Для чего нужна формула герона
Формула Герона, или Как найти по трем сторонам площадь треугольника
Треугольник является самой простой замкнутой на плоскости фигурой, состоящей всего из трех между собой соединенных отрезков. В задачах по геометрии часто необходимо определить площадь этой фигуры. Что для этого нужно знать? В статье ответим на вопрос, как по трем сторонам найти площадь треугольника.
Общая формула
Вам будет интересно: Педагогический колледж в Каменске-Уральском: талант преподавателей и энтузиазм молодежи
Этим выражением можно воспользоваться, если известны хотя бы две стороны и значение угла между ними. В этом случае высоту h несложно рассчитать с использованием тригонометрических функций, например, синуса. Но как найти по трем сторонам треугольника площадь, знает далеко не каждый.
Формула Герона
Именно эта формула является ответом на вопрос, как по трем сторонам найти площадь треугольника. Прежде чем ее записать, обозначим длины отрезков произвольной фигуры как a, b и c. Формула Герона записывается в следующем виде: S = √(p*(p-a)*(p-b)*(p-c)).
Несмотря на кажущуюся громоздкость, приведенное выражение для площади S запомнить легко. Для этого следует сначала рассчитать полупериметр треугольника, затем вычесть из него по одной длине стороны фигуры, перемножить все полученные разницы и сам полупериметр. В конце следует взять квадратный корень от произведения.
Данная формула носит имя Герона Александрийского, жившего в начале нашей эры. Современная история полагает, что именно этот философ впервые применил указанное выражение для выполнения соответствующих вычислений. Эта формула опубликована в его труде «Метрика», который датируется 60-м годом нашей эры. Отметим, что некоторые работы Архимеда, жившего на два столетия раньше Герона, содержат признаки того, что греческому философу была уже известна формула. Кроме того, как найти площадь треугольника, зная три стороны, также знали древние китайцы.
Важно отметить, что поставленную задачу можно решить, не зная о существовании формулы Герона. Для этого следует провести в треугольнике пару высот и воспользоваться общей формулой из предыдущего пункта, составив соответствующую систему уравнений.
Выражение Герона можно использовать для вычисления площадей произвольных многоугольников, предварительно разбивая их на треугольники и вычисляя длины возникающих диагоналей.
Пример решения задачи
Зная, как по трем сторонам найти площадь треугольника, закрепим полученные знания с помощью решения следующей задачи. Пусть стороны фигуры равны 5 см, 4 см и 3 см. Нужно найти площадь.
Известны три стороны треугольника, значит, можно воспользоваться формулой Герона. Вычисляем полупериметр и необходимые разности, имеем:
Тогда получаем площадь: S = √(p*(p-a)*(p-b)*(p-c)) = √(6*1*2*3) = 6 см2.
Приведенный в условии задачи треугольник является прямоугольным, что нетрудно проверить, если воспользоваться теоремой Пифагора. Поскольку площадь такого треугольника половине произведения катетов равна, то получаем: S = 4*3/2 = 6 см2.
Полученное значение совпадает с аналогичным для формулы Герона, что подтверждает справедливость последней.
Формула Герона.
Формула Герона позволяет определить площадь треугольника (S) из его сторон a, b, c.
Чтобы вычислить площадь треугольника ∆ABC, если известны длины его сторон a, b и c, используют формулу Герона:
где p — полупериметр треугольника:
.
Рассмотрим нахождение площади треугольника с помощью формулы Герона:
Есть треугольник со сторонами a = 5, b = 6, c = 7. Вычислим полупериметр:
Далее подставляем данные в формулу для определения площади:
Формула Герона, доказательство.
В нем: CH — высота треугольника ABC, которая проведена из вершины C, |CH|=h, |AH|=x, |BH|=y.
Тогда c=x+y, и из теоремы Пифагора из треугольников ACH и BCH имеем:
Учитывая, что x+y=c, получаем и
.
Складываем последнее равенство с равенством y+x=c, получаем:
Далее находим высоту h треугольника:
Подставляем эти выражения в определенное выражение для h 2 :
Учитываем то, что , получаем требуемое.
Формула Герона для треугольника
В данной публикации мы рассмотрим формулу Герона, пользуясь которой можно найти площадь треугольника. Также разберем примеры решения задач для того, чтобы закрепить представленный материал.
Формула площади
Площадь треугольника ( S ) равняется квадратному корню из произведения его полупериметра ( p ) на разности полупериметра и каждой из его сторон ( a, b, c ).
Полупериметр ( p ) вычисляется таким образом:
Примечание: для использования формулы необходимо знать/найти длину всех сторон треугольника.
Формула получила такое название в честь греческого математика и механика Герона Александрийского, который изучал треугольники с целочисленными сторонами и площадью (героновские). К таким, например, относится прямоугольный треугольник с соотношением сторон 3:4:5, который также называют египетским.
Примеры задач
Задание 1
Найдите площадь треугольника со сторонами 6, 8 и 10 см.
Решение
Для начала найдем полупериметр:
p = (6 + 8 + 10) / 2 = 12 см.
Задание 2
В прямоугольном треугольнике длина гипотенузы равняется 15 см, а одного из катетов – 9 см. Вычислите площадь фигуры.
Полупериметр треугольника равен:
p = (9 + 12 + 15) / 2 = 18 см.
Что можно вычислить по формуле Герона
Формула Герона
Формула Герона носит такое название в честь греческого математика и инженера Герона Александрийского. Он жил в I веке нашей эры. Герон занимался механикой, оптикой, геометрией и гидростатикой. Учёный интересовался треугольниками с целочисленными сторонами и целочисленными площадями. Такие фигуры получили название Героновых треугольников.
Формулировка теоремы Герона
Формула Герона – это арифметическая формула для вычисления площади треугольника по длинам его сторон. В таком случае площадь равна корню из произведения разностей полупериметра и каждой из его сторон.
Формула и доказательство
Формула Герона выглядит следующим образом:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
где S – это площадь треугольника; a, b, c – это стороны треугольника; p – это полупериметр треугольника.
Чтобы вычислять полупериметр, нужно пользоваться формулой:
Приведем доказательство.
Для этого рассмотрим треугольник ABC.
CH – высота треугольника.
По теореме Пифагора из треугольников ACH и BCH получаем:
Найдем высоту треугольника.
С помощью этих равенств найдем высоту.
Для каких треугольников действует теорема
Применение формулы Герона допустимо для треугольников, у которых известны длины всех их сторон.
Примеры решения задач
Задача 1
Рассчитать площадь треугольника, если a=6, b=8, c=6.
Решение
Тогда площадь треугольника равна:
Задача 2
Вычислить площадь параллелограмма, если одна из его сторон равна 51, а диагонали равны 40 и 74.
Решение
Диагонали AC и BD пересекаются в точке O.
Если AD = 51, AC = 40 и BD = 74, то AO = 20, OD = 37.
Задача 3
В треугольнике ABC три стороны: AB = 26, BC = 30 и AC = 28. Найти часть площади этого треугольника, заключённую между высотой и биссектрисой, проведёнными из вершины B.
Решение
BP и BQ – высота и биссектриса треугольника.
По свойству биссектрисы треугольника:
По теореме Пифагора из треугольника APB получаем:
Следовательно, \(PQ = AQ – AP = 13 – 10 = 3\)
Формула Герона
Фо́рмула Герона позволяет вычислить площадь треугольника (S) по его сторонам a, b, c:
где p — полупериметр треугольника: .
где — угол треугольника, противолежащий стороне
. По теореме косинусов:
.
Замечая, что ,
,
,
, получаем:
История
Эта формула содержится в «Метрике» Герона Александрийского (I века н. э.) и названа в его честь. Герон интересовался треугольниками с целочисленными сторонами, площади которых тоже являются целыми. Такие треугольники носят название героновых треугольников. Простейшим героновым треугольником является египетский треугольник.
Вариации и обобщения
См. также
Полезное
Смотреть что такое «Формула Герона» в других словарях:
Итерационная формула Герона — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка… … Википедия
ГЕРОНА ФОРМУЛА — выражает площадь S треугольника через длины трех его сторон a, b и c и полупериметр P = (a + b + c)/2Названа по имени Герона Александрийского … Большой Энциклопедический словарь
Герона формула — формула выражающая площадь треугольника через три его стороны. Именно, если а, b, с длины сторон треугольника, a S его площадь, то Г. ф. имеет вид: где через р обозначен полупериметр треугольника Г. ф.… … Большая советская энциклопедия
ГЕРОНА ФОРМУЛА — формула, выражающая площадь треугольника через его стороны a, b, с: где Названа по имени Герона (ок. 1 в. Н. Э.), А. Б. Иванов … Математическая энциклопедия
ГЕРОНА ФОРМУЛА — выражает площадь 5 треугольника через длины трёх его сторон а, b и с и полупериметр р = (а + b + с)/2: s = кв. корень p(p a)(p b)(p c). Названа по имени Герона Александрийского … Естествознание. Энциклопедический словарь
Герона формула — … Википедия
Герон — Александрийский Ήρων ο Αλεξανδρεύς Научная сфера: механика … Википедия
Треугольник — У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник (в евклидовом пространстве) это геометрическая фигура, образованная тремя отрезками, которые соединяют три не лежащие на одной прямой точки. Три точки,… … Википедия