания зависело только от значений составляющих его простых высказываний. Основная суть алгебры логики как системы методов состоит в использовании преобразований высказываний на основе алгебраических законов, которые имеют место для операций над высказываниями. Эти законы чаще всего имеют вид тождеств, т.е. равенств, верных при всех значениях переменных. Важную роль играют тождества:
VI. A⋁¬A=И (закон исключенного третьего).
Эти тождества, устанавливаемые, напр., с помощью таблиц, позволяют получать другие тождества. Тождеств I–VI достаточно для того, чтобы из них по методу тождественных преобразований можно было вывести всякое (верное, конечно) тождество, левая и правая части которого – выражения алгебры логики, состоящие из переменных А, В. констант И, Л и знаков «·», «ν» «–» (не обязательно включая все из них). Добавление же тождеств VII A→B=¬A⋁B, A
B=AB⋁¬A¬B дает возможность выводить и любые тождества, содержащие также знаки «→», «
Л – на ¬ Аi,, а также стирая «коэффициенты» Φ(a1, а2. an») равные И (по закону И·А=А) и отбрасывая члены с «коэффициентами», равными Л (по законам (Л·A=Л, Л⋁A= А), мы и получим (если функция не есть константа) то выражение, о котором говорится в теореме.
Дизъюнктивной нормальной формой (днф) называется выражение, которое есть буква И или Л или имеет вид A1⋁A2⋁. ⋁As, где каждый член Ai, является либо буквенной переменной, либо ее отрицанием, либо конъюнкцией таковых, причем s не обязательно отлично от 1, т.е. знаков «⋁» может и не быть. Днф называется совершенной, если она есть И или Л или в каждом члене содержит ровно по одному разу все имеющиеся в ней буквы (переменные) и не имеет одинаковых членов. Всякое выражение алгебры логики можно привести к днф. А всякую днф можно привести к совершенной днф, «домножая» члены на недостающие буквы (по закону A=AB⋁A¬B) и ликвидируя повторения букв в членах (по законам АА=А, А¬А=Л, Л·A=Л, Л⋁A=A) и повторения членов (по закону A⋁A=A).
Приведение к совершенной днф позволяет по любым двум данным выражениям А и В решить вопрос о том, одну ли и ту же функцию они выражают, т.е. верно ли тождество А=В.
Важную роль играет т.н. сокращенная днф. Последнюю можно определить как такую днф, в к-рой I) нет повторений букв ни в одном члене, 2) нет таких пар членов Аi, и Aj, что всякий множитель из Аi, имеется и в Аj, и 3) для всяких двух таких членов, из к-рых один содержит множителем некоторую букву, а другой – отрицание той же буквы (при условии, что другой буквы, для которой это имеет место, в данной паре членов нет), имеется (в этой же днф) член, равный конъюнкции остальных множителей этих двух членов.
Кроме днф, употребляются также конъюнктивные нормальные формы (кнф). Это такие выражения, к-рые можно получить из днф путем замены в них знаков «⋁» на «·», а «·» на «⋁».
Преобразованием двойственности называется такое преобразование выражения алгебры логики, при котором в этом выражении знаки всех операций заменяются на знаки двойственных им операций, а константы: И на Л, Л на И; причем операция (или функция) Φ называется двойственной для операции Ψ, если таблица, задающая Ф, получается из таблицы, задающей Ψ, путем замены в ней всюду И на Л, а Л на И (имеется в виду одновременная замена и значений функции, и значений ее аргументов). Если Φ двойственная Ψ, a Ψдвойственная X, то Ф=Х. Напр., конъюнкция и дизъюнкция двойственны между собой, отрицание двойственно самому себе, константа И (как функция) двойственна константе
если, и только если, верно тождество
Совершенную кнф и сокращенную кнф можно определить как такие кнф, что двойственные им выражения есть соответственно совершенная днф и сокращенная днф. Совершенные и сокращенные днф и кнф можно использовать для решения задачи обзора всех гипотез и всех следствий данного выражения алгебры логики. Причем под гипотезой выражения А алгебры логики естественно понимать такое выражение В, что В→А тождественно истинно, а под следствием выражения А – такое выражение В, что А→В тождественно истинно.
Еще один, часто употребляемый в алгебре логики шаг абстракции, состоит в отождествлении И с числом 1, а Л – с числом 0. Вводится операция A+B, задаваемая таблицей: 0+0=0, 0+1=1, 1+0=1, 1+1=0. Она называется сложением (точнее сложением по модулю 2; другое название: разделительная дизъюнкция; читается: «А плюс В», или А не эквивалентно В», или «Либо А, либо В»).
Всякую функцию алгебры логики можно представить через умножение (т.е. конъюнкцию), сложение и константу 1 (теорема Жегалкина). В частности, верны следующие тождества:
Обратные представления имеют вид
Тождества VIII позволяют «переводить» выражения «языка» конъюнкции, дизъюнкции и отрицания (КДО) на «язык» умножения, сложения и единицы (УСЕ), а тождества X – осуществлять обратный «перевод».
Тождественные преобразования можно производить и на «языке» УСЕ. В основе их лежат следующие законы:
Этих тождеств достаточно для того, чтобы из них можно было вывести любое (верное) тождество, обе части которого суть выражения «языка» УСЕ. А добавив к ним тождества VIII, мы сможем выводить и все тождества «языка» КДО.
Выражение «языка» УСЕ называется приведенным полиномом (п. п.), если оно есть 1+1 (т.е. нуль) или имеет вид А1+А2+. +Аs где каждый член А, есть либо 1, либо буквенная переменная, либо произведение последних, причем ни в одном члене нет никаких повторений букв, никакие два члена не одинаковы (в том же смысле, что и выше), a s не обязательно больше 1 (т.е. знаков «+» может не быть). Всякое выражение алгебры логики можно привести к п. п. (теорема Жегалкина).
Кроме «языков» КДО и УСЕ существуют и другие «языки», обладающие тем свойством, что через операции (и константы) этих «языков» можно представить всякую функцию алгебры логики. Такие системы называются (функционально) полными. Примеры полных систем: а) конъюнкция и отрицание, б) дизъюнкция и отрицание, в) импликация и отрицание, г) импликация и 0, д) умножение, эквиваленция и 0, е) штрих Шеффера A|B ж) медиана (А, В, C), [определение: (А, В, C)=AB⋁AC⋁BC), отрицание и 1, и) медиана, эквиваленция и сложение.
Иногда совершают еще один важный дальнейший шаг абстракции. Отвлекаются от табличного задания операций и от того, что значениями буквенных переменных являются высказывания. Вместо этого допускаются различные интерпретации рассматриваемого «языка», состоящие из той или иной совокупности объектов (служащих значениями буквенных переменных) и системы операций над объектами этого множества, удовлетворяющих тождествам из полной системы тождеств этого «языка».
«Язык» КДО в результате такого шага абстракции превращается в «язык» т.н. булевой алгебры, «язык» УСЕ – в «язык» т.н. булева кольца (с единицей), «язык» конъюнкции и дизыонкции – в «язык» т.н. дистрибутивной структуры.
Важным примером булевой алгебры является алгебра классов, в которой роль элементов играют подмножества (классы) некоторого фиксированного множества (т.н. универсума) U, роль 0 играет пустое множество 0, роль 1 – само U, роль AB, A⋁B и ¬Α – теоретико-множеств. операции пересечения, объединения и дополнения соответственно. Связь между алгеброй классов, алгеброй предикатов и алгеброй высказываний, этими тремя важнейшими интерпретациями абстрактной алгебры логики как «языка» булевой алгебры, состоит в следующем: первая переходит во вторую путем замены множеств (классов) их т.н. характеристическими предикатами (т.е. множества А – предикатом х∈А, гласящим: «х принадлежит множеству А»), если при этом соответствующим образом преобразуются также операции и константы 0 и 1, а вторая переходит в третью при подстановке во все предикаты на место их аргументов некоторого фиксированного их значения. Вернее, при таком переходе от алгебры классов к алгебре предикатов получается алгебра одноместных предикатов. Другим важным случаем является алгебра двуместных предикатов, называемых чаще отношениями. С ней тесно связана алгебра отношений, отличающаяся от нее только тем, что в последней, кроме трех операций булевой алгебры, имеются еще две.
Всякую булеву алгебру можно «переделать» в булево кольцо, определив операцию А+В согласно закону X (и отбросив операцию A⋁B). Напр., в случае алгебры множеств роль А+В играет т.н. симметрическая разность множеств А и В (состоящая из всех тех элементов универсума, которые принадлежат одному и только одному из множеств А или В). Обратно, всякое булево кольцо (с единицей) можно «переделать» в булеву алгебру. Понятия булевой алгебры и булева кольца связываются с именем Дж.Буля [БУЛЬ]. Однако оформились эти понятия (не говоря уже о терминах) значительно позже. Первые работы по алгебре логики были посвящены задачам: а) выражения логических соотношений между объемами понятий (соответственно высказываниями) в виде уравнений (равенств), б) построения алгоритмов решения логических уравнений и систем уравнений с целью автоматизировать способы извлечения из данных посылок содержащейся в них (неявно) информации (того или иного рода).
В настоящее время алгебра логики развивается гл. о. под влиянием задач, встающих в области ее приложений. Она находит широкое применение в технике (особенно при решении задач, связанных с построением автоматов) и, наоборот, развивается сама под влиянием запросов техники (задач автоматизации программирования, уменьшения числа элементов в устройствах релейного действия и др.). Важную роль играют приложения в теории электрических схем, включая первоначально, начиная с работ В.И.Шестакова и К.Шеннона (30–40-е гг. 20 в.), теорию релейно-контактиых схем. Вопросы, касающиеся понятий самой алгебры логики, приводят к проникновению в алгебру логики неалгебраических методов (таких, как табличные, топологические, дескриптивные) и вследствие этого к постепенному выделению из алгебры логики самостоятельной области – теории функций алгебры логики (или иначе, теории булевых функций).
В случае более сложных схем, чем контактные, приходится часто отказываться от использования лишь обычной алгебры логики и рассматривать те или иные ее многозначные обобщения, отличные от булевых алгебр и булевых колец (см. Многозначные логики [ЛОГИКА МНОГОЗНАЧНАЯ]). Другим направлением современного развития алгебры логики является алгебраическая логика. Она интересна тем, что выдвигает и частично решает задачу построения алгебр неклассических логик, т.е. таких вариантов алгебры логики, которые соответствуют неклассическим исчислениям высказываний. Некоторые тенденции возможного дальнейшего развития алгебры логики как совокупности алгебраических методов логики намечаются в связи с бурным развитием ряда областей как современной алгебры, так и математической логики. Одна из них связана с мощным ростом теоретико-множественной алгебры, позволяя всякую операцию рассматривать как алгебраическую операцию. Такое рассмотрение дает возможность охватить алгебраическими методами значительную часть современной математической логики (см. Логика символическая [ЛОГИКА СИМВОЛИЧЕСКАЯ]).
Другая – связана с успехами теории алгоритмов, позволившей уточнить ряд алгоритмических проблем алгебры, и последовавшим решением некоторых из них. Тенденция эта состоит в объединении алгоритмической алгебры с самой теорией алгоритмов и попытках алгебраизации последней, т.е. построения алгебраической теории алгоритмов.
Эта постепенная алгебраизация все большего числа сторон математической логики будет, по-видимому, содействовать наилучшему выделению и ее чисто логических сторон, для того чтобы изучать последние уже иными методами.
Сокращенный вариант статьи: Алгебра логики, –
В кн.: Философская энциклопедия. Т. 1. М., 1960.
Как и предвидел А.Кузнецов, все большее прикладное значение приобретает теория булевых функций как самостоятельная область, выделившаяся из алгебры логики. В результате пришли к понятию функциональной системы (Рn, C), где Рnесть множество всех функций n-значной логики (или множество всех функций счетнозначной логики Рω) с заданной на нем операцией суперпозиции С. Рn обычно рассматривается как обобщение множества всех булевых функций Р2. Известна содержательная трактовка понятия функциональной системы ((Рn, С) выступает ее частным случаем), в основе которой лежит рассмотрение таких пар (Ρ,Ω), в которых Ρ есть множество отображений, реализуемых управляющими системами из некоторого класса, a Ω состоит из операции, используемой при построении новых управляющих систем из заданных. В свою очередь (Р2, Q есть эквивалент алгебры логики. Таким образом, от алгебры формул, изучаемой в алгебре логики, перешли к алгебре функций. И хотя именно алгебра логики, т.е. классическая логика высказываний [ЛОГИКА ВЫСКАЗЫВАНИЙ], лежит в основе проектирования микросхем для современной цифровой электронной техники, в том числе и для компьютеров, подобные работы ведутся и на основе многозначных логик [ЛОГИКА МНОГОЗНАЧНАЯ]. В частности, для функционально полных (и некоторых других) многозначных систем был построен аналог совершенной днф.
Еще более важное предвидение А.Кузнецова связано с выделением алгебраической логики в одно из направлений современной алгебры логики. В первую очередь имеется в виду построение алгебр, соответствующих неклассическим логикам [НЕКЛАССИЧЕСКИЕ ЛОГИКИ]в том смысле, в каком булева алгебра соответствует классической логике высказываний (Rasiowa, 1974). Здесь существенным является также вопрос о построении алгебраической семантики, под которой понимается класс всех моделей некоторой алгебры, соответствующей логике L, поскольку посредством алгебраической семантики решаются такие металогические проблемы, как полнота L (относительно общезначимости в классе всех моделей), разрешимость L и др. В итоге пришли к общему вопросу о том, какая логика алгебраически представима, т.е. имеет алгебраическую семантику, а какая нет. Ответ на этот вопрос дан в работе В.Блока и Д.Пигоцци (Blok, Pigozzi, 1989). Существенно, что современное развитие алгебраической логики представляет собой систематическое применение методов и, главное, аппарата универсальной алгебры к символической логике [ЛОГИКА СИМВОЛИЧЕСКАЯ]. Именно на это как на тенденцию возможного дальнейшего развития алгебры логики указывал А.Кузнецов, говоря о возможности «охватить алгебраическими методами значительную часть современной математической логики». Сегодня речь уже идет об алгебраическом охвате всей символической логики, и результаты здесь весьма значительны. К примеру, если Alg(L) обозначает класс алгебр, который соотносится с некоторой логикой L (если L есть классич. логика высказываний, то Alg(L) есть класс булевых алгебр), можно формулировать теоремы, утверждающие, что L имеет определенное логическое свойство тогда и только тогда (т. т. т.), когда Alg(L) имеет определенное алгебраическое свойство. Это позволяет дать алгебраическую характеризацию таких логических свойств, как полнота, наличие теоремы дедукции, компактность, разрешимость, интерполяционность Крейга, истинность формул в модели и т.д. Так, первые два свойства принимают следующий вид: L допускает строго полную гильбертовскую аксиоматизацию (Γ⊦ А т. т. т., когда Г⊨ А) т.т.т., когда Alg(L) есть финитно аксиоматизируемое квази-многообразие; L допускает теорему дедукции (см. Дедукции теорема [ДЕДУКЦИИ ТЕОРЕМА]) т.т.т., когда Alg(L) имеет эквационально определимые главные конгруэнции.
Вообще, алгебраическая логика является хорошим инструментом не только для выяснения взаимоотношения между различными логическими системами, но и для уточнения статуса логики.
Литература:
1. Жегалкин И.И. Арифметизация символической логики. – «Матем. сб.», т. 35. Вып. 3–4. М., 1928;
2. Яновская С.А. Основания математики и математическая логика. – В кн.: Математика в СССР за тридцать лет (1917–1947). М.–Л., 1948;
3. Она же. Математическая логика и основания математики. – В кн.: Математика в СССР за сорок лет (1917–1957), т. 1. М., 1959;
4. Сб. статей по математической логике и ее приложениям к некоторым вопросам кибернетики. М, 1958;
5. Войшвилло Е. К. Метод упрощения форм выражения функций истинности. – «Философские науки», 1958, № 2;
6. Кузнецов А.В. Алгоритмы как операции в алгебраических системах. – «Успехи математических наук», 1958, т. 13, в. 3;
7. Новиков П.С. Элементы математической логики. М., 1973;
8. Биркгоф Г. Теория решеток. М., 1952;
9. Владимиров Д.А. Булевы алгебры. 1969;
10. Гиндикин С.Г. Алгебра логики, в задачах. М., 1972;
11. Кудрявцев В.Б. О функциональных системах. М., 1981;
12. Яблонский С.В., Гавршов Г.П., Кудрявцев В.Б. Функции алгебры логики и классы Поста. М., 1966;
13. Фридлендер Б.И., Ревякин А.М. Булева алгебра и ее применение в задачах электроники: учебное пособие. М., 1993;
14. Algebraic logic and the methodology of applying it. – CSLI Publications, 1995;
15. Andérka H., Németi I., Sain I. Algebraic Logic. – Handbook of philosophical logic (2 ed.), forthcoming;
16. Blok W.J., Pigozzi D. Algebraizable logics (monograph). – Memoirs of the American Mathematical Society, 1989, № 396;
17. Font J. M., Jansana R. A general algebraic semantics for sentential logics. В., 1996;
18. Handbook of Boolean algebras, Ed. J.D.Monk with the coop. R.Bennet, v. I–III. Amst., 1989;
19. Németi I., Andérka H. General algebraic logic: a perspective on «What is logic». – What is logical system? Oxf., 1994; N.Y., 1995;
20. Rasiowa H. An algebraic approach to non-classical logics. Warsz., 1974.











