Доказать что биссектрисы углов параллелограмма прилежащих к одной стороне перпендикулярны
Биссектрисы углов параллелограмма
Какими свойствами обладают биссектрисы углов параллелограмма? Для биссектрис углов, прилежащих к одной стороне параллелограмма, и для биссектрис противолежащих углов эти свойства разные.
Свойство биссектрис углов параллелограмма, прилежащих к одной стороне.
Биссектрисы углов параллелограмма, прилежащих к одной стороне, взаимно перпендикулярны.
Дано: ABCD — параллелограмм,
AF биссектриса ∠BAD,
DK- биссектриса ∠ADC,
1) ∠BAD+∠ADC=180º (как внутренние односторонние углы при AB ∥ CD и секущей AD).
2) Так как биссектриса угла делит его пополам, то
4) Рассмотрим треугольник ADM. Так как сумма углов треугольника равна 180º, то
90º+∠AMD=180º, откуда ∠AMD=180º- 90º=90º,
то есть биссектрисы углов параллелограмма, прилежащие к стороне AD, перпендикулярны.
Что и требовалось доказать.
В следующий раз рассмотрим свойство биссектрис противолежащих углов параллелограмма.
Биссектрисы параллелограмма
Если биссектрисы углов параллелограмма, прилежащих к одной стороне перпендикулярны, то биссектрисы противолежащих углов обладают другим свойством.
Свойство биссектрис противоположных углов параллелограмма.
Биссектрисы противоположных углов параллелограмма параллельны или лежат на одной прямой.
Дано: ABCD — параллелограмм,
AF — биссектриса ∠BAD,
CN- биссектриса ∠BCD.
Доказать: AF ∥ CN или лежат на одной прямой.
1) Так как AF — биссектриса ∠BAD, CN — биссектриса ∠BCD (по условию), то
Следовательно, их половины тоже равны: ∠FAD=∠BCN.
при BC ∥ AD и секущей BC).
А так как эти углы — соответственные при прямых AF и CN и секущей BC, то AF ∥ CN (по признаку параллельности прямых).
Если все стороны параллелограмма равны, биссектрисы противоположных углов лежат на одной прямой.
В этом случае из того, что AB=BC следует, что треугольник ABC — равнобедренный с основанием AC,
а значит, ∠BAC=∠BCA (как углы при основании равнобедренного треугольника).
Параллелограмм: свойства и признаки
Определение параллелограмма
Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны. Как выглядит параллелограмм:
Частные случаи параллелограмма: ромб, прямоугольник, квадрат.
Диагонали — отрезки, которые соединяют противоположные вершины.
Свойства диагоналей параллелограмма:
Биссектриса параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.
Свойства биссектрисы параллелограмма:
Как найти площадь параллелограмма:
Периметр параллелограмма — сумма длины и ширины, умноженная на два.
P = 2 × (a + b), где a — ширина, b — высота.
У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!
Свойства параллелограмма
Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.
Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:
А сейчас докажем теорему, которая основана на первых двух свойствах.
Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.
В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.
Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:
Теорема доказана. Наше предположение верно.
Признаки параллелограмма
Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.
Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.
Докажем 1 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.
Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.
Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:
Шаг 3. Из равенства треугольников также следует:
Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.
Вот так быстро мы доказали первый признак.
Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Докажем 2 признак параллелограмма:
Шаг 1. Пусть в четырехугольнике ABCD:
Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:
Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.
Шаг 3. Из равенства треугольников следует:
А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.
Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.
Доказали второй признак.
Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.
Докажем 3 признак параллелограмма:
Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:
Шаг 2. Из равенства треугольников следует, что CD = AB.
Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).
Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.
Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.
Точка пересечения биссектрис двух углов параллелограмма
Что можно сказать о случае, когда точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне?
Если точка пересечения биссектрис двух углов параллелограмма принадлежит другой стороне, то одна сторона параллелограмма вдвое больше другой.
Дано : ABCD — параллелограмм,
AF — биссектриса ∠BAD,
DF — биссектриса ∠ADC, F∈BC.
Так как биссектриса параллелограмма отсекает от него равнобедренный треугольник, треугольники ABF и DCF — равнобедренные,
Что и требовалось доказать.
Если точка пересечения биссектрис двух углов параллелограмма принадлежит другой стороне, то сумма квадратов этих биссектрис равна квадрату большей стороны и в 4 раза больше квадрата меньшей стороны параллелограмма.
Дано : ABCD — параллелограмм,
AF — биссектриса ∠BAD,
DF — биссектриса ∠ADC, F∈BC.
Так как биссектрисы параллелограмма, прилежащие к одной стороне, взаимно перпендикулярны, то ∠AFC=90º.
Из прямоугольного треугольника AFD по теореме Пифагора
Так как точка пересечения биссектрис двух углов параллелограмма принадлежит его стороне, длина большей стороны в 2 раза больше длины меньшей:
Что и требовалось доказать.
В следующий раз рассмотрим, как эти свойства биссектрис параллелограмма применяются при решении задач.
Параллелограмм: свойство его биссектрисы
Биссектриса параллелограмма — это отрезок, соединяющий вершину параллелограмма с точкой на одной из двух противоположных сторон и делящий угол при вершине пополам.
\(\bullet\) Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
Выпускники, которые рассчитывают успешно сдать ЕГЭ, в обязательном порядке должны повторить тему «Свойства биссектрисы параллелограмма». Как показывает статистика, при прохождении аттестационного испытания задачи по данному разделу планиметрии вызывают сложности у большого количества учащихся. При этом задания, в которых необходимо применить свойства биссектрисы угла параллелограмма, встречаются в ЕГЭ ежегодно. Таким образом, справляться с ними должны все учащиеся.
Образовательный портал «Школково» предлагает выстроить процесс подготовки к прохождению аттестационного испытания по-новому. Занимаясь вместе с нашим ресурсом, выпускники смогут определить наиболее сложные для себя темы и ликвидировать пробелы в знаниях.
Чтобы задания ЕГЭ не вызывали трудностей, рекомендуем вначале повторить основные понятия и свойства биссектрисы параллелограмма. Найти этот материал учащиеся смогут в разделе «Теоретическая справка».
Для того чтобы окончательно понять принцип решения задач по данному разделу планиметрии, мы рекомендуем выполнить соответствующие упражнения. Большая подборка заданий различного уровня сложности представлена в разделе «Каталог». Для каждого упражнения на сайте приведен алгоритм решения и дан правильный ответ. Последовательно выполняя их, учащиеся смогут понять, как правильно применять свойства биссектрисы внутреннего угла параллелограмма.
Получать новые знания и оттачивать собственные навыки по данной теме или, например, в решении задач на тему «Прямоугольник» в ЕГЭ учащиеся могут в онлайн-режиме, находясь в Москве или любом другом российском городе. При необходимости задание можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.