Для чего нужна высокая частота
Ядра или тактовая частота процессора: выясняем, что важнее для работы и игр
реклама
Процессоры будут являться «синтетическими», «созданными» на основе многоядерного процессора Ryzen 7 2700. В связи с тем, что данный процессор отказывается запускаться на частоте в 2 GHz (но данное сравнение не имело бы никакого отношения с действительностью), удалось создать лишь два «типовых» процессора.
реклама
Даже простым перемножением ядер на частоты, не сложно догадаться, что конфигурация с шестью ядрами, работающими на частоте в 3 GHz будет немного сильнее конфигурации с четырьмя ядрами, работающими на частоте 4 GHz. В условном «математическом бенчмарке» (данный «бенчмарк» справедлив только для «синтетических процессоров», различающихся лишь количеством и частотой ядер), суммарная производительность данных CPU будет сопоставима, как «18» и «16» в пользу процессора с большим количеством ядер, так как для большей справедливости данного тестирования, ему следовало «привязать» частоту в 2.66 GHz.
Но данное действие было невозможно по той же причине, по которой в тестировании отсутствует «синтетический Ryzen 7 / Xeon» с частотой в 2 GHz. Материнская плата ASUS TUF B450M-PRO GAMING не может запустить процессор Ryzen 7 2700 с частотой ниже 2.8 GHz: во-первых, это не подразумевается, так как минимальный множитель для данного процессора равен 28; во-вторых, при попытке «взятия» необходимой частоты посредством комбинации множитель/делитель (формула следующая: Ratio=2*FID/DID), система отказывается запускаться с любым напряжением, даже в значении «авто».
И кто-то заметит, что данное сравнение двух математически не равных процессоров якобы теряет смысл, так как «итак понятно, что процессор с шестью ядрами окажется чуть сильней». Но в данном случае частоты процессоров приближены к реальным, а сравнить процессоры на 2 GHz, 2,66GHz и 4 GHz, было бы как минимум нелепо, так как процессоров Ryzen с такими низкими частотами попросту нет. И опять же, это ни в коем случае не «симуляция известных процессоров», это всего лишь попытка сравнения высокой частоты и большого количества ядер, что важнее сейчас.
В общем, далее нет смысла вдаваться в нюансы данного эксперимента, предлагаем же перейти к реальному исследованию.
реклама
Но для начала осмотр тестовой конфигурации.
«Синтетические» процессоры тестировались на следующей конфигурации:
Вольтаж для процессора с шестью ядрами был подобран 0.8125 вольта, вольтаж же для процессора с четырьмя разогнанными ядрами составил 1.25 вольта. LLC был отрегулирован так, что напряжение при возрастании нагрузки оставалось стабильным.
Тестирование энергопотребления / уровня шума / температурных показателей
Тестирование процессоров проводилось посредством 10-минутного теста OCCT версии 5.5.7 с использованием AVX2 инструкций.
реклама
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Таким образом, в тестировании OCCT процессор с шестью медленными ядрами оказался более «прохладным», чем процессор с разогнанными четырьмя ядрами. Но результаты данного тестирования нельзя интерпретировать на якобы Ryzen 5 3500X и Ryzen 3 3100/3300X. Все процессоры уникальны и данный тест лишь показывает серьезно возросшие показатели тепловыделения при небольшом разгоне, что характерно для всех процессоров Ryzen.
Тестирование в синтетических программах: CPU-Z
Теперь, когда мы разобрались с поведением двух экземпляров в стресс-тесте, предлагаю сравнить производительность процессоров в CPU-Z.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Результаты «математического бенчмарка» подтвердились. Четыре разогнанных ядра хоть и обошли шесть маломощных ядер в однопоточной производительности, но серьезно уступили во многоядерной производительности. Медленные шесть ядер обходят четыре быстрых на 12.5%, данная разница была известна еще заранее из «математического бенчмарка»: разница между 18 и 16 составляет 12.5%.
Тестирование в синтетике: Cinebench R20, CPU Queen, CPU PhotoWorxx
Перед тем, как мы перейдем непосредственно к играм, предлагаю ознакомиться со сводным тестированием процессоров в популярной синтетике.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Как мы можем наблюдать, процессоры очень близки по своей производительности в синтетических тестах. Но у процессора с низкой частотой и шестью ядрами закономерный отрыв в Cinebench R20 и небольшое превосходство в CPU PhotoWorxx. По результатам «общей синтетики» трудно выявить явного фаворита, процессоры очень близки, но за счет чисто «математического превосходства», 6 ядер с частотой в 3 GHz становятся более предпочтительными.
«Игровая синтетика»: Ashes of the Singularity: Escalation
Тестирование производилось с акцентом именно на CPU.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Стоит отметить, что оба процессора посредственно справились с данной игрой, но визуально плавность картинки была все-таки за процессором с шестью ядрами.
Assassin’s Creed Odyssey
Дополнительные слабые ядра положительно сказались на производительности в игре Assassin’s Creed Odyssey.
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
Даже на минимальные настройки графики не смогли «спасти» четыре разогнанных ядра от проигрыша в Assassin’s Creed Odyssey. К сожалению, разница в гигагерц не дала фору четырем ядрам.
Far Cry New Dawn
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
В данной игре шесть низкочастотных ядер потерпели разгромное поражение по плавности, проиграв четырем быстрым ядрам.
Metro Exodus
Для упрощения восприятия результатов тестирования, все данные были отображены в виде диаграммы с таблицей значений.
И опять с крохотным отрывом победу одержали четыре быстрых ядра. Но не стоит забывать, что это самые минимальные настройки графики, если бы видеокарта позволяла выставить максимальные настройки графики без «бутылочного горлышка», то процессор с четырьмя ядрами, скорее всего, серьезно бы уступил более медленному процессору, но с большим количеством ядер.
Заключение
Четыре ядра, шесть ядер, низкая частота, высокая частота имеет ли это такое большое значение, если итоговая производительность «гуляет» от игры к игре, а в синтетических тестах разница между этими решениями настолько мала, что становится трудно «рассудить», какой типовой процессор действительно лучший? Все зависит от ваших конкретных задач.
Частоты от 15 кГц и выше: зачем и почему
Последнее время, перечитывая на ночь спецификации, я диву даюсь, в какие ультразвуковые дали устремились современная акустика, усилители и источники. Во времена, когда пустые сигаретные пачки Marlboro и рекламные буклеты фирмы Technics было принято передавать по наследству, вся роскошь аудиовеликолепия укладывалась в заветные 20 Гц – 20 кГц.
Сегодня, если ты будешь кокетничать, как Rolls-Roys с мощностью двигателя, если не предъявишь контрастность картинки один к миллиону, тебя продадут с молотка. На этом фоне консервативные производители стерео выглядят скромнягами: подумаешь, в колонках теперь указывают верхнюю границу в 30 кГц, а в усилителях подняли планку всего-то в пять раз — до 100 кГц. Что все это значит, для чего сделано и как к этому относиться?
Так называемые «высокие частоты» имеют долгую историю и вошли, можно сказать, в область фольклора. Любой бесконечно далекий от мук выслушивания кабеля охламон в состоянии высказать претензию — «что-то высоких маловато». Во времена магнитных перезаписей заветного «цыканья» катастрофически не хватало, а то что имелось — таяло на суровых механизмах отечественных кассетников, как снег по весне. Практически все усилители имели две регулировки. Баску служила ручка о ста герцах, а чтобы все «звучало по-человечески», выкручивался на максимум второй регулятор полосы в 10 кГц.
Для изощренных любителей корежить амплитудно-частотную характеристику выпускались отдельные эквалайзеры, в которых ползунки, как правило, ставились галочкой, задирая края диапазона и проваливая средние частоты. С включенным «садомазоэквалайзером» велась и магнитная перезапись. Насчет искажений фазы никто не парился. Сегодня, если верить спецификациям на компоненты, проблемы с высокими частотами остались давно позади. От себя могу сказать, что с цифровым контентом по крайней мере характеристики никуда не уплывут, и музыка будет звучать стабильно хорошо. Или стабильно плохо, ха-ха. Так все-таки, как относиться к бойким характеристикам от нуля до ста килогерц?
По правилам хорошего тона к цифрам частотного диапазона следует соблюдать и указывать неравномерность (в децибелах). Не все утруждаются это делать, особенно грешат производители наушников. Приведенные в спецификациях границы частотного диапазона сами по себе ничего не говорят, лишь указывают, что к данному устройству был приложен технический сигнал так называемого «розового шума». Можно, не указывая неравномерность, и радиоприемнику записать хоть от нуля до 500 кГц.
Для адекватного, неокрашенного звучания важно, чтобы отклик был как можно более линеен, т.е. имел одинаковый уровень на каждой полосе. Для усилителей и источников предельная неравномерность составляет плюс-минус 0,5 дБ, для акустики — 3 дБ.
Начиная с 90-х в хайфае убрали регуляторы тембров от греха подальше. И правильно сделали, кстати говоря, хотя именно в АС они бы не помешали. При установке в реальном помещении колонки демонстрируют куда большие, чем 3 дБ пики/провалы АЧХ, и советы выровнять некрасивый звук сетевым кабелечком выглядят сущим издевательством.
Официально считается, что человек в состоянии различать звуки от 20 Гц до 20 кГц. Это совпадает с порогом воспроизведения компакт-диска — половина частоты дискретизации 44,1 стерео сигнала, т.е. 22,05 кГц. В хайрезах 24/192 значение верхнего предела теоретически может достигать соответственно 96 кГц, чего на практике никто не делает: никто не хочет семплировать пустоту, раздувая и без того немалый файл. В настоящее время наибольшее хождение получили как коммерческие, так и самодельные записи (например, виниловые рипы) в 24 бит/96 кГц. До 48 кГц частотного диапазона можно вместить что угодно и кого угодно. Да только кто туда пойдет?
Если вы закажете у районного сурдолога процедуру проверки слуха, то, как правило, получите аудиограмму до 8 кГц, а свыше прибор и не станет рисовать, он на это не рассчитан. Врачами считается, что для нормальной жизни больше 8 кГц и не надо. Знаменитый, так называемый «ультразвуковой» прикол для собачек на финальной канавке грампластинки 1967 года был записан на частоте всего-то 15 кГц. Вы можете раздобыть тестовые сигналы и попробовать расслышать ВЧ, начиная с десятки. Для кого-то будет неприятным сюрпризом остановиться на 16 кГц, но не спешите расстраиваться.
Знаменитый, так называемый «ультразвуковой» прикол для собачек на финальной канавке грампластинки 1967 года был записан на частоте всего-то 15 кГц
За исключением духового органа (10 кГц), который также умеет издавать и самые низкие звуки, свыше 4 кГц не играет ни один инструмент, даже флейта-пикколо. Другое дело, обертона: они могут карабкаться повыше — до 16 кГц у вокала, скрипки и пикколо. Область от 14 до 20 кГц и отвечает за создание «воздуха» в фонограмме. А любимое народное «цыкание» тарелочек спокойно уложилось гораздо ниже — в диапазон от 7 до 12 кГц. Вот на все эти некрупные цифры и ориентировались производители стереоаппаратуры 70-х.
А что же тогда находится в HD-записях свыше 20 кГц? Да мало ли что. Говорят, в ультразвуковой области могут залегать какие-то неучтенные ранее, а потому дико ценные обертона, которые человек (особенно такой мнительный, как аудиофил) способен если не слышать, то ощущать. Если посмотреть частотку HD-трека, картина бывает разная. У кого-то видно применение фильтра на тех же сакраментальных 20 кГц, а дальше ничего и нет. У кого-то жизнь наблюдается до 48 кГц. Что это может быть?
Как правило — ультразвуковые шумы квантования, какие-то резонансы, например, системы винилового картриджа. Значит ли это, что аудио 24/96 и выше — обман народа? Совершенно не значит, потому что мы получаем не только расширение частотной полосы, но и вынос ошибок квантования куда подальше, где их не слышно, увеличение запаса динамического диапазона. Проще говоря, HD-фонограмму сложнее испортить при записи, поэтому даже виниловые рипы в домашних условиях на 24/96 звучат более разборчиво и выразительно, чем на стандартных 16/44.1. Так что хоть и слышим мы, дай бог, чтобы до 18 кГц, а музыку лучше слушать в HD-изданиях. Как ни крути компакт-дисками.
Воспроизведение звука и музыки: какие частоты используют и зачем их ограничивают
Содержание
Содержание
Собаки слышат до 45 кГц, кошки — до 79 кГц, дельфины и летучие мыши — выше 100 кГц, а человеческое ухо едва в состоянии услышать несчастные 20 Кгц, а чаще — всего 16-17 кГц. Почему все так? И зачем тогда гордые значения воспроизводимых частот типа «16 Гц — 40 кГц» на аудиотехнике? На каких частотах вообще звучат музыкальные инструменты и человеческий голос? Об этом ниже.
Что такое частота звука?
Звуковая волна, как и любая другая, имеет две главные характеристики — амплитуда и частота. Если к поплавку на озере привязать карандаш и устроить так, чтобы он чертил на движущейся бумаге свою траекторию (как кардиометр или сейсмограф), то получится синусоида:
Почему мы слышим хуже кошки?
Звуковые волны могут иметь любую частоту колебаний, но человеческое ухо улавливает их в диапазоне примерно от 20 Гц до 20 Кгц. На самом деле, в идеальных лабораторных условиях некоторые слышат аж до 12–16 Гц, а те, кто не слышит, могут уловить низкочастотные колебания телом. А вот с высокими частотами все хуже. Лишь немногие смогут уловить 20 кГц, большинство же слышат лишь до 16-17 кГц, и с возрастом это значение падает до 8–10 кГц.
Более того, человеческое ухо наиболее чувствительно к диапазону от 2 до 5 кГц — это так называемая зона разборчивости. Чувствительность к волнам на разных участках спектра различается. Любой может записаться на аудиометрию — обследование слуха, чтобы получить аудиограмму — кривую чувствительности своих ушей по частотам. Правда, в медицине она измеряется в диапазоне от 125 Гц до 8 кГц, но даже в таком укороченном отрезке у всех будет видна неравномерность слуха. Чувствительность ушей зависит даже от времени дня и настроения.
Кроме того, воспринимаемая громкость зависит от частоты звука. К примеру, на малой громкости низкие и высокие частоты слышны хуже. Это как раз следствие того, что человеческое ухо заточено под средние частоты, позволяющие распознавать речь. Эффективная коммуникация — одно из главных эволюционных преимуществ человека, поэтому эволюция и наделила нас тем слуховым диапазоном, что мы имеем.
В свою очередь, эволюционные преимущества других животных могут отличаться. К примеру, летучие мыши ориентируются в пространстве, издавая и улавливая ультразвук, поэтому и слышат до 200 кГц. А большая восковая моль часто становится добычей летучих мышей, поэтому ей пришлось развить слуховой диапазон до 300 кГц, чтобы избегать встреч с ужасом, летящим на крыльях ночи. Кошка слышит ультразвук, потому что многие грызуны общаются на высоких частотах, а киты слышат инфразвук, чтобы общаться самим, потому что низкочастотные волны лучше передаются на большие расстояния.
Фундаментальная частота голоса мужчины — в районе 80-150 Гц, женщины — 150-250 Гц. Однако телефонные линии обрезают в звуке все, что ниже 300 Гц и выше 3,5 кГц. Почему? Потому что кроме фундаментальной частоты есть еще обертона. Это призвуки, которые появляются из-за того, что у человека звучат не только голосовые связки, но и гортань, голова, да и все тело целиком. Обычно они находятся выше основного тона, поэтому так и называются.
У мужчин обертона голоса достигают 4 кГц, у женщин — 5-6 кГц. Они сильно влияют на звучание, благодаря им мы можем отличить одного человека от другого и даже определить по голосу его телосложение. Соответственно, именно они, а не фундаментальный тембр, важны для телефонных переговоров.
Частоты музыки
Бас гитара, как и контрабас, обычно настраиваются в ми контроктавы — это 41 Гц, гитара — на октаву выше, 82 Гц. Скрипка, один из самых писклявых инструментов в оркестре, начинается с соль малой октавы (196 Гц) и заканчивается на ля четвертой октавы (440 Гц). Диапазон большинства фортепиано — от ля субконтроктавы (27,5 Гц) до до 5 октавы (523 Гц).
Как можно заметить, диапазон большинства музыкальных инструментов находится довольно низко по спектру, не выше 4-5 кГц. Зачем тогда вообще что-то выше условных 5 кГц в аудиотехнике?
К слову, первые граммофоны умели воспроизводить от 170 до 2 000 Гц, а с появлением электронной записи их диапазон расширился на 2,5 октавы — от 100 до 5 000 Гц. То есть как раз, чтобы воспроизводить диапазон голоса и большинства инструментов в оркестре. А другой музыки в 20-х годах прошлого века и не было.
Однако, как и в случае с человеческим голосом, решающую роль играют обертона. Они также зависят от «телосложения» инструмента — его габаритов, плотности дерева или металла, массы и т. п. Ведь когда нажимаешь клавишу ля на фортепиано — звучит не чистый синус, а весь инструмент целиком, включая и ноты ля в других октавах — они начинают колебаться в унисон. На этом эффекте основано звучание ситара — у него есть дюжина резонирующих струн, производящих характерный звон.
Более того, даже части самой струны, кратные ее длине, начинают колебаться в унисон. К примеру, половина, треть, четверть, пятая части струны будут издавать обертона на октаву или несколько октав выше фундаментальной частоты.
Обертона, которые кратны основному тону, называют гармоническими, или, попросту, гармониками. Именно они придают инструменту свой уникальный характер звучания, именно в них вся красота, именно количеством обертонов хороший инструмент отличается от плохого. Благодаря обертонам и гармоникам музыка предстает перед нами во всей полноте. Для них и нужен этот, на первый взгляд, пустой участок от 5 до 20 кГц.
Частотный диапазон у аудиотехники
Производители аудиотехники всегда стремились расширить диапазон воспроизводимых частот, чтобы добиться красоты и величественности звучания настоящих инструментов. Во времена ламповой техники верхняя граница едва достигала 12 кГц. Магнитная запись повысила порог до 15 кГц, но даже этот показатель могла выдать только студийная магнитная пленка с высокой скоростью протягивания ленты. У бытового катушечного магнитофона верхняя граница воспроизводимых им частот падает до 10–12 кГц, а в кассетных магнитофонах — и того меньше.
Все изменилось с появлением цифровой записи и CD, позволивших кодировать весь диапазон от 20 Гц до 20 кГц. Но вновь откатилось с появлением интернета и mp3, срезающих значительную часть верхов во имя меньшего объема файлов.
При этом сделать колонки, воспроизводящие весь диапазон, оказалось проще. Одни из первых студийных мониторов на рынке, Altec 604, в некоторых модификациях уже могли воспроизводить от 20 Гц до 22 кГц, а это 70-е годы прошлого века. Большинство современных колонок без проблем воспроизводят до 20 кГц, а нижняя планка зависит от диаметра вуфера, конструкции фазоинвертора и наличия саба.
Также нередко встречаются колонки с диапазоном до 30–40 кГц. Но нужно всегда смотреть на АЧХ, чтобы понять, на какой громкости они могут эти частоты воспроизводить, и будет ли их вообще слышно.
Тем не менее, многие обладатели колонок и наушников с расширенным частотным диапазоном (от 5/10/15 Гц до 30/40/50 кГц) утверждают, что они звучат ярче и/или глубже. Правда, чтобы это услышать, нужно воспроизводить музыку, в которой есть соответствующая информация. К примеру, ютуб режет все, что выше 16 кГц, mp3 даже в 320 bpm режет до 19 кГц, а стандарт CD (16 bit 44.1 кГц) срезает все, что выше 22 кГц. Расширенным диапазоном могут похвастаться стандарты типа DVD-Audio, Super Audio CD, DSD и некоторые другие, но музыки в таких форматах не так уж и много.
Если же наушники еще и беспроводные, то диапазон частот дополнительно ограничен кодеками Bluetooth. Даже Aptx-HD имеет потолок в 19 кГц, и только LDAC от Sony умеет транслировать музыку в высоком разрешении, но многие жалуются на слабое качество сигнала в таком режиме.
Жанры музыки и частоты
Стоит сказать, что не всегда гармоники и обертона делают музыку лучше. Слышимый диапазон можно представить себе, как тесный лифт, инструменты — как его посетителей, а обертона и гармоники — как их вес и габариты. В этом случае оркестр будет похож на группу детей — большинство инструментов не обладают большим диапазоном и занимают строго свое место, поэтому их может поместиться много.
Но в той же рок-музыке звучание инструментов многократно усиливается, обертонов становится слишком много, это больше похоже на сумоистов в пуховиках. Чтобы уместить их в лифт, нужно убрать лишнее — снять пуховики. Этим занимается звукорежиссер — он ограничивает частотный диапазон каждого инструмента фильтрами хай-пасс и лоу-пасс, а с помощью эквалайзера убирает ненужные и выделяет нужные гармоники.
К примеру, электрогитары, вокал и рабочий барабан обычно ограничивают от 100–150 Гц до 8–12 кГц, бас и бочку — от 20–40 Гц до 6–10 кГц и т. п. Да, звучание каждого инструмента становится менее богатым, но за счет этого в общем миксе они не мешают, а дополняют друг друга.
Появление синтезаторов дало возможность сделать чистый синус без обертонов, и уже потом обогатить его нужным количеством гармоник. Это позволило создать очень густой и четкий бас глубиной до 20 Гц, что невозможно проделать с живыми инструментами.
Заключение
Теперь понятно, почему музыка в высоком разрешении — это по большей части всякий джаз, кантри и классика, где сведение выполняется по минимуму, либо вообще отсутствует. Вполне возможно, что такая музыка в ультравысоком разрешении будет звучать максимально живо и естественно в наушниках, играющих от 4 Гц до 51 кГц.
В некоторых жанрах электронной музыки также встречается бас в районе инфразвука. Однако чаще всего электроника, рок и метал не содержат информации за пределами слышимого диапазона. Там все лишние обертона заботливо вырезал господин звукорежиссер, а те, что как-то выжили, добил мастеринг-инженер. Зато осталась самая сочная часть, которую будут отлично воспроизводить любые колонки и наушники.