Для чего нужна локализация гнсс

Исполнительная-схема.ру

Инструкция по работе с GNSS/GPS оборудованием

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнссОсновы работы с GPS оборудованием

Ниже приведу краткий набор теоретических знаний, которые помогут при работе с GPS оборудованием. О том что такое GPS, про всякие там спутники, частоты и т.д. – почитаете в интернете. Мы будем заниматься конкретными вещами, необходимыми для успешной съемки.

Виды GPS-Оборудования

Что влияет на качество сигнала GPS?

Понижают качество измерений следующие факторы:

Наличие препятствий вокруг приемника (строений, деревьев). Каждый приемник обычно показывает количество спутников, сигнал от которых он принимает. В теории для работы приемника достаточно 4 общих спутника (общих для базы и ровера).

На практике при числе спутников:

Число спутников Действия
меньше 6Нельзя проводить измерения. Надо дождаться повышения количества спутников или поменять позицию
6-8Можно начинать работать, но время измерений желательно увеличить
9 и болееНормальное количество

Так что GPS могут хуже работать в лесу, между домами, которые закрывают горизонт прибору и т.д. Также если вы устанавливаете GPS на пункте триангуляции, где сохранилась металлическая пирамида – увеличьте время стояния. Металл над антенной GPS тоже плохо влияет на измерения.

Объекты создающие активные помехи:

Объекты, которые формируют вокруг себя электромагнитное поле – негативно влияют на прием сигналов GPS. К таким объектам относятся линии электропередач, активные радары аэропортов и военных объектов, промышленное электронное мощное оборудование. То есть лучше избегать ставить GPS под линиями электропередач.

Геометрический фактор PDOP

PDOP – это коэффициент, который показывает «насколько хорошо GPS сейчас работается» Это основной параметр, который отображается во многих GPS приборах.
Значения PDOP:

Значение Действия
1-3Хорошее качество можно работать
3-7Удовлетворительное качество, но лучше увеличить время сеанса на 50%
7 и болееПлохое качество. Измерения могут не обрабатываться.

Режимы работы GPS

«Статика» (STATIC)

Метод статических определений. Наиболее точный из всех методов. Позволяет получить миллиметровую точность. Используется для передачи координат от изветсных пунктов к определяемым пунктам. Минимальный комплект приемников: 2 штуки. Один из приемников называют «база», второй «ровер». Базовый приемник устанавливается над пунктом с известными координатами. Замеряется его высота над точкой и он включается. Затем второй приемник (ровер) устанавливается на объекте над точкой, координаты которой мы хотим узнать. Приемники работают некоторое время. После измерений ровер переставляют на другие определяемые точки и повторяют наблюдения. Потом данные обрабатывают на компьютере и получают координаты определяемых точек. При этом измерения можно вводить в «сеть». Например провести насколько сеансов в разное время с разных пунктов, разными приемниками – свести их в единую сеть на компьютере, обсчитать и уравнять.

Цепочка информации будет выглядеть так:

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Тут критически важно знать, что время измерений – это время в течении которого работают оба приемника (совместно). Именно совместная работа приемников с наличием общих спутников потом позволит получить координаты точек. От одной базы может работать множество роверов.

Пример временной записи:

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

В этом примере всего процесс занял у нас 2 часа (12-14), но полезное время совместных измерений было только 30 минут (12:30 – 13:30). Надо указать, что расстояние между базой и ровером для приемников L1 не должно превышать 20км, а для приемников L2 – до 50 км. Измерения при базисе больше 50 км для приборов L2 проводить можно, но они обрабатываются в специальных программах. Ограничение по расстоянию связано с кривизной земли и наличием общих спутников во время сеанса наблюдений. Однако стоит сказать, что когда я работал в аэрофотосъемке — мы используя специальные программы и приборы типа L2 обрабатывали базисы в 200-300 км. То есть это возможно, но требует дополнительных знаний.

Расчет времени работы в статике:

Каждая модель GPS приемника имеет обычно свои указания по расчету времени работы. Ниже приведу «примерное» время работы исходя из своего опыта. Основные параметры влияющие на время сеанса: количество спутников, расстояние между приемниками и PDOP. Обычно достаточно знать расстояние между приемниками для планирования сеанса.

Расчет времени работы в статике приборами L1:

РасстояниеВремя сеанса
0-5км20 мин
(лучше 30 мин)
5-101 час
10-202 часа
20-…3 часа

Расчет времени работы в статике приборами L2:
Общая формула 10 мин. + 0,5минут на км
Пример: Расстояние базиса 20 км = 10мин+0,5*20мин = 20мин
2й вариант (более точный)

Количествово спутниковФормула
1010мин+2мин/км
810мин+5мин/км
610мин+10мин/км

Есть основное правило:
— Если все хорошо и до пункта менее 10 км – стоим 30 минут
— Если что-то не так – стоим 1..2..3 часа

Режим работы «Стой-иди» ( STOP&GO)

Режим очень похож на статику с той лишь разницей, что ровер стоит над каждой точкой около 3-х минут и перемещается далее. В приемниках L1 такой режим позволял проводить съемку открытых пространств. С появление RTK режима – теперь практически не используется.
Основные моменты:

Расстояние база ровер – менее 20 км
Время стояния ровером на точке – 3мин
Применяется для топосъемки открытых площадок приемниками L1

Режим RTK (кинематика в реальном времени)

Основной современный режим съемки GPS оборудованием для проведения топографических съемок.
Надо сказать, что не смотря на наличие такого режима привязку временных реперов и других точных пунктов надо делать в режиме «статика».
Основная идея:
База стоит над точками с известными координатами и через канал связи передает некие «поправки» роверу. Ровер их принимает и выдает координаты своего местоположения с
высокой точностью.
Точность = примерно 10мм + 0,5мм * Дальность,км
Пример:
При удалении от базы на 20км получим точность ровера:
10мм + 0,5мм * 20км = 20мм
Это без учета всех остальных поправок. На практике получаем точность 5-50 мм., в зависимости от рельефа местности, может быть гораздо больше…

Каналы передачи данных

Существует насколько каналов по которым база может передавать поправки роверу:

Поправки передаются через мобильную связь. Для этого в базе и в ровере должны быть вставлены SIM-карточки мобильных операторов с услугой «CSD» (услуга факсимильной передачи данных ). На момент января 2018 г. для оператора МТС эта услуга стоит 1мин=2руб, кроме того теперь для МТС эта услуга называется «пакетная передача данных» и она выдается только юридическим лицам. Для работы канала нужно мобильное покрытие территории и денюжка на карточках.

Поправки передаются через мобильную сеть с выходом в интернет. Условия для работы как и для GSM канала, но нужны уже просто любые SIM-карты с доступом в интернет и сервер для поддержки и обработки данных.

В среднем база потребляет 1,5мБ в час трафика, т.е при ежедневной работе по 8 часов за 30 дней понадобиться 360мб., при работе по 6 часов за 20 дней — 180мб

NTRIP Работа от базовой станции (БС)

В этом методе в качестве базы используются «базовые станции» сторонних организаций, установленные обычно в городах и «вещающие» свои координаты в эфир. Услуги платные и для работы понадобятся данные доступа к БС. При таком методе для работы вам понадобится только один ровер с контроллером. Очень удобно. Приехали на место, достали GPS, подключились к базовой станции и можно снимать. Рекомендуемое удаление от БС – до 50км, хотя по факту нормально работали и на удалении 70-90км (точность падала до 2см). При этом базовые станции позволяют работать от них как в режиме RTK (NTRIP), так и в режиме «Статика» с последующей обработкой данных.

Радиомодем

Канал данных, при котором поправки передаются по радио. Бывают встроенные модемы, которые встроены в GPS (мощность до 2-6Вт) и обеспечивают связь на удалении до 1-2х километров от базы. Бывают также модемы внешние (мощностью около 20-35-60Вт), которые подключаются к GPS и обеспечат покрытие до 20-25км. Покрытие сильно зависит от типа местности, наличия строений, леса и т.д. Надо сказать, что например в Москве и Питере работать по радио на территории города запрещено. Все там работают от базовых станций через мобильную сеть. Также могут быть проблемы при работе на территории аэропортов и военных объектов. Предварительно уточняйте можно ли работать на объекте в радиорежиме. В малонаселенных районах – этот канал передачи поправок основной.

Понятие «Фиксированное решение»

При работе в режиме RTK возникает следующая цепочка передачи информации :

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Момент, когда ровер успешно принимает поправки от базы и уверенно рассчитывает свои координаты – называется «Фиксированное решение» или в простонародье «Фикса».
Любой контроллер GPS этот момент всегда отображает.

Соответственно правило:
— Есть «фикса» — можно работать и снимать
— Нет «фиксы» — надо ее дождаться, снимать нельзя

Основные моменты когда фикса слетает:

В принципе это основные моменты о которых надо знать при работе с GPS-приемниками. Однако надо помнить, что самообразование – залог профессионализма 🙂

Источник

Сверхточное позиционирование на дороге

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Что за GNSS?

GNSS расшифровывается как Global Navigation Satellite System (или Спутниковая Система Навигации) и используется как общий термин для спутниковой локализации с глобальным покрытием по всему земному шару. По состоянию на 2019 год, существует несколько основных спутниковых группировок:

Как это все работает?

Возьмем для примера обычный GPS в нашем телефоне. В зоне видимости с Земли всегда есть как минимум четыре GPS-спутника. Каждый из этих GPS-спутников отправляет информацию о своей позиции и текущее время на GPS-приемники с фиксированным интервалом. Ну а расстояние между GPS-приемником и спутником вычисляется путем нахождения разницы между временем отправки сигнала с GPS-спутника и временем получения сигнала GPS-приемником.

Как только приемник (например, ваш смартфон) получает сигнал хотя бы с трех спутников, вычисляется ваше местоположение (а точнее вашего телефона) с помощью трилатерации. GPS необходимо хотя бы три спутника для вычисления 2D-позиции (долгота и широта) и четыре спутника для 3D-позиции (долгота, широта, высота).

Почему GPS плохо работает в городских условиях?

И хотя под открытым небом GPS работает довольно неплохо, точность сильно падает в городских условиях (ошибка может быть 50 метров и более): высокие здания, провода, мосты и прочие объекты — все это ухудшает точность позиционирования.

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Переотражение спутникового сигнала в городе. Фото Uber

Здания часто мешают прямой видимости спутников, и пока сигнал со спутника «летит» в ваш приемник, он успевает несколько раз отразиться от зданий и прийти с искажением. Из-за подобных переотражений точность позиционирования существенно снижается (бывает ± 500 метров). Вы, наверняка, сталкивались с такой ситуацией, когда при заказе такси ваше местоположение на карте отображалось неправильно.

Чтобы исключить эти проблемы, мы используем высокоточные GNSS-приемники, существенно повышающие точность позиционирования с помощью IMU (инерциальные измерительные модули), информации с CAN-шины автомобиля, RTK-поправок и еще немножко другой магии.

Повышение точности

Существует несколько основных способов повысить точность. Взглянем на самые популярные:

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

По большому счету, базовая станция — это GNSS-приемник в режиме “станция” + софт + радио/интернет канал

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Вы знали, что в нашем OSCAR’e?

OSCAR и высокоточные GNSS-приемники

Сантиметровая точность необходима всем беспилотным автомобилям, не только OSCAR. Представьте на секунду, чтобы было бы, если бы беспилотник использовал обычный GPS с точностью ± 50 метров:

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Такая низкая точность однозначно приведет к ДТП. Именно поэтому в процессе работы над OSCAR мы проводили исследования и испытывали ряд GNSS приемников, тестируя их в сложных условиях плотной городской застройки.

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Для чего нужна локализация гнсс. Смотреть фото Для чего нужна локализация гнсс. Смотреть картинку Для чего нужна локализация гнсс. Картинка про Для чего нужна локализация гнсс. Фото Для чего нужна локализация гнсс

Автомобиль один, а GPS-треков несколько

В итоге, мы остановились на двух решениях:

В StarLine мы наслаждаемся тем, что делаем безопасный беспилотный автомобиль реальностью. Если тебе также интересна эта тема и ты хочешь строить беспилотное будущее с нами, то приглашаем в команду!

Проект StarLine OSCAR (Open Source Car) открыт для специалистов из Open Source Community, где все желающие могут поучаствовать в процессе разработки беспилотника на уровне кода, опробовать свои алгоритмы на реальном автомобиле, оснащенном дорогостоящим оборудованием.

Источник

РТК – режим для GNSS-оборудования. Всё, о чём вы не постеснялись спросить!

Целью данной статьи является попытка разобраться в специфике данного режима работы GNSS-оборудования, геометрической сути такой методики, рассмотреть виды геодезических работ, где возможен и эффективен режим реального времени и какое оборудование для этого может понадобиться. Множество вопросов в службу технической поддержки на эти темы свидетельствует об актуальности такого «ликбеза», несмотря на весьма древнее происхождение методик реального времени в спутниковой геодезии. В связи с активным развитием в последние годы средств коммуникации и спутниковых сетей базовых станций роль режима реального времени многократно возросла, а в ряде работ стала полностью доминирующей.

Геометрическая и физическая сущность режима реального времени

Начнем, пардон, «от печки»… Как известно, одиночный спутниковый прибор любого класса в силу влияния большого количества негативных факторов высокую точность позиционирования не обеспечивает. Во всяком случае точность геодезического уровня. Поэтому при использовании в геодезических работах спутниковых приборов реализован разностный метод определения координат объектов, т.е. по взаимному положению двух точек. В каждой из них находятся приёмники, принимающие сигналы от спутников нескольких GNSS-систем. Один из них расположен на точке с известными координатами – он считается опорным (базовым). Другой, подвижный (ровер) перемещается по точкам, координаты которых требуется определить. В ходе обработки взаимное положение между такими точками может быть в значительной степени исправлено и, соответственно, существенно повышена точность координирования.

Существует два фундаментальных способа работы:

В первом случае все приемники работают автономно и никакой связи между собой не имеют. Важно только, чтобы регистрация измерений производилась одновременно, т.е. на определённом интервале времени выполнялся приём сигналов от одного и того же созвездия спутников. Записанные таким образом данные поступают на совместную обработку в специальное офисное программное обеспечение, которое решает две основные задачи:

Суть её заключается в присвоении исходной базовой точке известных координат в соответствующей системе отсчета и определении, по компонентам пространственного вектора, координат точки подвижной (определяемой) относительно вновь введённых истинных координат опорной точки.

Поскольку обсуждение подробностей данного режима выходит за рамки данной статьи отметим только, что это наименее оперативный, но и наиболее точный режим работы за счет возможности в течение долгого времени накапливать большие массивы измерений. Это позволяет в процессе обработки добиться максимальной компенсации погрешностей и получить точность координат на уровне миллиметров.

Данный режим, известный под названием «Статика» («Быстрая статика») используется при сгущении геодезических опорных сетей, развитии съёмочного обоснования, опорных базисов и других твердых пунктов. Этот же режим для съёмочных работ в более оперативном варианте называется «Стой-Иди» («Stop and Go») и тоже подразумевает постобработку в офисном ПО.

Во втором случае хоть и выполняются все те же действия: решение вектора между двумя приемниками и дифференциальная коррекция, но реализованы они совершенно иначе. Мало того, что вся обработка происходит в реальном времени, непосредственно в полевом компьютере (контроллере), между приемниками необходимо наличие надежного канала связи для обмена данными. Все настройки, управление съёмкой, обмен данными и регистрацию результатов обеспечивает полевое программное обеспечение, функционал и удобство которого во многом определяют успех оборудования у пользователей. Варианты способов коммуникации между приемниками и необходимое для этого оборудование мы рассмотрим в следующих разделах.

Поскольку данный режим позволяет оперативно, непосредственно на объекте работ получать готовые координаты точек, то он преимущественно используется для съёмочных работ и для выноса в натуру (разбивки) точек и называется «Кинематикой в реальном времени» или RTK.

Как же это работает?

При запуске съёмки на опорном (базовом) приёмнике в полевом ПО необходимо указать точные известные координаты для данной точки в соответствии с ранее назначенной проекту системой отсчета (системой координат). В последующем ПО имеет возможность сравнить текущее приближённое решение с известными значениями и сформировать разности координат для базовой точки. Эти разности в народе именуют «поправками», которые базовый приёмник и отправляет на подвижный (ровер) по тому или иному каналу связи. На самом деле в составе корректирующей информации кроме «поправок» передаётся гораздо больше данных, вплоть до параметров системы координат, но сейчас на этом заострять внимание не будем.

Подвижный приёмник, работая недалеко от базовой станции (до нескольких десятков километров), находится приблизительно в равных с базой условиях приёма спутниковых сигналов и имеет близкий к ней уровень погрешностей определения координат. Таким образом ПО контроллера, находящегося на подвижном приёмнике, приняв корректирующую информацию от базы имеет возможность исправить результаты своей работы в реальном масштабе времени.

Если в проекте полевого контроллера верно произведена настройка системы координат и на объекте обеспечен надёжный канал доставки корректирующей информации, то можно сказать, что ровер выдает сразу готовые точные координаты. Это позволяет выполнять как оперативные съёмочные работы, так и вынос в натуру (разбивку) различных объектов.

Важно отметить, что наличие одного лишь сервиса предоставления корректирующей информации от базовой станции без привязки к местным исходным пунктам геодезической сети и правильной настройки рабочей системы координат не может обеспечить высокоточное абсолютное позиционирование.

Вопросы использования проекций, настройки в контроллере систем координат, в том числе условных локальных, а также применения процедуры калибровки (локализации) района работ заслуживают рассмотрения в отдельной статье.

Каналы связи для режима RTK

Теперь о связи. Сам по себе режим RTK никак не зависит именно от способа коммуникации. Важно, чтобы связь была стабильна на необходимом расстоянии от базового приёмника до ровера. На современном этапе можно выделить четыре категории средств доставки «поправок» к подвижному приёмнику:

В зависимости от условий и специфики работ выбирается тот или иной вариант или их комбинация. Соответственно имеется широкий выбор оборудования в дополнение к основному комплекту приёмник-контроллер.

Кстати о комплектах. В зависимости от используемой технологии комплект может включать от двух и более спутниковых приёмников, включая базовый, плюс оборудование для связи. И наоборот, в связи с бурным развитием сетей опорных базовых станций, комплект может состоять из компактного ровера-моноблока с полевым ПО в смартфоне или даже одно комбинированное устройство в конструктиве наладонного накопителя…

Использование УКВ (UHF) диапазона

Исторически раньше всего на службе RTK использовались радиомодемы УКВ-диапазона. Корнями этот способ связи уходит в береговые сервисы для морской навигации и до сих пор незаменим в регионах, не обеспеченных надежным покрытием сотовой связи. В настоящее время используются устройства, работающие в основном в диапазоне частот 400-470 МГц с мощностью передачи от 0.5 до 30-40 Вт.

Приёмник может иметь встроенный в свой корпус маломощный радиомодуль и компактную УКВ-антенну. В зависимости от условий распространения радиосигнала на объекте дальность обслуживания может составлять от сотен метров до нескольких километров.

Мощные радиомодемы – это отдельные устройства с радиаторами охлаждения и самостоятельными аккумуляторными блоками питания. В комплект таких модемов входят антенны различных габаритов и конструкций, устройства для их установки, кабели различной длины, сечения и назначения, а также вспомогательные аксессуары. На равнинной открытой местности мощные радиомодемы обеспечивают дальность обслуживания до нескольких десятков километров.

Практически все радиомодемы умеют работать в режиме ретранслятора (репитера), что позволяет дополнительно расширить зону обслуживания RTK, а также обеспечить работу на территории со сложным рельефом или при наличии препятствий.

Использование голосовой связи GSM

Бурное развитие сетей сотовой связи позволило кардинально расширить возможности спутникового оборудования в режиме RTK. Дальность взаимодействия стала регламентироваться лишь охватом территории сотовыми сетями и методическими ограничениями спутниковых технологий. Габариты оборудования связи ужались до размеров смартфонов и гнезд для SIM-карт. Поскольку для взаимодействия спутниковых приборов используются голосовые каналы сотовой связи работа тарифицируется как обычный разговор двух абонентов, а на тарифе необходима соответствующая услуга пакетной передачи данных. Для настройки связи достаточно роверу указать мобильный номер базы, что не в пример проще, чем согласовать целый ряд настроек для УКВ-модемов.

Использование Интернет соединения (GPRS)

Следующим шагом стало развитие Интернет-технологий связи. У базовых приемников появилась возможность вещать корректирующую информацию в сеть Интернет. А для подвижных приёмников стал доступен многопользовательский доступ к этим данным. В отличие от GSM-связи «точка-точка» протокол NTRIP предоставляет множеству пользователей индивидуальные идентификаторы и пароли для безопасного RTK-подключения к источнику «поправок» в сети Интернет.

Выход в Сеть обеспечивается посредством всё тех же SIM-карт сотовых операторов, а малый трафик и доступные тарифы гарантируют меньшие затраты на связь в геодезическом производстве.

Возможность организации взаимодействия между базовыми приёмниками позволила развивать сетевые RTK-технологии, объединяя базовые станции в пределах целых регионов. Это позволило обеспечить высокоточными геодезическими измерениями большие территории с однородной системой отсчета.

Сети базовых станций. Технология VRS

О сетях постоянно действующих базовых станций (ПДБС) стоит поговорить отдельно. Если такая сеть присутствует в регионе предстоящих работ, то это мощный инструмент для использования технологий RTK. Кроме этого базовые станции по умолчанию регистрируют «сырые» GNSS-данные и всегда могут быть использованы при постобработке собственных статических измерений пользователей спутниковой геодезической аппаратуры. Базовые станции (БС) – это комплекты спутниковых приёмников модульной конструкции, стационарно расположенные на охраняемых объектах, например, офисных зданиях, где им обеспечены хорошие условия обзора небосвода и стабильный выход в сеть Интернет. Проект сети (места установки одиночных базовых станций) разрабатывается заранее с соблюдением геометрических требований к ее конфигурации. Кроме обеспечения коммуникационных возможностей базовая станция должна быть оснащена специальным сетевым программным обеспечением.

Являясь одним из компонентов разностного спутникового решения стационарная базовая станция позволяет пользователю, имея лишь одиночный комплект GNSS-приёмника (сетевой ровер), успешно выполнять широкий спектр высокоточных геодезических работ на расстояниях в десятки километров от неё.

Однако, имеется важный нюанс. Сама по себе одиночная базовая станция, передавая корректирующую информацию, обеспечивает лишь одну составляющую RTK-технологии – точное позиционирование ровера относительно точки установки антенны БС. Если эта точка изначально не привязана относительно местной опорной сети геодезических пунктов в соответствующей системе координат, то и координаты ровера данной системе отсчета соответствовать не будут.

Базовые станции будучи объединены в сеть позволяют максимально гибко использовать возможности RTK, обслуживая роверы на минимальном их удалении от баз. Венцом сетевых возможностей является технология VRS – виртуальных базовых станций. Станции сети объединены каналами связи и управляются из единого центра. Специальное сетевое программное обеспечение на основе данных приёмников сети может смоделировать результаты измерений в любом месте территории, охваченной сетью, и сформировать поток «поправок» от данной точки. Ровер, передав сведения о своём местоположении, получает решение от смоделированной рядом виртуальной БС. Это гарантирует высокую точность работы в любом месте сети.

Глобальные и облачные сервисы

Ну и наконец несколько слов о глобальных сетевых решениях для обеспечения режима RTK.

Глобальный дифференциальный сервис известен давно и основан на расчетах не по фазе несущей спутникового сигнала, а по коду. Точность позиционирования не высока – от полуметра до полутора метров. Называется такой режим – DGPS. Это уже не грубый навигатор, но и до геодезического уровня еще далеко. Тем не менее такой точности достаточно не только для решения навигационных задач, но и, например, для сбора данных об объектах местности для ГИС. Корректирующая информация передается по тому же спутниковому каналу в L-диапазоне, а формируется она на основе данных глобальной (общемировой) сети базовых станций.

Современная реализация глобального дифференциального сервиса позволяет получить субдециметровую точность координат одиночным роверным приёмником если имеется подписка на данную услугу. Примером такой службы является Trimble CenterPoint RTX. «Поправки» могут передаваться как по спутниковому каналу, так и через Интернет. В течении получаса инициализации точность позиционирования сходится к 4 см и даже лучше в любом месте зоны покрытия данного сервиса.

«Вишенкой на торте» глобальной RTK-технологии стала система Trimble Catalyst. Это пример, так называемой, концепции «Позиционирование как услуга». Комплект включает компактную недорогую спутниковую антенну и устройство на ОС Android с ПО. Несколько вариантов подписки на глобальный сервис обеспечивают различные уровни точности в зависимости от задач – от метровой до сантиметровой.

Примером облачной глобальной службы является Spectra Precision Central. При наличии активной лицензионной поддержки ПО контроллера можно зарегистрироваться на сервере службы и получить доступ к облачному сервису для приёмников Spectra Geospatial.

В заключении

Итак, мы рассмотрели основные аспекты теоретических основ и аппаратной реализации такого современного и эффективного метода спутниковых геодезических измерений как Кинематика реального времени (RTK). Развитие современных средств коммуникации позволило значительно расширить его возможности и обеспечить геодезические работы гибким и высокоточным инструментарием.

Для получения подробной информации по всему спектру геодезического оборудования обращайтесь к менеджерам и службе технической поддержки компании «Геодезия и Строительство».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *