Для чего нужна плазматическая мембрана в животной клетке
Для чего нужна плазматическая мембрана в животной клетке
Животные клетки ограничены плазматической мембраной. На ее строении, очень сходном со строением многих внутриклеточных мембран, мы остановимся несколько подробнее. Основной матрикс мембраны состоит из липидов, главным образом фосфатидил-холина. Эти липиды состоят из головной гидрофильной группы, к которой присоединены длинные гидрофобные углеводородные цепи. В воде такие липиды спонтанно формируют двуслойную пленку толщиной 4-5 нм, в которой гидрофильные группы обращены к водной среде, а гидрофобные углеводородные цепи располагаются в два ряда, образуя безводную липидную фазу. Клеточные мембраны представляют собой липидные бислои именно такого типа и содержат гликолипиды, холестерол и фосфолипиды.
Гидрофильная часть гликолипидов образована олигосахаридами. Гликолипиды всегда располагаются на наружной поверхности плазматической мембраны, причем олигосахаридная часть молекулы ориентирована подобно волоску, погруженному в окружающую среду. Разбросанные среди фосфолипидов в почти равном с ними количестве молекулы холестерола стабилизируют мембрану. Распределение различных липидов во внутреннем и наружном слоях мембраны неодинаково, и даже в пределах одного слоя имеются участки, в которых концентрируются отдельные виды липидов. Такое неравномерное распределение, вероятно, имеет какое-то, пока еще неясное, функциональное значение.
Главными функциональными элементами, погруженными в сравнительно инертный липидныи матрикс мембраны, являются белки. Белок по массе составляет от 25 до 75% в различных мембранах, но, поскольку белковые молекулы намного крупнее, чем липидные, 50% по массе эквивалентны соотношению: 1 молекула белка на 50 молекул липида. Одни белки пронизывают мембрану от ее наружной до внутренней поверхности, другие же закреплены в каком-то одном слое. Белковые молекулы обычно ориентированы так, что их гидрофобные группы погружены в липидную мембрану, а полярные гидрофильные группы на поверхности мембраны погружены в водную фазу. Многие белки наружной поверхности мембраны представляют собой гликопротеины; их гидрофильные сахаридные группы обращены во внеклеточную среду.
История изучения
Впервые строение и функции плазматической мембраны начали изучать в 1925 году. Тогда специалисты смогли впервые выделить оболочки эритроцитов. Они назвали их «тени», вычислили общую площадь. После этого ученые с помощью ацетона выделили все жиры (липиды). Это было необходимо для определения их количества на каждую единицу площади эритроцитов. Вывод, сделанный после исследований и экспериментов, был правильным, но ученые допустили несколько грубейших ошибок:
Несмотря на эти нарушения, случайным образом результат оказался верным, что позволило открыть двойной слой или бислой. Далее исследования специалистов продолжились. Они обратили внимание на натяжение выделенных пленок. Мембраны не могли быть такими жесткими, поэтому появилась теория, что они содержат белки, позволяющие сохранять упругость и эластичность. В 1935 году американские ученые пришли к выводу, что схема строения плазматической мембраны напоминает сандвич, то есть имеется липидный бислой, с двух сторон окруженный белковыми прослойками.
В 1950-х годах теория была подтверждена во время первых микроскопических исследований. В 1960 году Дж. Робертсон сформулировал теорию строения биологической мембраны, которая утверждала, что все оболочки в клетках состоят из трех слоев. Однако теория сандвича или бутерброда была опровергнута, поскольку появились другие факты.
Первым из них стали сведения о глобулярности мембраны. Помимо этого, специалисты определили, что во время микроскопического исследования структура пленки во многом зависит от способа ее фиксации. Следующим открытием, опровергающим теорию сандвича, было изучение сперматозоида, во время которого появилось подтверждение, что даже в одной клетке структура мембраны на разных участках отличается.
Последним опровержением стало выявление белков непосредственно внутри мембраны, тогда как теория бутерброда предполагала их нахождение за ее пределами. Подобные выводы в 1972 году использовал Сингер и Николсон, создавая мозаичную модель строения цитолеммы. На ней было отчетливо видно, что внутри пленки имеется большое количество белков, но молекулы встречаются и за пределами бислоя.
Химический состав
Плазмалемма или клеточная мембрана представляет собой молекулярную эластическую структуру, состоящую из большого количества липидов, а также белков. Она позволяет отделить клетку от других жидкостей в организме, предотвратить ее повреждение, принимает участие в метаболических процессах. Помимо этого, цитолемма помогает разделить камеры клетки для обеспечения ее нормального функционирования.
Химический состав плазматический мембраны в основном представлен фосфолипидами, но присутствуют и другие молекулы. Этот вид липидов относится к сложным, поэтому специалисты долгое время не могли точно определить состав цитолеммы. Каждый фосфолипид имеет гидрофильную часть и гидрофобную. Первая представляет собой голову молекулы и обращена наружу, вторая — хвост и обращена внутрь.
У большинства живых организмов на планете химический состав мембраны очень похож, как и ее структура. Однако существуют исключения. У некоторых организмов она образована глицерином и другими спиртами. Белки внутри биологической оболочки могут быть разными. Наиболее часто встречаются следующие:
Наиболее важными считаются интегральные, ведь они могут выполнять роль транспортных включений и рецепторов. Иногда такие протеины выступают в роли ионных каналов, поддерживают постоянство внешней и внутренней среды.
В первые годы изучения цитолеммы специалисты не разделяли протеины на разные группы, считая их одинаково необходимыми и выполняющими одни и те же функции. Однако сегодня, благодаря развитию технологий и появлению современных микроскопов, можно с уверенностью сказать, что строение мембраны довольно сложное, даже у простых растительных клеток.
Основные функции
Основным свойством плазматической мембраны является элементарное поддержание постоянства внутренней среды клетки и обеспечение ее бесперебойного функционирования. Помимо этого, она выполняет и другие функции:
В отличие от других способностей оболочки, рецепторная играет определяющую роль. Многие гормоны, циркулирующие в крови человека, животного и других организмов, способны воздействовать только на те частицы, в которых имеются специальные белки, выполняющие рецепторную функцию. Если в плазмолемме их нет, все процессы нарушаются. Дополнительно такие протеины могут участвовать в проведении нервного импульса, связываясь с нейромедиаторами.
Другие возможности
Помимо основных функций цитоплазматической мембраны, имеются дополнительные, которые изучены не так подробно, но играют важную роль. Матричная обеспечивает взаимодействие всех протеинов для более эффективного метаболизма в клетке и оболочке. Это позволяет построить новую пленку в случае ее повреждения.
Механическая функция также важна. Она позволяет обеспечить автономность клетки и всех ее структур разного типа, поддержать связь между разными единицами тканей и предотвратить их разрыв. Клеточные стенки играют определяющую роль в обеспечении механической защиты. У животных эту работу выполняет межклеточное вещество.
Ферментативная функция осуществляется не в каждой цитолемме, поскольку некоторые клетки лишены специальных веществ. Однако в эпителиальных единицах тонкого кишечника человека и других млекопитающих содержится довольно большое количество пищеварительных ферментов, принимающих непосредственное участие в процессе переработки пищи.
Генерация и проведение потенциалов играет важную роль. Благодаря наличию цитолеммы, в клетке постоянно поддерживается определенное количество ионов калия и натрия. Первых в клетке гораздо больше, чем снаружи, вторых больше за пределами единицы и меньше внутри. Если изучить характеристику этих ионов в сравнительной таблице, можно увидеть, что они выполняют важнейшие функции, а при изменении концентрации наблюдается расстройство метаболических процессов.
Маркировка клетки также осуществляется с участием цитоплазматической мембраны. На каждой из них во время микроскопического исследования можно увидеть антигены, выполняющие роль ярлыков или антенн. Благодаря этому, клетки с одинаковой маркировкой могут узнавать друг друга и действовать сообща при возникновении такой необходимости. Именно антенны позволяют клеткам иммунной системы распознавать чужеродные антигены и действовать против них для обеспечения защиты организма.
Благодаря дополнительным возможностям плазмоллемы, возможно существование всех клеток внутри одного организма и их постоянное взаимодействие.
Структура цитолеммы
Почти все клеточные оболочки состоят из жиров нескольких классов. Чаще всего встречается холестерол, глико- и фосфолипиды. Последние состоят не только из липидов, но также имеют углеводное включение в виде «хвоста». Холестерол выполняет роль твердого жира, поскольку придает мембране жесткость, а также заполняет пространство между другими липидами.
Существуют более жесткие оболочки и эластичные, мягкие, в которых количество холестерола снижено. Помимо этого, вещество служит барьером, препятствуя переходу из клетки в клетку полярных молекул. Состав и ориентация протеинов в каждой мембране отличается, но специалисты определили, что без них пленка существовать не может.
В структуру плазмалеммы также входят аннулярные жиры, располагающиеся в непосредственной близости от протеинов и выделяющиеся вместе с ними из клетки. Без этих липидов протеины оболочки не могут выполнять свои функции. В большинстве случаев плазматическая мембрана асимметрична, то есть в разных ее частях количество липидов и протеинов отличается.
Каждая оболочка имеет органеллы. Они представляют собой участки цитоплазмы, связанные между собой. Наиболее часто встречаются следующие органеллы:
Разные клетки обладают индивидуальным составом органелл, но некоторые из них присутствуют в подавляющем большинстве единиц ткани. Благодаря своей структуре, мембраны способны к избирательной проницаемости. Некоторые вещества проходят через них свободно, другие — нет. Процесс регулируется самой оболочкой. Он может быть пассивным и активным. В первом случае в реакцию вступают интегральные белки, во втором требуются значительные энергетические затраты.
Значение клеточной оболочки
Если внимательно изучить строение и функции плазматической оболочки, можно понять ее роль и значение в нормальном функционировании всего организма. После получения точных сведений о работе мембраны ученые смогли подтвердить ее необходимость и первостепенную роль в организме.
Все органы животных и человека состоят из клеток, поэтому палазмалемма имеет наиболее важное значение для всего организма. При ее повреждении клетка неспособна нормально существовать, нарушается целая цепь процессов. Именно поэтому специалисты и сегодня изучают цитоплазматическую мембрану, ее функции и процессы, в которых она принимает участие.
Какие функции плазматической мембраны?
Клетка давно определена как структурная единица всего живого. И это действительно так. Ведь миллиарды этих структур, словно кирпичики, образуют растения и животных, бактерий и микроорганизмов, человека. Каждый орган, ткань, система организма — все выстроено из клеток.
Поэтому очень важно знать все тонкости ее внутреннего строения, химического состава и протекающих биохимических реакций. В данной статье рассмотрим, что представляет собой плазматическая мембрана, функции, которые она выполняет, и строение.
Органеллы клетки
Органеллами называются мельчайшие структурные части, находящие внутри клетки и обеспечивающие ее строение и жизнедеятельность. К ним относится множество разных представителей:
Каждая из перечисленных структур имеет свое сложное строение, сформирована ВМС (высокомолекулярными веществами), выполняет строго определенные функции и принимает участие в комплексе биохимических реакций, обеспечивающих жизнедеятельность всего организма в целом.
Общее строение мембраны
Строение плазматической мембраны изучалось еще с XVIII века. Именно тогда впервые была обнаружена ее способность выборочно пропускать или задерживать вещества. С развитием микроскопии исследование тонкой структуры и строения мембраны стало более возможным, и поэтому на сегодняшний день о ней известно практически все.
Синонимом ее основному названию является плазмалемма. Состав плазматической мембраны представлен тремя основными видами ВМС. Соотношение этих соединений и расположение может варьироваться у клеток разных организмов (растительной, животной или бактериальной).
Жидкостно-мозаичная модель строения
Многие ученые пытались высказывать предположения о том, каким образом располагаются липиды и белки в мембране. Однако только в 1972 г. учеными Сингером и Николсоном была предложена актуальная и сегодня модель, отражающая строение плазматической мембраны.
Она названа жидкостно-мозаичной, и суть ее состоит в следующем: различные типы липидов располагаются в два слоя, ориентируясь гидрофобными концами молекул внутрь, а гидрофильными наружу. При этом вся структура, подобно мозаике, пронизана неодинаковыми типами белковых молекул, а также небольшим количеством гексоз (углеводов).
Вся предполагаемая система находится в постоянной динамике. Белки способны не просто пронизывать билипидный слой насквозь, но и ориентироваться у одной из его сторон, встраиваясь внутрь. Или вообще свободно «гулять» по мембране, меняя местоположение.
Доказательствами в защиту и оправданность этой теории служат данные микроскопического анализа. На черно-белых фотографиях явно видны слои мембраны, верхний и нижний одинаково темные, а средний более светлый. Также проводился ряд опытов, доказывающих, что слои основаны именно липидами и белками.
Белки плазматической мембраны
Если рассматривать процентное соотношение липидов и белков в мембране растительной клетки, то оно будет примерно одинаковое — 40/40%. В животной плазмалемме до 60% приходится на белки, в бактериальной — до 50%.
Плазматическая мембрана состоит из разных видов белков, и функции каждого из них также специфические. Периферические молекулы. Это такие белки, которые ориентированы на поверхности внутренней или наружной частей бислоя липидов. Основные типы взаимодействий между структурой молекулы и слоем следующие:
Сами периферические белки — растворимые в воде соединения, поэтому их отделить от плазмалеммы без повреждений несложно. Какие вещества относятся к этим структурам? Самое распространенное и многочисленное — фибриллярный белок спектрин. Его в массе всех мембранных белков может быть до 75% у отдельных клеточных плазмалемм.
Зачем они нужны и как зависит от них плазматическая мембрана? Функции следующие:
Полуинтегральные белки. Такими молекулами называются те, что погружены в липидный бислой полностью или наполовину, на различную глубину. Примерами могут служить бактериородопсин, цитохромоксидаза и другие. Их называют также «заякоренными» белками, то есть будто прикрепленными внутри слоя.
С чем они могут контактировать и за счет чего укореняются и удерживаются? Чаще всего благодаря специальным молекулам, которыми могут быть миристиновые или пальмитиновые кислоты, изопрены или стерины. Так, например, в плазмалемме животных встречаются полуинтегральные белки, связанные с холестерином.
У растений и бактерий таких пока не обнаружено. Интегральные белки. Одни из самых важных в плазмолемме. Представляют собой структуры, формирующие что-то вроде каналов, пронизывающих оба липидных слоя насквозь.
Именно по этим путям осуществляются поступления многих молекул внутрь клетки, таких, которые липиды не пропускают. Поэтому основная роль интегральных структур — формирование ионных каналов для транспорта.
Существует два типа пронизывания липидного слоя:
К разновидностям интегральных белков можно отнести такие, как гликофорин, протеолипиды, протеогликаны и другие. Все они нерастворимы в воде и тесно встроены в липидный слой, поэтому извлечь их без повреждения структуры плазмалеммы невозможно.
По своему строению эти белки глобулярные, гидрофобный конец их расположен внутри липидного слоя, а гидрофильный — над ним, причем может возвышаться над всей структурой.
За счет каких взаимодействий интегральные белки удерживаются внутри? В этом им помогают гидрофобные притяжения к радикалам жирных кислот.
Таким образом, существует целый ряд разных белковых молекул, которые включает в себя плазматическая мембрана. Строение и функции этих молекул можно объединить в несколько общих пунктов:
Липиды плазмалеммы
Жидкий бислой липидов, которыми представлена плазматическая мембрана, может быть очень подвижным. Дело в том, что разные молекулы могут из верхнего слоя переходить в нижний и наоборот, то есть структура динамична. Такие переходы имеют свое название в науке — «флип-флоп».
Образовалось оно от названия фермента, катализирующего процессы перестройки молекул внутри одного монослоя или из верхнего в нижний и обратно, флипазы. Количество липидов, которое содержит клеточная плазматическая мембрана, примерно такое же, как число белков. Видовое разнообразие широко. Можно выделить такие основные группы:
К первой группе фосфолипидов относятся такие молекулы, как глицерофосфолипиды и сфингомиелины. Эти молекулы составляют основу бислоя мембраны. Гидрофобные концы соединений направлены внутрь слоя, гидрофильные — наружу. Примеры соединений:
Для изучения данных молекул применяется способ разрушения слоя мембраны в некоторых частях фосфолипазой — специальным ферментом, катализирующим процесс распада фосфолипидов.
Функции перечисленных соединений следующие:
Сфингофосфолипиды и гликолипиды мембраны
Сфингомиелины или сфингофосфолипиды по своей химической природе — производные аминоспирта сфингозина. Наравне с фосфолипидами принимают участие в образовании билипидного слоя мембраны.
К гликолипидам относится гликокаликс — вещество, во многом определяющее свойства плазматической мембраны. Это желеподобное соединение, состоящее в основном из олигосахаридов.
Гликокаликс занимает 10% от общей массы плазмалеммы. С этим веществом напрямую связана плазматическая мембрана, строение и функции, которые она выполняет. Так, например, гликокаликс осуществляет:
Следует заметить, что наличие липида гликокаликса характерно только для животных клеток, но не для растительных, бактериальных и грибов.
Холестерол (стерин мембраны)
Является важной составной частью бислоя клетки у млекопитающих животных. В растительных не встречается, в бактериальных и грибах тоже. С химической точки зрения представляет собой спирт, циклический, одноатомный.
Равно как и остальные липиды, обладает свойствами амфифильности (наличие гидрофильного и гидрофобного конца молекулы). В мембране играет важную роль ограничителя и контролера текучести бислоя. Также участвует в выработке витамина D, является соучастником формирования половых гормонов.
В растительных же клетках присутствуют фитостеролы, которые не участвуют в образовании животных мембран. По некоторым данным известно, что эти вещества обеспечивают устойчивость растений к некоторым видам заболеваний. Плазматическая мембрана образована холестеролом и другими липидами в общем взаимодействии, комплексе.
Углеводы мембраны
Данная группа веществ составляет примерно около 10% от общего состава соединений плазмалеммы. В простом виде моно-, ди-, полисахариды не встречаются, а только в форме гликопротеидов и гликолипидов.
Функции их заключаются в осуществлении контроля над внутри- и межклеточными взаимодействиями, поддержании определенной структуры и положения молекул белков в мембране, а также осуществлении рецепции.
Основные функции плазмалеммы
Очень велика роль, которую играет в клетке плазматическая мембрана. Функции ее многогранны и важны. Рассмотрим их подробнее:
Очень тесно взаимосвязана клеточная плазмалемма и цитоплазма. Плазматическая мембрана находится в тесном контакте со всеми веществами и молекулами, ионами, которые проникают внутрь клетки и свободно располагаются в вязкой внутренней среде.
Данные соединения пытаются проникнуть внутрь всех клеточных структур, но барьером служит как раз мембрана, которая способна осуществлять разные типы транспорта через себя. Либо вообще не пропускать некоторые типы соединений.
Типы транспорта через клеточный барьер
Транспорт через плазматическую мембрану осуществляется несколькими способами, которые объединяет одна общая физическая особенность — закон диффузии веществ:
Оба процесса — пиноцитоз и фагоцитоз — играют большую роль не только в осуществлении транспорта соединений и жидкостей, но и в защите клетки от обломков отмерших клеток, микроорганизмов и вредных соединений. Можно сказать, что эти способы активного транспорта также являются и вариантами иммунологической защиты клетки и ее структур от разных опасностей.
Свойства и функции плазмалеммы
Клеточные мембраны являют собой подвижные, динамические структуры, поскольку молекулы белков и липидов удерживаются слабыми гидрофильно-гидрофобными взаимодействиями и могут перемещаться в плоскости мембраны.
Это явление получено название текучести мембран. Благодаря текучести мембраны способны быстро восстанавливаться после повреждения, а также растягиваться и сжиматься. Плазматическая мембрана живых клеток заряжена (снаружи положительный заряд, разность потенциалов 20-100мВ).
Белки, гликопротеины и белки клеточных мембран в клетках разных типов неодинаковы. Поэтому каждый тип клеток характеризуется своей индивидуальностью, которая в основном определяться гликопротеинами.
Например, у человека эритроциты разных групп крови по системе АВ0 различаются по антигенам А и В, которые по своей химической природе являются гликопротеинами. Яйцеклетка и сперматозоид узнают друг друга по гликопротеинам клеточной поверхности, после чего возможно оплодотворение.
Таким образом, глюкопротеины клеточных мембран могут функционировать как информационные молекулы клетки. В мембранах содержаться специфические рецепторы, ферменты, антитела.
Мембранные белки – антитела осуществляют защитную функцию. Они способны связывать антигены (микроорганизмы, чужеродные для клетки вещества), препятствуя их проникновению в клетку.
Мембранные рецепторы – это так называемые сигнальные белки плазматической мембраны, которые способны связывать физиологически активные вещества: гормоны и нейрогормоны. Рецепторы специфичны – для каждого гормона существуют свои рецепторы.
Действие гормона на клетку осуществляется через рецепторы. После связывания гормона с рецептором может измениться проницаемость мембран, их полярность, обменные процессы, генерироваться нервный импульс.
Для того чтобы клетка обладала способностью отвечать на различные сигналы, поступающие из внешней среды, передаваемые с помощью гормонов, она должна нести на своей поверхности соответствующий набор рецепторов.
Например, клетки печени имеют рецепторы для инсулина, глюкагона, адреналина и других гормонов. Когда гормон связывается со специфическим рецептором, то это запускает цепь событий, в результате которых проявляется действие гормона.
Важнейшим свойством мембраны является ее избирательная проницаемость, т.е. одни вещества проходят через нее легче и даже в сторону большей концентрации.
Максимально проникающей способностью через мембрану обладает вода и растворенные в ней газы. Перемещение заряженных ионов через мембрану происходит значительно медленнее. Хорошо проникают через биологические мембраны вещества, растворимые в липидах (например, алкоголь).
Различают пассивный и активный транспорт веществ через клеточную мембрану.
Пассивный транспорт веществ происходит без использования энергии по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже). Пассивный транспорт небольших полярных молекул (СО2, Н2О) и неполярных (О2,N2) осуществляется путем диффузии и осмоса.
Диффузия – это процесс, в ходе которого молекулы (или ионы) переходят через мембрану из области с высокой концентрацией в область низкой концентрации в результате броуновского движения (теплового движения атомов и молекул).
Различают простую и облегченную диффузию веществ через клеточную мембрану.
Простая диффузияпроисходит через те участки мембран, где преобладают липиды. Характеризуется низкой избирательностью мембраны к веществам, которые переносятся.
Известным примером такой диффузии может быть газообмен O2 и СO2 в легких и тканях. Простая диффузия легко происходит через липидный слой мембран веществ, хорошо растворимых в липидах, к которым относятся многие лекарства.
При облегченной диффузииспециальные мембранные белки-переносчики временно соединяются с молекулой вещества и проводят его через мембрану. Процесс пассивен в том смысле, что перенос осуществляется по градиенту концентрации, и характеризуется тем, что он:
· специфичен для определенных молекул (например, переносчик осуществляет транспорт только Д-, но не L-глюкозы);
В любой конкретной клетке имеются конечное число переносчиков для данной молекулы или йона. Когда все они заняты, скорость переноса становится максимальной. Следовательно, процесс достигает насыщения. Когда разность концентраций вещества равно нулю, переносчики, продолжая работать, переносят молекулы внутрь и наружу клетки с одинаковой скоростью, поэтому в целом диффузия не наблюдается.
Осмос – диффузия воды через мембрану из менее концентрированного в более концентрированный раствор. Естественно в более разбавленном растворе концентрация воды «выше», чем в концентрированном. В процессе осмоса происходит выравнивание концентраций двух растворов, разделенных избирательно проницаемой мембраной.
Активный транспорт –перенесение веществ против градиента концентрации с использованием энергии. Он осуществляется с помощью белков-переносчиков, образующих так называемые ионные насосы для переноса ионов в сторону более высокого биохимического потенциала.
Наиболее известным является Na+/K+– насос в клетках животных, который обуславливает активный транспорт в клетку ионов Калия и выведения из нее ионов Натрия. Благодаря этому внутри клетки поддерживается высокая концентрация K+ и меньшая Nа+ по сравнении с внешней поверхностью плазмолеммы.
Ионы (Na+, K+, Ca2+) переносятся через мембраны нервных, мышечных и других клеток благодаря наличию в них ионных каналов.
Ионные каналы – надмолекулярные системы биологических мембран, имеющих липопротеидную природу и обеспечивающие избирательное прохождение определенных ионов через мембрану.
Ионные каналы открываются и закрываются в зависимости от величины и разности электрических потенциалов на мембране или действия химических медиаторов. Некоторые вещества (ионофоры) сами способны создавать ионные каналы в липидном слое мембраны. Такими веществами являются многие антибиотики.
Нарушение работы ионных насосов и каналов сопровождается развитием патологических состояний в организме.
Действие ряда лекарственных препаратов основано на изменении свойств каналов и переносчиков, что позволяет регулировать транспорт веществ в клетке, ткани, органе и организме в целом. Макромолекулы белков, полисахаридов, нуклеиновых кислот, липопротеидов поступают в клетку путем эндоцитоза.
Эндоцитоз –способность клетки активно поглощать питательные вещества в виде мелких пузырьков (пиноцитоз)или твердых частиц (фагоцитоз).
В результате этого образуются мелкие мембранные вакуоли, которые соединяются с лизосомой. Под влиянием ферментов лизосом макромолекулы вакуолей расщепляются до мономеров, которые используются в клетке как пластический и энергетический материал.
На основе изложенного выше можно выделить следующие основные функции плазмалеммы: