Для чего нужна катушка
Индуктивная катушка: что это и где используется
Индукционная катушка — это дроссель или изолированный проводник. Используется электрический каркас, композитные вставки. При рассмотрении понятия необходимо изучить свойства, основные особенности катушки индуктивности.
Определение устройства
Катушка индуктивности — это устройство, которое обладает малой емкостью и значительным сопротивлением. Дроссель является отменным проводником электрического тока, учитывается высокий показатель инерционности. Устройства применяются в качестве свернутого изолированного проводника. Винтовые, спиральные модификации способны справляться с помехами, колебаниями в сети.

Важно! Устройство работает в цепях переменного тока при низкой и высокой частоте.
Назначение и принцип действия
Специалисты задаются вопросом, зачем нужна токовая катушка индуктивности в цепи, и для этого необходимо разобраться в показателях. Коэффициент ЭДС (электродвижущая сила) показывает разницу между энергией и магнитным потоком. Устройства самоиндукции способны влиять на изменения в цепи. Чаще всего дроссели применяются в силовых установках. Они способны контролировать уровень напряжения, не допускают разрыва цепи.

Также компоненты устанавливаются на пару с конденсаторами либо резисторами. Благодаря работе катушки фильтры находятся в безопасности. Теперь вызывает интерес, как включается индукционная катушка. Принцип работы построен на изоляции проводников. В конструкции используется электрический каркас с различным сечением. За счёт намоток обеспечивается распределение ёмкости на дросселе.
Интересно! Витки наматываются с определенным шагом, многое зависит от типа катушки.
Виды и типы
Различают низкочастотные, высокочастотные модели. В отдельную категорию выделяют винтовые, спиральные катушки. Также существуют модификации, которые используются в радиотехнике. Они подходят для защиты конденсатора либо резонансных контуров.

Для трансформаторов годятся катушки с усилителем каскадом. В последнюю категорию выделены вариометры, основное отличие — высокая частота колебательных контуров. Дроссели могут быть одинарными либо сдвоенными. От этого зависит показатель индуктивности и питания системы.
Низкочастотные
Для включения в электрическую цепь, применяется низкочастотная катушка индуктивности. Она предназначена для подавления переменного тока. В формуле учитывается циклическая частота и показатели индуктивности. За основу в устройствах берётся сердечник, который изготавливается из стали. Он может быть с фильтрами либо без них.
Чтобы влиять на частоту, происходит игра с сопротивлением. В цепи постоянного тока напряжение должно быть неизменным. С целью понижения частоты применяются фильтры. Основная проблема — это малая ёмкость. Чтобы детально ознакомиться с дросселем, стоит подробнее узнать о резонансной частоте, которая выделяется на контуре рабочего сигнала.
Когда в цепях повышается напряжение, на каркас оказывается нагрузка. В цепи постоянного тока задействуются непрозрачные проволочные резисторы. Также для этих целей подходят однослойные катушки типа «универсал». Их особенность — использование ферритовых стержней.

Высокочастотные
Устройства изготавливаются с различными типами обмотки. Речь идет о наборе преимуществ, которые спасают в той или иной ситуации. Сфера применения элементов широка, учитывается значительная частота модуляции. Таким образом удается бороться с повышенным сопротивлением металлов. У катушек имеется сердечник.
Основная задача — это модуляция частоты генератора. Она происходит за счёт усиления сигнала, и за процессом можно проследить при подключении осциллографа. Многие высокочастотные катушки не отличаются стабильной работой, поскольку применяется керамический каркас. У него малый срок годности, плюс они восприимчивы к повышенной влажности.
Интересно! Современные товары изготавливаются из алюминия и являются компактными.
Электрикам известны контурные, безконтурные модификации высокой частоты. В зависимости от намотки учитывается стабильность электрических параметров. У моделей высокой частоты могут применяться магниты и провода. Речь идет о порошковых материалах, сделанных из диэлектриков.
Процесс изготовления связан с методом холодного прессования. Индуктивные датчики отличаются по защищенности. На предприятиях элементы могут погружать в раствор либо продевать в трубку. Это делается с целью избежания коротких замыканий. Мировые производители решают проблему путем использование вторичного витка.

У моделей значительное сопротивление и есть проблема с концентрацией электролита. Таким образом изменяются свойства катушки индуктивности. Проводимость раствора падает и повышается частота электромагнитного поля.
Основные технические параметры
Катушки индуктивности имеют следующие характеристики:
Стабильность демонстрирует свойства устройства при изменении условий использования. Температура фиксируется вследствие различных причин. Многое зависит от размера каркаса. Когда температура уменьшается, индуктивность также снижается. Современные параметры — это цикличность, которая является отношением температуры к линейному расширению. Учитывается изменение в керамической основе плюс показатель плотности.
Температура отслеживается на горячей намотке. В этом плане хорошо себя показали многослойные дроссели с сердечником, которые сделаны из карбонильного железа. Ёмкость отображает количество витков катушки, берется в расчет количество секций и контуров. Высокочастотные модели считаются более емкостными и стабильными.
Номинальная индуктивность — это параметр, который учитывает изменение размеров волны. Измерение происходит в микрогенрах. Если смотреть на формулу, учитывается количество витков, длина намотки, плюс диаметр катушки.
Маркировка
При рассмотрении катушек индуктивности оценивается цветовая и кодовая маркировка. Если смотреть на первые цифры, отображается показатель индуктивности. Далее учитывается параметр отклонения:
В нестабильной цепи переменного электрического тока не обойтись без катушки индуктивности. Выше описаны основные типы изолированных проводников, продемонстрированы их параметры. Учитывается уровень частоты, а также свойства.
Как работает катушка индуктивности: ЛикБез
В радиоэлектронике частенько встречается такая штука, как катушка индуктивности. Ещё её называют индуктивным элементом. Эта деталь довольно важна и понимание принципа её функционирования важно для каждого грамотного человека, поэтому, давайте вместе разбираться для чего она нужна и как работает.
Что такое индуктивность «на пальцах»
Прежде, чем вникать в принцип работы катушки индуктивности, давайте вспомним, что вообще такое индуктивность в курсе физики и для чего она нужна или из-за чего появляется. Несмотря на то, что словом «индуктивность» часто упрощенно называют соответствующую радиодеталь, у термина есть и прототип в виде физического понятия. Вы наверняка помните, что если пропускать через провод электрический ток, то вокруг провода появляется магнитное поле.
Вокруг проводника с током появляется магнитное полеЕсли же согнуть этот проводник в бараний рог, то и линии магнитной индукции согнутся вместе с этим проводником. Получится довольно занятная картинка.
Магнитное поле вокруг согнутого проводника с токомСиловые линии магнитного поля от каждого витка проводника будто круги на воде объединяются и формируют внутри такой нехитрой конструкции почти прямые линии магнитной индукции. Полученная котовасия внутри пружины носит название «магнитный поток» и обозначается буквой Ф.
Ну и. Напрашивается сама катушка индуктивности
Собственно, логично предположить,что если скрутить такую пружинку особым образом, то можно получить разные индуктивности. Сделали пружинку и получили деталь с некоторой индуктивностью. Ну а если внутри такой детали разместить ещё и сердечник из определенного материала, то индуктивность тоже будет меняться.
Страшная самоиндукция
Есть у катушек индуктивности и ещё одно важное свойство, про которое просто необходимо знать! Это самоиндукция. Благодаря самоиндукции, сила тока в катушке индуктивности не может моментально увеличиваться или моментально падать. Она постепенно нарастает и постепенно уменьшается. Эффект по логике напоминает инертность в механике.Происходит это из-за того, что сформированный в катушке ток будет направлен против тока от источника питания и тем самым окажет ему сопротивление.Причиной порождения электрического тока в катушке является переменное магнитное поле. Мы ведь помним, что там, где магнитное поле, там и электрический ток. И наоборот.Вечная связка.
Вот и получается, что изменение магнитного поля катушки является причиной появления в ней нового электрического тока (или правильнее, но не понятнее говорить ЭДС самоиндукции), который препятствует прохождению основного тока. И пока он «раскочегарится» на максимальные значения выйти не получится. Как не получится и мгновенно всё отключить. А определяется всё это индуктивностью катушки или её способностью превращать электрический ток в магнитное поле. Ситуация очень запутанная и довольно сложная. Да и наука не до конца может объяснить каждый процесс. Поэтому, мы пользуемся стандартным определением и просто принимаем как факт, что есть такая закономерность. Ну и теперь логично предположить, что все эти фишки катушки индуктивности можно было бы удобно применить на практике. А как?
Для чего нужны катушки индуктивности?
Специфическая особенность этой детали позволяет делать весьма интересные схемы и получать самые разные результаты. Давайте перечислим только некоторые из них:
Смотрите мой проект на YouTube и подписывайтесь на телеграм!
Использование катушек индуктивности в быту: их устройство, особенности конструкции и назначение
Катушка индуктивности — это часть техники в цепи, используемые для самых разных функциональных возможностей. Например, их используют:
Из-за широкого применения данный элемент часто встречается как в устройствах малой, так и на устройствах большой мощности. Сегодня рассмотрим, где используют такие элементы и как они функционируют.
Принцип функционирования
Итак, данные элементы представляют собой устройства со спиральными обмотками из изолированных проводников. Такие устройства обладают повышенной индуктивностью, что является их преимуществом с учётом меньшей ёмкости.
Магнитное поле устройств способствует накоплению энергии. На картинке ниже можно увидеть, как такие элементы изображаются на схемах. Катушка индуктивности обозначена буквами «УГО».
Некоторые работают с сердечником, некоторые нет. Сердечник сильно повысит индуктивность элемента. Кроме того, степень индуктивности зависит от материалов, из которых создан сердечник в устройстве. Сердечники бывают сплошными и разомкнутые, во втором случае в них есть зазоры.
Подробнее рассмотрим принцип работы устройства. При повышении индукции ток всё меньше отстаёт от изменения напряжений. При этом в цепях переменного тока токовые фазы не отстают от фазы напряжения. На этом и основана работа элементы: энергия может накапливаться, а ток может задерживаться в цепях.
Это означает следующее: в случае разрыва цепей с повышенной индукцией напряжение станет повышенным, образуя электрическую дугу. Если конструкция включает в себя полупроводниковые ключи, их пробьёт.
Чтобы этого не произошло, необходимо задействовать снабберную цепь. Её создают из резисторов и конденсаторов, устанавливая параллельным способом с ключом.
Как различаются катушки индуктивности
Данные элементы цепей обладают большим количеством видов и типов, которые зависят от способа и целей их использования. Иногда их разделяют по частотам. Среди них можно выделить следующие виды:
От параметров устройства индуктивности зависит его особенности конструкции.
Намотки выполняют как в один, так и в несколько слоёв, приматывают к виткам или с расстоянием друг от друга. При этом различается даже расстояние: в зависимости от длины различают постоянные и прогрессивные шаги витков. От выбора вида наматывания и конструкции зависит конечный размер катушки.
Вариометр — это катушка, где индуктивность является переменной, она устроена немного иначе стандартных катушек.
Встречаются разные решения этого вида катушки:
Ротор является движущейся частью катушек. Статор неподвижной частью. Способы намоток тоже могут являться классификацией для катушек. Например, намотки в две стороны могут устранять помехи в сетях. Намотки по одной стороне устраняют помехи дифференциала.
Зачем используют
Как мы уже отмечали в нашей статье, катушки имеют очень широкое применение в электрических приборах. Ниже более подробно расскажем, где и в каких устройствах их используют. Катушка как дроссель. Чаще всего ограничивают ток. Применяют в следующих цепях:
Как ограничитель токов при коротких замыканиях на линиях электропередач тоже используют катушки в виде ограничивающих ток реакторов. При этом дроссели должны обладать пониженным сопротивлением, чтобы уменьшать нагрев.
Встречаются катушки контурного типа. При этом их применяют в электрических цепях вместе с конденсаторами. Частоты резонансов подбираются по частотам приёма и передач.
Катушка индуктивности как вариометр. Такие устройства можно настраивать. Могут очень точно настроить частоту. Встречаются в контурах колебаний.
Катушки индуктивности как соленоиды. Это элементы, которые длиннее своих диаметров. Благодаря этому в них образуются равномерные магнитные поля. Используют в механизмах с поступательным движением. Иногда такую катушку называют «электромагнитом». Более подробно расскажем, где использует такой вид устройства.
Соленоиды имеют широкое распространение. Они активируют замок в автомобиле, где штоки втягиваются, когда на элемент подаётся напряжение.
Они бывают звонками, или устройствами клапанов, магнитами на грузоподъёмных машинах на промышленных предприятиях.
В качестве электромагнитов такие катушки задействованы:
Обычно в таких ситуациях их называют не соленоидами, а обычными катушками. Используются в качестве рамочной и кольцевой антенны. При этом они передают радиосигнал.
Применяют в машинах, в искателях металла и других устройствах, где передаются сигналы на дистанции.
В качестве нагревателя с индукцией. Данные устройства чаще называют просто «индуктором». В качестве сердечников используется нагревательный элемент, как правило, выполненный из металлических материалов.
Характеристика элементов
К исключительным параметрам данного устройства относят следующие:
Маркирование элемента
Как и во всех маркировках, для них используют маркирование буквами и цветом. Маркировка буквами имеет несколько различий.
Маркирование цветом распознаётся как цвет на резисторах.
Это основные моменты, которые стоит знать об их функционировании и использовании. Если Вы хотите расширить знания и получить больше информации о работах катушек индуктивности, советуем посмотреть несколько видео от экспертов.
Для чего нужна катушка индуктивности
Стандартная конструкция катушки индуктивности состоит из изолированного провода с одной или несколькими жилами, намотанными в виде спирали на каркас из диэлектрика, имеющего прямоугольную, цилиндрическую или тороидальную форму. Иногда, конструкции катушек бывают бескаркасными. Наматывание провода производится в один или несколько слоев.
Для того, чтобы увеличить индуктивность, используются сердечники из ферромагнитов. Они же позволяют изменять индуктивность в определенных пределах. Не всем до конца понятно, для чего нужна катушка индуктивности. Ее используют в электрических цепях, как хороший проводник постоянного тока. Однако, при возникновении самоиндукции, возникает сопротивление, препятствующее прохождению переменного тока.
Разновидности катушек индуктивности
Существует несколько вариантов конструкций катушек индуктивности, свойства которых определяют и сферу их использования. Например, применение контурных катушек индуктивности вместе с конденсаторами, позволяют получать резонансные контуры. Они отличаются высокой стабильностью, качеством и точностью.
Катушки связи обеспечивают индуктивную связь отдельных цепей и каскадов. Таким образом, становится возможным деление базы и цепей по постоянному току. Здесь не требуется высокой точностью, поэтому, для этих катушек используется тонкий провод, наматываемый в две небольшие обмотки. Параметры данных приборов определяются в соответствии с индуктивностью и коэффициентом связи.
Некоторые катушки используются в качестве вариометров. Во время эксплуатации их индуктивность может изменяться, что позволяет успешно перестраивать колебательные контуры. Весь прибор включает в себя две последовательно соединенных катушки. Подвижная катушка вращается внутри неподвижной катушки, тем самым, создавая изменение индуктивности. Фактически, они являются статором и ротором. Если их положение изменится, то поменяется и значение самоиндукции. В результате, индуктивность прибора может измениться в 4-5 раз.
В виде дросселей используются те приборы, у которых при переменном токе отмечается высокое сопротивление, а при постоянном – очень низкое. Благодаря этому свойству, они используются в радиотехнических устройствах в качестве фильтрующих элементов. При частоте 50-60 герц для изготовления их сердечников применяется трансформаторная сталь. Если частота имеет более высокое значение, то сердечники изготавливаются из феррита или пермаллоя. Отдельные разновидности дросселей можно наблюдать в виде так называемых бочонков, подавляющих помехи на проводах.
Где применяются катушки индуктивности
Сфера применения каждого такого прибора, тесно связана с особенностями его конструкции. Поэтому нужно обязательно учитывать ее индивидуальные свойства и технические характеристики.
Применение катушек индуктивности
Если хорошо подумать, то всевозможных применений для такой простой на первый взгляд вещи как катушка индуктивности просто не счесть. В рамках одной статьи мы вспомним лишь некоторые из них. А между тем, человеческие изобретательность и талант не устают творчески проявлять себя, придумывая и разрабатывая все новые и новые устройства и механизмы на базе катушки индуктивности.
Казалось бы, что тут можно соорудить? Бесхитростный моток проволоки, может быть сердечник определенной формы, и ток, проходящий по проводу в постоянной, переменной или импульсной форме. А между тем, без катушек индуктивности вся современная электротехника просто не могла бы существовать. Давайте внимательно приглядимся.
Грузоподъемный электромагнит
Грузоподъемники в форме шайб-элекромагнитов применяют по всему миру на протяжении многих лет для погрузки ферромагнитных отходов. Подав в рабочую обмотку электрическую мощность в 18кВт, можно удержать и погрузить за раз более 2 тонн железа, тогда как развиваемое при данной мощности отрывное усилие превышает 25 тонн.
Электромагнит диаметром примерно 1,5 метра просто цепляется крюком подъемного крана, запитывается, как правило, трехфазным переменным напряжением, и можно оперативно вести погрузку ферромагнитных материалов или каких-нибудь железных изделий. Секционированные обмотки нескольких катушек индуктивности получают ток, намагничивая сердечник из специального сплава, а он в свою очередь притягивает, допустим, металлолом, который требуется погрузить в вагоны.
Электромагнитное реле
Допустим, вам необходимо просто прикоснуться пальцем к сенсору, а результатом должен стать процесс подключения к (или отключения от) сети мощной нагрузки, например лампы или двигателя. На помощь приходят электромагнитные реле. Благодаря реле вы можете отказаться от огромных кнопок выключателей, вместо этого теперь можно просто дотрагиваться до микрокнопок, на которые будет реагировать электронная схема, функция которой — подавать питание на обмотку реле или снимать с нее питание. Обмотка реле — это обмотка электромагнита (опять же катушка индуктивности), который притягивает подпружиненный контакт, выполняющий роль механического выключателя.
Трансформатор
Первичная обмотка при прохождении по ее проводу переменного тока, создает в объеме сердечника переменный магнитный поток, который пронизывает витки вторичной обмотки, и наводит в ней ЭДС, создает напряжение вторичной обмотки. Трансформаторы повышают напряжение электростанций и подают их на ЛЭП, а затем понижают напряжение от ЛЭП, и подают его в наши дома.
Не было бы трансформаторов (катушек индуктивности в роли первичной и вторичной обмоток) — не было бы ни передачи, ни распределения электроэнергии. Не говоря уже о лабораторных автотрансформаторах, сварочных трансформаторах, трансформаторах на феррите в импульсных блоках питания, и конечно ни о каких катушках зажигания в автомобилях речи бы не шло, а ведь катушки зажигания — это тоже особые, но трансформаторы, то есть снова катушки индуктивности.
Дроссель
Для преобразования электроэнергии в импульсных источниках питания используются специальные катушки индуктивности — дроссели. Функция такой катушки — сначала накопить энергию в форме магнитного поля в сердечнике, запасти ее там, потом — отдать нагрузке. Если трансформатор в одно и то же время преобразует электроэнергию, то дроссель — сначала энергию принимает, потом — отдает.
Процесс преобразования электроэнергии у дросселя разделен во времени. Тем не менее, вот вам снова применение катушки индуктивности, главного ее свойства. Импульс тока подается на обмотку дросселя, дроссель запасает энергию в магнитном поле. Затем импульс тока уже не действует, но к дросселю подключена нагрузка, и ток дросселя устремляется через нагрузку, но уже при другом напряжении, зависящем от временных характеристик схемы управления преобразователем. Так катушка индуктивности сплошь и рядом, например в энергосберегающих лампах, работает совместно с полупроводниковыми ключами.
Индукционные печи и индукционные плиты
Катушка индуктивности — это катушка с сердечником. А что если в качестве сердечника внутрь катушки, в ее поле действия, ввести какую-нибудь заготовку из ферромагнитного материала, который требуется нагреть вихревыми токами? Именно так работают индукционные печи и индукционные плиты. Катушка индукционного нагревателя выступает для ферромагнитной заготовки индуктором, наводя в ней вихревые токи высокой частоты, приводящие к разогреву заготовки вплоть до плавления.
Фильтр ВЧ-помех
Катушка индуктивности обладает свойством препятствовать изменению тока, она проявляет своего рода электромагнитную инерционность, заставляя ток как-бы просачиваться сквозь себя, потому что пока ток нарастает через катушку, создаваемое им магнитное поле не может изменяться мгновенно, изменение требует времени, катушка индуктивности словно тормозит своим магнитным полем изменение тока в собственном проводе.
В составе колебательного контура
Кстати, индукционные нагреватели зачастую имеют индуктор, соединенный параллельно с конденсатором, в таких условиях катушка индуктора тоже является составной частью колебательного контура. Кроме того, сам резонансный контур может выступать в качестве фильтра — пропускать и усиливать токи частот близких к собственной резонансной частоте, и подавлять частоты далекие от нее. В радиоприемниках антенны на феррите — тоже являются частью перестраиваемого колебательного контура.
Роторы и статоры двигателей и генераторов
Статор этого же генератора имеет трехфазную обмотку — это своего рода модификация катушки индуктивности. Даже асинхронный двигатель — и тот имеет обмотку статора, которую можно тоже назвать катушкой индуктивности. Мало того, индуктивности этих статорных катушек учитываются как таковые при подборе рабочих конденсаторов, например когда трехфазный двигатель необходимо адаптировать к питанию от однофазной цепи.
Датчики перемещения и положения
Индуктивные датчики перемещения и положения — это катушки индуктивности с модифицированными сердечниками. Часть сердечника катушки в форме пластины, перемещаясь изменяет индуктивность катушки, и частотные параметры схемы изменяются из-за изменения индуктивности. Так фиксируется наличие объекта в поле действия датчика. Или цилиндрический сердечник в форме штока может смещаться по мере движения связанного с ним объекта, и по частотным параметрам, связанным с изменяемой индуктивностью катушки, сердечник которой двигается, считывается информация о положении объекта.
Направление луча в ЭЛТ
В некоторых мониторах с электронно-лучевыми трубками поток заряженных частиц фокусируется и отклоняется специальными катушками отклоняющей системы. Катушки индуктивности отклоняющей системы установлены на ферритовом сердечнике особой формы, в который вставляется электронно-лучевая трубка. Регулируя ток в обмотках, схема изменяет параметры суммарного магнитного поля всех катушек системы, в результате лучу создается определенный путь для попадания в точно рассчитанное место на экране.
Электроклапан, электрозамок, втягивающее реле
Подобно магниту, который притягивает железные предметы, катушка способна втянуть в себя ферромагнитный сердечник той или иной формы. Приблизительно по такому принципу работают некоторые электрические замки, электромагнитные клапана и, как пример, втягивающее реле автомобильного стартера, перемещающее бендикс, и удерживающее его некоторое время в рабочем положении, пока двигатель не будет пущен. Мощная катушка сначала втягивает якорь, затем удерживает его. По выключении тока, бендикс возвращается на место пружиной.
Катушки магнитного удержания плазмы
Катушка Тесла
Говоря о катушках индуктивности, нельзя не вспомнить о легендарной катушке (или резонансном трансформаторе) Тесла. В данном случае катушка индуктивности работает одновременно и как трансформатор, и как колебательный контур, и как приемная антенна с открытой емкостью. Здесь нет конденсатора параллельно резонирующей катушке, как в индукционном нагревателе, но есть уединенная емкость в виде тороида.
Каждая катушка кроме параметра «индуктивность», обладает еще и емкостью, и собственным волновым сопротивлением. Все эти параметры учитываются при настройке трансформатора Тесла. Казалось бы, просто заземленная катушка индуктивности с тороидом наверху, введенная в собственный резонанс. Но как эффектно смотрится!
















