Для чего нужно двоичное кодирование
Двоичное кодирование.
в Компьютеры 23.03.2020 0 184 Просмотров
Двоичное кодирование – это тип кода, используемый в основном для программирования компьютеров на самом базовом уровне. Он состоит из системы единиц и нулей, предназначенной для представления «истинного» или «ложного» значения в логических операциях. Двоичное кодирование было разработано Клодом Шеннаном в 1930-х годах с использованием переключателей.
Двоичные данные – это необработанные данные, которые используются почти на всех компьютерах, но большинство пользователей компьютеров не взаимодействуют с ними напрямую. Компьютер читает двоичный код и переводит его в данные, полезные для пользователя. Коды хранятся по-разному в зависимости от типа объекта. Например, коды могут храниться по напряжению, просто обозначая, включен ли объект, имеет ли он напряжение или выключен. CD-ROM используют темные пятна на блестящей поверхности для обозначения «истинных» или «ложных» значений, жёсткие диски используют магнетизм, а память использует электрический заряд.
Двоичное кодирование опирается на биты, наименьшую единицу кодирования. Подобно переключателю, который может быть либо выключен, либо включен, бит может иметь значение либо один, либо ноль. Более знакомые единицы обработки получены из бита. Байт составляет восемь битов, килобайт имеет 1000 байтов, а мегабайт имеет 1000 килобайт. Чем больше число битов, тем больше комбинаций может быть в битах, тем больше информации можно сохранить.
Например, два бита имеют четыре состояния. Оба могут быть выключены, оба могут быть включены, или один может быть выключен, и один может быть включен. В двоичном виде эти комбинации записываются как 00, 01, 10, 11. Количество состояний группы битов можно найти по выражению 2n, где n – количество битов.
Поскольку для каждого бита есть только два значения, с ними проще работать, чем с другими процессами компьютерного кодирования. Группы битов используются для представления различной информации. Байт часто представляет буквенный символ. Например, буква «А», записанная в двоичном виде – «01000001».
Хотя чаще всего используется для программирования компьютеров, двоичное кодирование также используется в генетических алгоритмах для определения пересечения наследственности между родителями и потомками. Биты назначаются каждому родителю для представления части их генетического кода. Затем случайные или конкретные биты копируются или инвертируются для получения кода потомства.
Двоичный код — где и как применяется?
Сегодня я по-особому рад своей встрече с вами, дорогие мои читатели, ведь я чувствую себя учителем, который на самом первом уроке начинает знакомить класс с буквами и цифрами. А поскольку мы живем в мире цифровых технологий, то я расскажу вам, что такое двоичный код, являющийся их основой.
Начнем с терминологии и выясним, что означит двоичный. Для пояснения вернемся к привычному нам исчислению, которое называется «десятичным». То есть, мы используем 10 знаков-цифр, которые дают возможность удобно оперировать различными числами и вести соответствующую запись.
Следуя этой логике, двоичная система предусматривает использование только двух знаков. В нашем случае, это всего лишь «0» (ноль) и «1» единица. И здесь я хочу вас предупредить, что гипотетически на их месте могли бы быть и другие условные обозначения, но именно такие значения, обозначающие отсутствие (0, пусто) и наличие сигнала (1 или «палочка»), помогут нам в дальнейшем уяснить структуру двоичного кода.
Зачем нужен двоичный код?
До появления ЭВМ использовались различные автоматические системы, принцип работы которых основан на получении сигнала. Срабатывает датчик, цепь замыкается и включается определенное устройство. Нет тока в сигнальной цепи – нет и срабатывания. Именно электронные устройства позволили добиться прогресса в обработке информации, представленной наличием или отсутствием напряжения в цепи.
Дальнейшее их усложнение привело к появлению первых процессоров, которые так же выполняли свою работу, обрабатывая уже сигнал, состоящий из импульсов, чередующихся определенным образом. Мы сейчас не будем вникать в программные подробности, но для нас важно следующее: электронные устройства оказались способными различать заданную последовательность поступающих сигналов. Конечно, можно и так описать условную комбинацию: «есть сигнал»; «нет сигнала»; «есть сигнал»; «есть сигнал». Даже можно упростить запись: «есть»; «нет»; «есть»; «есть».
Но намного проще обозначить наличие сигнала единицей «1», а его отсутствие – нулем «0». Тогда мы вместо всего этого сможем использовать простой и лаконичный двоичный код: 1011.
Безусловно, процессорная техника шагнула далеко вперед и сейчас чипы способны воспринимать не просто последовательность сигналов, а целые программы, записанные определенными командами, состоящими из отдельных символов.
Но для их записи используется все тот же двоичный код, состоящий из нулей и единиц, соответствующий наличию или отсутствию сигнала. Есть он, или его нет – без разницы. Для чипа любой из этих вариантов – это единичная частичка информации, которая получила название «бит» (bit — официальная единица измерения).
Условно, символ можно закодировать последовательностью из нескольких знаков. Двумя сигналами (или их отсутствием) можно описать всего четыре варианта: 00; 01;10; 11. Такой способ кодирования называется двухбитным. Но он может быть и:
Скажу честно, единой официальной версии нет, то так сложилось, что именно комбинация из восьми знаков стала стандартной мерой хранящейся информации, именуемой «байт». Таковая могла применяться даже к одной букве, записанной 8-и битным двоичным кодом. Итак, дорогие мои друзья, запомните пожалуйста (если кто не знал):
Так принято. Хотя символ, записанный 2-х или 32-х битным значением так же номинально можно назвать байтом. Кстати, благодаря двоичному коду мы можем оценивать объемы файлов, измеряемые в байтах и скорость передачи информации и интернета (бит в секунду).
Бинарная кодировка в действии
Для стандартизации записи информации для компьютеров было разработано несколько кодировочных систем, одна из которых ASCII, базирующаяся на 8-и битной записи, получила широкое распространение. Значения в ней распределены особым образом:
Расшифровка значений в ней показано в таблице.
Если вы считаете, что «0» и «1» расположены в хаотичном порядке, то глубоко ошибаетесь. На примере любого числа я вам покажу закономерность и научу читать цифры, записанные двоичным кодом. Но для этого примем некоторые условности:
Теперь, мои любознательные друзья, вы не только знаете что такое двоичный код, но и умеете преобразовать зашифрованную им информацию.
Язык, понятный современной технике
Конечно, алгоритм считывания двоичного кода процессорными устройствами намного сложнее. Но зато его помощью можно записать все что угодно:
Помимо этого, благодаря простоте «изложения» возможны различные способы записи бинарной информации:
Дополняет преимущества двоичного кодирования практически неограниченные возможности по передаче информации на любые расстояния. Именно такой способ связи используется с космическими кораблями и искусственными спутниками.
Так что, сегодня двоичная система счисления является языком, понятным большинству используемых нами электронных устройств. И что самое интересное, никакой другой альтернативы для него пока не предвидится.
Думаю, что изложенной мною информации для начала вам будет вполне достаточно. А дальше, если возникнет такая потребность, каждый сможет углубиться в самостоятельное изучение этой темы.
Я же буду прощаться и после небольшого перерыва подготовлю для вас новую статью моего блога, на какую-нибудь интересную тему.
Значение двоичного кода – почему компьютеры работают с единицами и нулями
Компьютеры не понимают слов и цифр так, как это делают люди. Современное программное обеспечение позволяет конечному пользователю игнорировать это, но на самых низких уровнях ваш компьютер оперирует двоичным электрическим сигналом, который имеет только два состояния: есть ток или нет тока. Чтобы «понять» сложные данные, ваш компьютер должен закодировать их в двоичном формате.
Двоичная система основывается на двух цифрах – 1 и 0, соответствующим состояниям включения и выключения, которые ваш компьютер может понять. Вероятно, вы знакомы с десятичной системой. Она использует десять цифр – от 0 до 9, а затем переходит к следующему порядку, чтобы сформировать двузначные числа, причем цифра из каждого следующего порядка в десять раз больше, чем предыдущая. Двоичная система аналогична, причем каждая цифра в два раза больше, чем предыдущая.
Подсчет в двоичном формате
В двоичном выражении первая цифра равноценна 1 из десятичной системы. Вторая цифра равна 2, третья – 4, четвертая – 8, и так далее – удваивается каждый раз. Добавление всех этих значений даст вам число в десятичном формате.
1111 (в двоичном формате) = 8 + 4 + 2 + 1 = 15 (в десятичной системе)
Учет 0 даёт нам 16 возможных значений для четырех двоичных битов. Переместитесь на 8 бит, и вы получите 256 возможных значений. Это занимает намного больше места для представления, поскольку четыре цифры в десятичной форме дают нам 10000 возможных значений. Конечно, бинарный код занимает больше места, но компьютеры понимают двоичные файлы намного лучше, чем десятичную систему. И для некоторых вещей, таких как логическая обработка, двоичный код лучше десятичного.
Следует сказать, что существует ещё одна базовая система, которая используется в программировании: шестнадцатеричная. Хотя компьютеры не работают в шестнадцатеричном формате, программисты используют её для представления двоичных адресов в удобочитаемом формате при написании кода. Это связано с тем, что две цифры шестнадцатеричного числа могут представлять собой целый байт, то есть заменяют восемь цифр в двоичном формате. Шестнадцатеричная система использует цифры 0-9, а также буквы от A до F, чтобы получить дополнительные шесть цифр.
Почему компьютеры используют двоичные файлы
Короткий ответ: аппаратное обеспечение и законы физики. Каждый символ в вашем компьютере является электрическим сигналом, и в первые дни вычислений измерять электрические сигналы было намного сложнее. Было более разумно различать только «включенное» состояние, представленное отрицательным зарядом, и «выключенное» состояние, представленное положительным зарядом.
Для тех, кто не знает, почему «выключено» представлено положительным зарядом, это связано с тем, что электроны имеют отрицательный заряд, а больше электронов – больше тока с отрицательным зарядом.
Таким образом, ранние компьютеры размером с комнату использовали двоичные файлы для создания своих систем, и хотя они использовали более старое, более громоздкое оборудование, они работали на тех же фундаментальных принципах. Современные компьютеры используют, так называемый, транзистор для выполнения расчетов с двоичным кодом.
Вот схема типичного транзистора:
По сути, он позволяет току течь от источника к стоку, если в воротах есть ток. Это формирует двоичный ключ. Производители могут создавать эти транзисторы невероятно малыми – вплоть до 5 нанометров или размером с две нити ДНК. Это то, как работают современные процессоры, и даже они могут страдать от проблем с различением включенного и выключенного состояния (хотя это связано с их нереальным молекулярным размером, подверженным странностям квантовой механики).
Почему только двоичная система
Поэтому вы можете подумать: «Почему только 0 и 1? Почему бы не добавить ещё одну цифру?». Хотя отчасти это связано с традициями создания компьютеров, вместе с тем, добавление ещё одной цифры означало бы необходимость выделять ещё одно состояние тока, а не только «выключен» или «включен».
Проблема здесь в том, что если вы хотите использовать несколько уровней напряжения, вам нужен способ легко выполнять вычисления с ними, а современное аппаратное обеспечение, способное на это, не жизнеспособно как замена двоичных вычислений. Например, существует, так называемый, тройной компьютер, разработанный в 1950-х годах, но разработка на том и прекратилась. Тернарная логика более эффективна, чем двоичная, но пока ещё нет эффективной замены бинарного транзистора или, по крайней мере, нет транзистора столь же крошечных масштабов, что и двоичные.
Причина, по которой мы не можем использовать тройную логику, сводится к тому, как транзисторы соединяются в компьютере и как они используются для математических вычислений. Транзистор получает информацию на два входа, выполняет операцию и возвращает результат на один выход.
Бинарная таблица истинности, работающая на двоичной логике, будет иметь четыре возможных выхода для каждой фундаментальной операции. Но, поскольку тройные ворота используют три входа, тройная таблица истинности имела бы 9 или более. В то время как бинарная система имеет 16 возможных операторов (2^2^2), троичная система имела бы 19683 (3^3^3). Масштабирование становится проблемой, поскольку, хотя троичность более эффективна, она также экспоненциально более сложна.
Кто знает? В будущем мы вполне возможно увидим тройничные компьютеры, поскольку бинарная логика столкнулась с проблемами миниатюризации. Пока же мир будет продолжать работать в двоичном режиме.
Двоичное кодирование вместо JSON
Почему меня это должно волновать
Типы форматов кодирования
Существует два типа форматов кодирования:
Текстовые форматы
Текстовые форматы в некоторой степени человекочитаемы. Примеры распространенных форматов — JSON, CSV и XML. Текстовые форматы просты в использовании и понимании, но имеют определенные проблемы:
JSON-кодировка этого примера после удаления всех символов пробела занимает 82 байта.
Двоичное кодирование
Для анализа данных, которые используются только внутри организации, вы можете выбрать более компактный или более быстрый формат. Несмотря на то, что JSON менее многословен, чем XML, оба они все равно занимают много места по сравнению с двоичными форматами. В этой статье мы обсудим три различных бинарных формата кодирования:
Thrift и Protocol Buffers
Thrift разработан Facebook, а Protocol Buffers – Google. В обоих случаях для кодирования данных требуется схема. В Thrift схема определяется с помощью собственного языка определения интерфейса (IDL).
Эквивалентная схема для Protocol Buffers:
Как видите, у каждого поля имеется тип данных и номер тега (1, 2 и 3). У Thrift есть два различных формата двоичной кодировки: BinaryProtocol и CompactProtocol. Двоичный формат прост, как показано ниже, и занимает 59 байт для кодирования данных, приведенных выше.
Кодирование с использованием двоичного протокола Thrift
Компактный протокол семантически эквивалентен бинарному, но упаковывает одну и ту же информацию всего в 34 байта. Экономия достигается за счет упаковки типа поля и номера метки в один байт.
Кодирование с использованием протокола Thrift Compact
Protocol Buffers кодирует данные аналогично компактному протоколу в Thrift, и после кодирования эти же данные занимают 33 байта.
Кодирование с использованием Protocol Buffers
Номера тегов обеспечивают эволюцию схем в Thrift и Protocol Buffers. Если старый код попытается прочитать данные, записанные с новой схемой, он просто проигнорирует поля с новыми номерами тегов. Аналогично, новый код может прочитать данные, записанные по старой схеме, пометив значения как null для пропущенных номеров тегов.
Avro отличается от Protocol Buffers и Thrift. Avro также использует схему для определения данных. Схему можно определить, используя IDL Avro (человекочитаемый формат):
Или JSON (более машиночитаемый формат):
Обратите внимание, что у полей нет номеров меток. Те же самые данные, закодированные с помощью Avro, занимают всего 32 байта.
Кодирование с помощью Avro.
Как видно из вышеприведенной последовательности байт, поля не могут быть идентифицированы (в Thrift и Protocol Buffers для этого используются метки с номерами), также невозможно определить тип данных поля. Значения просто собираются воедино. Означает ли это, что любое изменение схемы при декодировании будет генерировать некорректные данные? Ключевая идея Avro заключается в том, что схема для записи и чтения не обязательно должна быть одинаковой, но должна быть совместимой. Когда данные декодируются, библиотека Avro решает эту проблему, просматривая обе схемы и транслируя данные из схемы записывающего устройства в схему читающего устройства.
Устранение различий между схемой читающего и записывающего устройства
Вы, наверное, думаете о том, как читающее устройство узнает о схеме пишущего. Все дело в сценарии использования кодировки.
Заключение
В этой статье мы рассмотрели текстовые и двоичные форматы кодирования, обсудили как одни и те же данные могут занимать 82 байта с кодировкой JSON, 33 байта с кодировкой Thrift и Protocol Buffers, и всего 32 байта с помощью кодировки Avro. Двоичные форматы предлагают несколько неоспоримых преимуществ по сравнению с JSON при передаче данных в сети между внутренними службами.
Ресурсы
Чтобы узнать больше о кодировках и проектировании приложений c интенсивной обработкой данных, я настоятельно рекомендую прочитать книгу Мартина Клеппмана «Designing Data-Intensive Applications».
Узнайте подробности, как получить востребованную профессию с нуля или Level Up по навыкам и зарплате, пройдя платные онлайн-курсы SkillFactory:
Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Примеры кодирования информации:
Другими словами, переход сообщения из одной формы ее в другую, согласно определенным правилам, и выражает в чем суть кодирования информации.
Информация проходит кодирование в целях:
История кодирования информации насчитывает сотни веков. Издавна люди использовали криптограммы (зашифрованные сообщения).
В 19 веке с изобретением телеграфа С. Морзе был придуман и принципиально новый способ шифрования. Телеграфное сообщение передавалось по проводам последовательностью коротких и долгих сигналов (точка и тире).
Вслед за ним Ж. Бодо создал основополагающий в истории современной информатики метод бинарного кодирования информации, который заключается в применении всего двух различающихся электрических сигналов. Кодирование информации в компьютере также подразумевает использование двух чисел.
Разработанная в 1948г. К. Шенноном «Теория информации и кодирования» стала основополагающей в современном кодировании данных.
Кодирование информации в информатике, одна из базовых тем. Понимание для чего нужна процедура кодирования передаваемой информации, каким образом она осуществляется, поможет в изучении принципов работы компьютера.
Способы кодировки
Проанализируем разнообразные виды информации и особенности ее кодирования.
По принципу представления все информационные сведения можно классифицировать на следующие группы:
Способы кодирования информации обусловлены поставленными целями, а также имеющимися возможностями,методами ее дальнейшей обработки и сохранения. Одинаковые сообщения могут отображаться в виде картинок и условных знаков (графический способ), чисел (числовой способ) или символов (символьный способ).
Соответственно происходит и классификация информации по способу кодирования:
Чтобы расшифровать сообщение, отображаемое в выбранной системе кодирования информации, необходимо осуществить декодирование – процесс восстановления до исходного материала. Для успешного осуществления расшифровки необходимо знать вид кода и методы шифрования.
Самыми распространенными видами кодировок информации являются следующие:
Различают такие методы кодирования информации как:
Двоичный код
Самый широко используемый метод кодирования информации – двоичное кодирование. Кодирование данных двоичным кодом применяется во всех современных технологиях.
Двоичное кодирование информации применяется для различных данных:
Обработка графических изображений
Кодирование текстовой, звуковой и графической информации осуществляется в целях ее качественного обмена, редактирования и хранения. Кодировка информационных сообщений различного типа обладает своими отличительными чертами, но, в целом, она сводится к преобразованию их в двоичном виде.
Рисунки, иллюстрации в книгах, схемы, чертежи и т.п. – примеры графических сообщений. Современные люди для работы с графическими данными все чаще применяют компьютерные технологии.
Суть кодирования графической и звуковой информации заключается в преобразовании ее из аналогового вида в цифровой.
Кодирование графической информации – это процедура присвоения каждому компоненту изображения определенного кодового значения.
Способы кодирования графической информации подчиняются методам представления изображений (растрового или векторного):
Источник
Многим станет интересно: «В чем суть кодирования графической информации, представленной в виде 3D-изображений?» Дело в том, что работа с трехмерными данными сочетает способы растровой и векторной кодировки.
Кодирование и обработка графической информации различного формата имеет как свои преимущества, так и недостатки.
Метод координат
Любые данные можно передать с помощью двоичных чисел, в том числе и графические изображение, представляющие собой совокупность точек. Чтобы установить соответствие чисел и точек в бинарном коде, используют метод координат.
Метод координат на плоскости основан на изучении свойств точки в системе координат с горизонтальной осью Ox и вертикальной осью Oy. Точка будет иметь 2 координаты.
Если через начало координат проходит 3 взаимно перпендикулярные оси X, Y и Z, то используется метод координат в пространстве. Положение точки в таком случае определяется тремя координатами.
Система координат в пространстве
Перевод чисел в бинарный код
Числовой способ кодирования информации, т.е. переход информационных данных в бинарную последовательность чисел широко распространен в современной компьютерной технике. Любая числовую, символьную, графическую, аудио- и видеоинформацию можно закодировать двоичными числами. Рассмотрим подробнее кодирование числовой информации.
Привычная человеку система счисления (основанная на цифрах от 0 до 9), которой мы активно пользуемся, появилась несколько сотен тысяч лет назад. Работа всей вычислительной техники организована на бинарной системе счисления. Алфавитом у нее минимальный – 0 и 1. Кодировка чисел совершается путем перехода из десятичной в двоичную систему счисления и выполнении вычислений непосредственно с бинарными числами.
Кодирование и обработка числовой информации обусловлено желаемым результатом работы с цифрами. Так, если число вводится в рамках текстового файла, то оно будет иметь код символа, взятого из используемого стандарта. Для математических вычислений числовые данные преобразуются совершенно другим способом.
Принципы кодирования числовой информации, представленной в виде целых или дробных чисел (положительных, отрицательных или равных 0) отличаются по своей сути. Самый простой способ перевести целое число из десятичной в двоичную систему счисления заключается в следующем:
Одна из важнейших частей компьютерной работы – кодирование символьной информации. Все многообразие цифр, русских и латинских букв, знаков препинания, математических знаков и отдельных специальных обозначений относятся к символам. Cимвольный способ кодирования состоит в присвоении определенному знаку установленного шифра.
Рассмотрим подробнее самые распространенные стандарты ASCII и Unicode – то, что применяется для кодирования символьной информации во всем мире.
Фрагмент таблицы ASCII
Первоначально было установлено, что для любого знака отводится в памяти компьютера 8 бит (1 бит – это либо «0», либо «1») бинарной последовательности. Первая таблица кодировки ASCII (переводится как «американский кодовый стандарт обмена сообщениями») содержала 256 символов. Ограниченная численность закодированных знаков, затрудняющая межнациональный обмен данными, привела к необходимости создания стандарта Unicode, основанного на ASCII. Эта международная система кодировки содержит 65536 символов. Закодировать огромное количество всевозможных обозначений стало возможным благодаря использованию 16-битного символьного кодирования.
Кодирование символьной и числовой информации принципиально отличается. Для ввода-вывода цифр на монитор или использовании их в текстовом файле происходит преобразование их согласно системе кодировки. В процессе арифметических действий число имеет совершенно другое бинарное значение, потому что оно переходит в двоичную систему счисления, где и совершаются все вычислительные действия.
Выбирать способ кодирования информации – графический, числовой или символьный необходимо отталкиваясь от цели кодировки. Например, число «21» можно ввести в компьютерную память цифрами или буквами «двадцать один», слово «ЗИМА» можно передать русскими буквами «зима» или латинскими «ZIMA», штрих-код товара передается изображением и цифрами.
Преобразование звука
Компьютерные технологии успешно внедряются в различные сферы деятельности, включая кодирование и обработку звуковой информации. С физической точки зрения, звук – это аналоговый сплошной сигнал. Процесс его перевода в ряд электрических импульсов называется кодированием звуковой информации.
Задачи, которые необходимо решить для успешной оцифровки сигнала:
Преобразование звука: а) аналоговый сигнал; б)дискретный сигнал.
Различают следующие методы кодирования звуковой информации:
Обработка текста
Текст – осмысленный порядок знаков. С использованием компьютера кодирование и обработка текстовой информации (набор, редактирование, обмен и сохранение письменного текста) значительно упростилось.
Кодирование текстовой информации – присвоение любому символу текста кода из кодировочной системы. Различают следующие стандарты кодировки:
В задачах на кодирование текстовой информации часто встречаются следующие понятия:
Например, мощность алфавита ASCII составляет 256 символов. При этом один знак занимает 8 бит (или 1 байт) памяти, а Unicode – 35536 символов и 16 бит (или 2 байта) соответственно.













