Для чего нужна нормализация
Зачем проводят нормализацию стали
Чтобы улучшить характеристики готового металлического изделия, его подвергают термической обработке. Это совокупность процессов, которые выполняются по определённым технологиям. Нормализация стали — термическая обработка изделия, в результате которой улучшаются механические и физические свойства металла.
Нормализация стали
Суть обработки
Нормализация — это нагрев металлической заготовки до температуры на 50 градусов выше критической. После нагревания выполняется охлаждение. Однако между этими процессами проводится выдержка при температуре нормализации.
Градус нагрева зависит от материала детали. Чтобы рассчитать время теплового воздействия, необходимо обратить внимание на гомогенизацию структуры металла. Оптимальным показателем является — выдерживание в течение 1 часа при толщине 25 мм.
При охлаждении необходимо учитывать определённые моменты. Когда температура упадет ниже критической, нужно ускорить процесс охлаждения. Для этого деталь окунают в емкость с маслом или водой. Количество преимуществ и недостатков готового изделия зависит от правильно проведённой термической обработки и последующего охлаждения.
Назначение
Такую технологию применяют для достижения следующих целей:
С помощью такого термического воздействия можно добиться различных результатов, например, изменить показатели твердости и прочности.
Проведение нормализации обязательно после обработки стали давлением, поскольку увеличение и понижение температурного показателя позволяет исправить проблемы со структурой материала.
Особенности проведения работ
Нормализация — равномерное нагревание заготовки до температуры выше критической. После разогрева детали выдерживаются в одном температурном режиме. Затем происходит охлаждение заготовки. Изначально она медленно остывает до нижнего показателя критических температур, затем мастер погружает её в охлаждающую жидкость, чтобы ускорить процесс.
Принципы проведения
Термообработка металла необходима в случае изменения его структуры и, следовательно, технических характеристик.
Существует два типа металлов, подвергающихся термообработке:
Выбор температурного режима зависит от типа металла. Например, для заэвтектоидных заготовок процесс разогрева проводится при температурах, располагаемых между отметками AC1–AC3. Что касается доэвектоидных деталей, их обрабатывают при температурах, превышающих точку AC3. Материалы, относящиеся к первой группе, достигают одинакового показателя твердости.
Длительность
Скорость охлаждения зависит от количества перлита, содержащегося в заготовке, и размера обрабатываемых пластин. Если скорость охлаждения увеличивается, а время на проведение процедуры сокращается, количество перлита, образующегося в процессе термообработки, увеличится. Также будут возрастать показатели прочности и твердости.
Охлаждение стали
Другие методы термообработки
Помимо процесса нормализации, существуют другие способы термообработки металлов и сплавов:
Выше представлены основные способы обработки металлических заготовок, но порядок указан неправильно. Узнать его можно в любом источнике по металлообработке.
Нормализация стали считается одним из нескольких этапов термообработки. С его помощью изменяется структура и характеристики материала. При желании можно ухудшать или улучшать свойства заготовки.
Нормализация баз данных простыми словами
Приветствую всех посетителей сайта Info-Comp.ru! Сегодня мы с Вами поговорим о нормализации базы данных, узнаем, что это такое, какие нормальные формы базы данных существуют и зачем вообще проводить нормализацию базы данных.
Постоянные посетители данного сайта знают, что я здесь публикую достаточно много различных материалов, связанных с языком SQL и системами управления базами данных, однако статей, связанных с теорией баз данных, на текущий момент, к сожалению, нет, поэтому я решил это исправить, и начать цикл статей, посвященных теории баз данных.
Начну я с нормализации баз данных. В этом материале мы поговорим в целом о процессе нормализации, узнаем, зачем проводить нормализацию базы данных, что такое нормальная форма базы данных, а также какие нормальные формы существуют. В следующих материалах я подробно и с примерами расскажу про каждую нормальную форму.
Реляционная база данных
В целом под базой данных можно понимать любой набор информации, которую можно найти в этой базе данных и воспользоваться ей, однако если говорить в контексте SQL, то речь будет идти, конечно, о реляционных базах данных, а что же это такое?
Реляционная база данных – это упорядоченная информация, связанная между собой определёнными отношениями.
Логически такая база данных представлена в виде таблиц, в которых и лежит вся эта информация.
Примечание! Если Вас интересует язык SQL, рекомендую пройти мой онлайн-курс по основам SQL, который ориентирован на изучение SQL как стандарта, таким образом, Вы сможете работать в любой системе управления базами данных. Курс включает много практики: онлайн-тестирование, задания и многое другое.
Нормализация баз данных
В реляционных базах данных есть такое понятия, как «Нормализация».
Нормализация – это процесс удаления избыточных данных.
Также нормализацию можно рассматривать и с позиции проектирования базы данных, в таком случае мы можем сформулировать определение нормализации следующим образом.
Нормализация – это метод проектирования базы данных, который позволяет привести базу данных к минимальной избыточности.
Избыточность устраняется, как правило, за счёт декомпозиции отношений (таблиц), т.е. разбиения одной таблицы на несколько.
Зачем нормализовать базу данных?
У Вас может возникнуть вопрос – а зачем вообще нормализовать базу данных и бороться с этой избыточностью?
Дело в том, что избыточность данных создает предпосылки для появления различных аномалий, снижает производительность, и делает управление данными не гибким и не очень удобным. Отсюда можно сделать вывод, что нормализация нужна для:
Теперь давайте поговорим о самой избыточности данных, что же это такое.
Избыточность данных – это когда одни и те же данные хранятся в базе в нескольких местах, именно это и приводит к аномалиям.
Так как в этом случае необходимо добавлять, изменять или удалять одни и те же данные в нескольких местах. Например, если не выполнить операцию в каком-нибудь одном месте, то возникает ситуация, когда одни данные не соответствуют вроде как точно таким же данным в другом месте.
Давайте рассмотрим пример. Допустим, у нас есть следующая таблица, она хранит информацию о предметах мебели, в частности наименование предмета и материал, из которого изготовлен этот предмет.
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Массив дерева |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
А теперь допустим, что у нас возникла необходимость подкорректировать название материала, вместо «Массив дерева» нужно написать «Натуральное дерево», и чтобы это сделать нам необходимо внести изменения сразу в несколько строк, так как предметов, изготовленных из массива дерева, несколько, а именно 2: стол и шкаф.
А теперь представьте, что по каким-то причинам мы внесли изменения только в одну строку, в итоге в нашей таблице будет и «Массив дерева», и «Натуральное дерево».
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Натуральное дерево |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
Какое из этих названий будет правильным? А если представить, что мы можем внести еще какое-то новое значение при добавлении новых записей, например, просто «Дерево».
В этом случае в нашей таблице в скором времени будет и «Массив дерева», и «Натуральное дерево», и просто «Дерево», и вообще, что угодно, ведь это просто текст.
Идентификатор предмета | Наименование предмета | Материал |
1 | Стул | Металл |
2 | Стол | Натуральное дерево |
3 | Кровать | ЛДСП |
4 | Шкаф | Массив дерева |
5 | Комод | ЛДСП |
6 | Тумба | Дерево |
Однако по своей сути это один и тот же материал, мы просто решили или подкорректировать его название, или ошиблись при добавлении новой записи. Это и есть аномалия, когда одни данные в одном месте не соответствуют вроде как точно таким же данным в другом месте. Это всего лишь один вид аномалии, однако в процессе добавления, изменения и удаления данных может возникать много других противоречивых ситуаций, т.е. аномалий.
При этом, обязательно стоит отметить, что в нашей таблице всего 5 записей, а теперь представьте, что их миллион!
Именно поэтому мы должны устранять избыточность данных в базе, т.е. проводить так называемую нормализацию базы данных.
В данном конкретном случае мы должны название материала, из которого изготовлены предметы мебели, вынести в отдельную таблицу, а в таблице с предметами сделать всего лишь ссылку на нужный материал, тем самым, соотнеся эту ссылку с исходной записью, мы будем понимать, из какого материала сделан тот или иной предмет.
Идентификатор предмета | Наименование предмета | Идентификатор материала |
1 | Стул | 2 |
2 | Стол | 1 |
3 | Кровать | 3 |
4 | Шкаф | 1 |
5 | Комод | 3 |
Материалы, из которых изготовлены предметы мебели.
Идентификатор материала | Материал |
1 | Массив дерева |
2 | Металл |
3 | ЛДСП |
В этом случае когда нам потребуется изменить название материала, мы будем вносить изменение только в одном месте, т.е. править только одну строку.
Таким образом, представляя материалы в виде отдельной сущности и создавая для нее отдельную таблицу, мы устраняем описанную выше аномалию.
Другими словами, каждая сущность должна храниться отдельно, а в случае необходимости использования этой сущности в другой таблице на нее делается всего лишь ссылка, т.е. выстраивается связь.
Нормальные формы базы данных
В целом процесс нормализации базы данных выглядит следующим образом: мы, следуя определённым правилам и соблюдая определенные требования, проектируем таблицы в базе данных.
При этом все эти правила и требования можно сгруппировать в несколько наборов, и если спроектировать базу данных с соблюдением всех правил и требований, которые включаются в тот или иной набор, то база данных будет находиться в определённом состоянии, т.е. форме, и такая форма называется нормальная форма базы данных.
Иными словами, следуя определённым правилам и соблюдая определенные требования мы приводим базу данных к определенной нормальной форме.
Нормальная форма базы данных – это набор правил и критериев, которым должна отвечать база данных.
Каждая следующая нормальная форма содержит более строгие правила и критерии, тем самым приводя базу данных к определённой нормальной форме мы устраняем определённый набор аномалий.
Отсюда можно сделать вывод, что чем выше нормальная форма, тем меньше аномалий в базе будет.
Процесс нормализации – это последовательный процесс приведения базы данных к эталонному виду, т.е. переход от одной нормальной формы к следующей.
Иными словами, процесс перехода от одной нормальной формы к следующей – это усовершенствование базы данных. Так как если база данных находится в какой-то определённой нормальной форме – это означает, что в базе данных отсутствует определенный вид аномалий.
Существует 5 основных нормальных форм базы данных:
Однако выделяют еще дополнительные нормальные формы:
Если объединить оба этих списка и упорядочить нормальные формы от менее нормализованной до самой нормализованной, т.е. начиная с формы, при которой база данных по своей сути не является нормализованной, и заканчивая самой строгой нормальной формой, то мы получим следующий перечень:
База данных считается нормализованной, если она находится как минимум в третьей нормальной форме (3NF).
В реальном мире нормализация до третьей нормальной формы (3NF) является обычной, стандартной практикой, так как 3NF устраняет достаточное количество аномалий, при этом производительность базы данных, а также удобство ее использования не снижается, что нельзя сказать о всех последующих формах.
Ситуации, при которых требуется нормализовать базу данных до четвертой нормальной формы (4NF), в реальном мире встречаются достаточно редко.
Заметка! Если Вас интересует язык SQL, рекомендую почитать мою книгу «SQL код», которая ориентирована на изучение SQL как стандарта, после прочтения книги Вы сможете писать SQL запросы в любой системе управления базами данных.
Если говорить о всех последующих нормальных формах (5NF, DKNF, 6NF), то в реальной жизни трудно даже представить ситуации, при которых потребуется нормализовать базу данных до этих форм.
Иными словами, 5NF, DKNF, 6NF – это в большей степени теоретические нормальные формы, немного отстраненные от реального мира.
Стоит отметить, что приведение базы данных к какой-то конкретной нормальной форме, обязательно требует, чтобы эта база данных уже находилась в предыдущей нормальной форме. Другими словами, если Вы хотите нормализовать базу данных до третьей нормальной формы, то база уже должна находиться во второй нормальной форме, т.е. нельзя нормализовать базу данных до третьей формы, если она еще не нормализована до второй.
Описание нормальных форм базы данных
В следующих статьях представлено подробное описание каждой нормальной формы и приведены примеры.
На сегодня это все, надеюсь, материал был Вам полезен и интересен, пока!
Умная нормализация данных
Эта статья появилась по нескольким причинам.
Во-первых, в подавляющем большинстве книг, интернет-ресурсов и уроков по Data Science нюансы, изъяны разных типов нормализации данных и их причины либо не рассматриваются вообще, либо упоминаются лишь мельком и без раскрытия сути.
Во-вторых, имеет место «слепое» использование, например, стандартизации для наборов с большим количеством признаков — “чтобы для всех одинаково”. Особенно у новичков (сам был таким же). На первый взгляд ничего страшного. Но при детальном рассмотрении может выясниться, что какие-то признаки были неосознанно поставлены в привилегированное положение и стали влиять на результат значительно сильнее, чем должны.
И, в-третьих, мне всегда хотелось получить универсальный метод учитывающий проблемные места.
Повторение — мать учения
Нормализация — это преобразование данных к неким безразмерным единицам. Иногда — в рамках заданного диапазона, например, [0..1] или [-1..1]. Иногда — с какими-то заданным свойством, как, например, стандартным отклонением равным 1.
Ключевая цель нормализации — приведение различных данных в самых разных единицах измерения и диапазонах значений к единому виду, который позволит сравнивать их между собой или использовать для расчёта схожести объектов. На практике это необходимо, например, для кластеризации и в некоторых алгоритмах машинного обучения.
Аналитически любая нормализация сводится к формуле
где — текущее значение,
— величина смещения значений,
— величина интервала, который будет преобразован к “единице”
По сути всё сводится к тому, что исходный набор значений сперва смещается, а потом масштабируется.
Минимакс (MinMax). Цель — преобразовать исходный набор в диапазон [0..1]. Для него: =
, минимальное значение исходных данных.
=
—
, т.е. за “единичный” интервал берется исходный диапазон значений.
Стандартизация. Цель — преобразовать исходный набор в новый со средним значением равным 0 и стандартным отклонением равным 1. =
, среднее значение исходных данных.
— равен стандартному отклонению исходного набора.
Для других методов всё аналогично, но со своими особенностями.
В большинстве методов кластеризации или, например, классификации методом ближайших соседей необходимо рассчитывать меру “близости” между различными объектами. Чаще всего в этой роли выступают различные вариации евклидового расстояния.
Представим, что у Вас есть какой-то набор данных с несколькими признаками. Признаки отличаются и по типу распределения, и по диапазону. Чтобы можно было с ними работать, сравнивать, их нужно нормализовать. Причём так, чтобы ни у какого из них не было преимуществ перед другими. По крайней мере, по умолчанию — любые такие предпочтения Вы должны задавать сами и осознанно. Не должно быть ситуации, когда алгоритм втайне от Вас сделал, например, цвет глаз менее важным, чем размер ушей*
* нужно сделать небольшое примечание — здесь речь идёт не о важности признака для, например, результата классификации (это определяется на основе самих данных при обучении модели), а о том, чтобы до начала обучения все признаки были равны по своему возможному влиянию.
Итого, главное условие правильной нормализации — все признаки должны быть равны в возможностях своего влияния.
Шаг 1 — определяем смещение
Чаще всего данные центрируют — т.е. определяют, значение, которое станет новым 0 и “сдвигают” данные относительно него.
Что лучше взять за центр? Некоего «типичного представителя» Ваших данных. Так при использовании стандартизации используется среднее арифметическое значение.
Здесь проявляется проблема № 1 — различные типы распределений не позволяют применять к ним методы, созданные для нормального распределения.
Если Вы спросите любого специалиста по статистике, какое значение лучше всего показывает “типичного представителя” совокупности, то он скажет, что это — медиана, а не среднее арифметическое. Последнее хорошо работает только в случае нормального распределения и совпадает с медианой (алгоритм стандартизации вообще оптимален именно для нормального распределения). А у Вас распределения разных признаков могут (и скорее всего будут) кардинально разные.
Вот, например, различия между медианой и средним арифметическим значением для экспоненциального распределения.
А вот так выглядят эти различия при добавлении выброса:
В отличии от среднего значения медиана практически не чувствительна к выбросам и асимметрии распределения. Поэтому её оптимально использовать как “нулевое” значение при центрировании.
В случае, когда нужно не центрировать, а вписать в заданный диапазон, смещением является минимальное значение данных. К этому вернёмся чуть позже.
Шаг 2 — масштабируем
Мы определили нужные величины смещения для всех признаков. Теперь нужно сделать признаки сравнимыми между собой.
Степень возможного влияния признаков определяется величиной их диапазонов после масштабирования. Если оба признака распределены в одинаковых интервалах, например, [-1..1], то и влиять они могут одинаково. Если же изначально один из признаков лежит в диапазоне [-1..1], а второй — в [-1..100], то очевидно, что изменения второго могут оказывать существенно большее влияние. А значит он будет в привилегированном положении по сравнению с первым.
Стандартное отклонение
Вернёмся к примеру стандартизации. В её случае новый диапазон определяется величиной стандартного отклонения. Чем оно меньше, тем диапазон станет “шире”.
Посмотрим на гипотетические распределения различных признаков с одинаковыми начальными диапазонами (так будет нагляднее):
Для второго признака (бимодальное распределение) стандартное отклонение будет больше, чем у первого.
А это значит, что у второго признака новый диапазон после масштабирования (стандартизации) будет “уже”, и его влияние будет меньше по сравнению с первым.
Итог — стандартное отклонение не удовлетворяет начальным требованиям по одинаковому влиянию признаков (величине интервала). Даже не говоря о том, что и наличие выбросов может исказить “истинную” величину стандартного отклонения.
Межквартильный интервал
Другим часто используемым кандидатом является разница между 75-м и 25-м процентилями данных — межквартильный интервал. Т.е. интервал, в котором находятся “центральные” 50% данных набора. Эта величина уже устойчива к выбросам и не зависит от “нормальности” распределения наличия/отсутствия асимметрии.
Но и у неё есть свой серьезный недостаток — если у распределения признака есть значимый “хвост”, то после нормализации с использованием межквартильного интервала он добавит “значимости” этому признаку в сравнении с остальными.
Проблема № 2 — большие “хвосты” распределений признаков.
Пример — два признака с нормальным и экспоненциальным распределениями. Интервалы значений одинаковы
После нормализации с использованием межквартильного интервала (для наглядности оба интервала смещены к минимальным значениям равным нулю).
В итоге интервал у признака с экспоненциальным распределением из-за большого “хвоста” стал больше. А, следовательно, и сам признак стал “влиятельнее”.
Размах значений
Очевидным решением проблемы межквартильного интервала выглядит просто взять размах значений признака. Т.е. разницу между максимальным и минимальным значениями. В этом случае все новые диапазоны будут одинаковыми — равными 1.
И здесь максимально проявляется, наверное, самая частая проблема в подготовке данных, проблема № 3 — выбросы. Присутствие одного или нескольких аномальных (существенно удалённых) значений за пределами диапазона основных элементов набора может ощутимо повлиять на его среднее арифметическое значение и фиктивно увеличить его размах.
Это, пожалуй, самый наглядный пример из всех. К уже использовавшемуся выше набору из 2-х признаков добавим немного выбросов для одного признака
После нормализации по размаху
Наличие выброса, который вдвое увеличил размах признака, привело к такому же уменьшению значимого интервала его значений после нормализации. Следовательно влияние этого признака уменьшилось.
Работаем с выбросами
Решением проблемы влияния выбросов при использовании размаха является его замена на интервал, в котором будут располагаться “не-выбросы”. И дальше — масштабировать по этому интервалу.
Искать и удалять выбросы вручную — неблагодарное дело, особенно когда количество признаков ощутимо велико. А иногда выбросы и вовсе нельзя удалять, поскольку это приведёт к потере информации об исследуемых объектах. Вдруг, это не ошибка в данных, а некое аномальное явление, которое нужно зафиксировать на будущее, а не отбрасывать без изучения? Такая ситуация может возникнуть при кластеризации.
Пожалуй, самым массово применяемым методом автоматического определения выбросов является межквартильный метод. Его суть заключается в том, что выбросами “назначаются” данные, которые более чем в 1,5 межквартильных диапазонах (IQR) ниже первого квартиля или выше третьего квартиля.*
* — в некоторых случаях (очень большие выборки и др.) вместо 1,5 используют значение 3 — для определения только экстремальных выбросов.
Схематично метод изображен на рисунке снизу.
Вроде бы все отлично — наконец-то есть инструмент, и можно приступать к работе.
Но и здесь есть своя ложка дёгтя. В случае наличия длинных хвостов (как, например, при экспоненциальном распределении) слишком много данных попадают в такие “выбросы” — иногда достигая значений более 7%. Избирательное использование других коэффициентов (3 * IQR) опять приводит к необходимости ручного вмешательства — не для каждого признака есть такая необходимость. Их потребуется по отдельности изучать и подбирать коэффициенты. Т.е. универсальный инструмент опять не получается.
Ещё одной существенной проблемой является то, что этот метод симметричный. Полученный “интервал доверия” (1,5 * IQR) одинаков как для малых, так и для больших значений признака. Если распределение не симметричное, то многие аномалии-выбросы с “короткой” стороны просто будут скрыты этим интервалом.
Скорректированный интервал
Красивое решение этих проблем предложили Миа Хаберт и Елена Вандервирен (Mia Hubert and Ellen Vandervieren) в 2007 г. в статье “An Adjusted Boxplot for Skewed Distributions”.
Их идея заключается в вычислении границ “интервал доверия” с учетом асимметрии распределения, но чтобы для симметричного случая он был равен всё тому же 1,5 * IQR.
Для определения некоего “коэффициента асимметрии” они использовали функцию medcouple (MC), которая определяется так:
Поиск подходящей формулы для определения границ “интервала доверия” производился с целью сделать долю, приходящуюся на выбросы, не превышающей такую же, как у нормального распределения и 1,5 * IQR — приблизительно 0,7%
В конечном итоге они получили такой результат:
Для = 0$» data-tex=»inline»/>:
Для :
Более подробно про этот метод и его эффективность лучше прочитать в самой статье. Найти ее по названию не составляет труда.
Универсальный инструмент
Теперь, объединяя все найденные плюсы и учитывая проблемы, мы получаем оптимальное решение:
Назовем его методом… скорректированного интервала — по названию статьи Mia Hubert и Ellen Vandervieren
Теперь сравним результаты обычных методов с новым. Для примера возьмем уже использовавшиеся выше три распределения с добавлением выбросов.
Сравнивать новый инструмент будем с методами стандартизации, робастной нормализации (межквартильный интервал) и минимакса (MinMax — с помощью размаха).
Ситуация № 1 — данные необходимо центрировать. Это используется в кластеризации и многих методах машинного обучения. Особенно, когда необходимо определять меру “близости” объектов.
Робастная нормализация (по межквартильному интервалу):
Преимущество использования метода скорректированного интервала в том, что каждый из признаков равен по своему возможному влиянию — величина интервала, за пределами которого находятся выбросы, одинакова у каждого из них.
Ситуация № 2 — данные необходимо вписать в заданный интервал. Обычно это [0..1]. Это используется, например, при подготовке данных для входов нейронной сети.
В этом случае метод скорректированного интервала вписал в нужный диапазон только значения без выбросов. Значения-выбросы, выходящие за границы этого диапазона, в зависимости от постановки задачи можно удалить или принудительно приравнять ближайшей границе нужного диапазона — т.е. 0 или 1.
То, что только “нормальные” данные попадают в единичный диапазон [0..1], а выбросы не удаляются, но пропорционально выносятся за его пределы — это крайне полезное свойство, которое сильно поможет при кластеризации объектов со смешанными признаками, как числовыми, так и категорийными. Подробно об этом я напишу в другой статье.
Напоследок, для возможности пощупать руками этот метод, Вы можете попробовать демонстрационный класс AdjustedScaler из моей библиотеки AdjDataTools.
Он не оптимизирован под работу с очень большим объемом данных и работает только с pandas DataFrame, но для пробы, экспериментов или даже заготовки под что-то более серьезное вполне подойдет. Пробуйте.