Для чего нужно нейтрино

Почему так тяжело изучать нейтрино и что эта частица расскажет об истории Вселенной

Нейтрино является одной из самых распространенных частиц во Вселенной, при этом ее невероятно сложно обнаружить. Изучать нейтрино важно, потому что они содержат в себе информацию о явлениях и процессах, которые их порождают: это значит, что с помощью частицы можно узнать о происхождении Вселенной. Рассказываем обо всех тайнах, которые хранят в себе нейтрино.

Читайте «Хайтек» в

Что такое нейтрино?

Нейтрино — это сверхлегкие частицы, образующиеся в процессе ядерных реакций. Большинство из тех, что были обнаружены на Земле, исходят от Солнца, которое превращает водород в гелий. Но в 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые «нейтрино CNO». И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.

До недавнего времени было вообще непонятно, есть ли у нее масса. В последние годы стало ясно, что есть, но очень маленькая. Ее точное значение неизвестно по сию пору, а имеющиеся оценки в общем сводятся к тому, что нейтрино примерно на 10 порядков легче протона. Примерно так же соотносится вес кузнечика (около 1 грамма) с водоизмещением современного атомного авианосца George Bush (около 100 тыс. тонн).

Частица не имеет или почти не имеет электрического заряда — эксперименты пока не дали однозначного ответа, а из всех фундаментальных физических взаимодействий достоверно участвует только в слабом и гравитационном.

Нейтрино подразделяются на три поколения: электронные, мюонные и тау-нейтрино. Они обычно перечисляются именно в таком порядке, и это не случайно: так отображается последовательность их открытия. Кроме этого, есть еще антинейтрино — это античастицы трех разных типов, соответствующих «обычным». Нейтрино разных поколений могут самопроизвольно превращаться друг в друга. Ученые называют это нейтринными осцилляциями, за их открытие присудили Нобелевскую премию по физике 2015 года.

Нейтрино — результат ядерных (и термоядерных, мы далее не будем выделять их отдельно) реакций. Их, неуловимых, очень много. По подсчетам физиков-теоретиков, на каждый нуклон (то есть протон или нейтрон) во Вселенной приходится около 10 9 нейтрино. Тем не менее, мы совершенно его не замечаем: частицы проходят сквозь нас.

Как ученые ищут нейтрино?

Современные детекторы регистрируют не сами нейтрино — это пока невозможно. Объектом регистрации оказываются результаты взаимодействия частицы с веществом, заполняющим детектор. Его выбирают так, чтобы с ним реагировали нейтрино определенных, интересующих разработчиков, энергий. Поскольку энергия нейтрино зависит от механизма их образования, можно считать, что детектор рассчитан на частицы определенного происхождения.

Как только стало понятно, что нейтрино хоть и сложно, но все же можно зарегистрировать, ученые начали пытаться уловить нейтрино внеземного происхождения. Самый очевидный их источник — Солнце. В нем постоянно происходят ядерные реакции, и можно подсчитать, что через каждый квадратный сантиметр земной поверхности проходит около 90 млрд солнечных нейтрино в секунду.

На тот момент самым эффективным методом ловли солнечных нейтрино был радиохимический метод. Суть его такова: солнечное нейтрино прилетает на Землю, взаимодействует с ядром; получается, скажем, ядро 37Ar и электрон (именно такая реакция была использована в эксперименте Рэймонда Дэйвиса, за который ему впоследствии дали Нобелевскую премию).

После этого, подсчитав количество атомов аргона, можно сказать, сколько нейтрино за время экспозиции взаимодействовало в объеме детектора. На практике, разумеется, все не так просто. Надо понимать, что требуется считать единичные атомы аргона в мишени весом в сотни тонн. Соотношение масс примерно такое же, как между массой муравья и массой Земли. Обнаружилось, что похищено ⅔ солнечных нейтрино (измеренный поток оказался в три раза меньше предсказанного).

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Общей особенностью всех современных нейтринных телескопов являются меры, направленные на экранирование аппаратуры от всех посторонних частиц. Нейтрино, хотя их в природе очень много, засекаются детекторами очень редко. Любой посторонний шум от космических или земных частиц наверняка их заглушит.

Поэтому стандартное размещение нейтринной обсерватории — в шахте или, в некоторых случаях, под водой, чтобы вышележащая толща блокировала ненужное излучение. Эта толща тоже тщательно подбирается — горные породы, например, должны быть как можно менее радиоактивными. Граниты нам не подойдут, глины тоже. Хорошее место для детектора — шахта в толще чистого известняка.

Лучшее направление для работы нейтринной обсерватории — прием частиц, пришедших снизу, сквозь нашу планету. Для нейтрино она прозрачна, для всего остального — нет.

Современные детекторы определяют нейтринное событие по «разрушительному эффекту». Когда неуловимая частица все-таки взаимодействует с веществом детектора, она вызывает разрушение первоначального атомного ядра с образованием каких-то иных частиц. Их-то затем и обнаруживают в детекторе.

Чтобы вызвать такую реакцию, нейтрино должно иметь собственную энергию не ниже определенного, нужного для данного детектора, уровня. Поэтому современная техника всегда имеет ограничение снизу — регистрирует нейтрино, имеющие энергию выше определенного уровня. В таком порядке мы их и рассмотрим.

Зачем мы вообще изучаем нейтрино?

Нейтрино рассказывают нам чрезвычайно много о том, как Вселенная создается и удерживается от распада. Нет другого способа ответить на многие вопросы.

Натаниэль Боуден, ученый из Ливерморской Национальной лаборатории имени Лоуренса

Эксперты сравнили поиск этих частиц с работой археологов, восстанавливающих доисторические артефакты с целью понять, какой жизнь была тогда. Лучшее понимание нейтрино может раскрыть тайны других элементов астрономии и физики: от темной материи до расширения Вселенной.

Эксперимент COHERENT Окриджской национальной лаборатории состоял из пяти детекторов частиц, предназначенных для непосредственного наблюдения высокоспецифического взаимодействия между нейтрино и ядрами атомов. В прошлом году эти ученые опубликовали исследование в Science о взаимодействии между двумя нейтрино, которое было выдвинуто в качестве гипотезы десятилетиями ранее, но никогда прежде не наблюдались.

Это не просто еще одна частица. Это попытка найти, причем сравнительно простым и относительно дешевым методом, — если сравнивать с Большим адронным коллайдером, например, — новую физику. Новая физика — это и понимание того, что такое темная материя: возможно, она окажется теми самыми стерильными нейтрино. И, что возможно, выход на новые технологии. Нельзя исключать, что новые нейтрино окажутся представителями неизвестного класса частиц, которые еще и взаимодействуют между собой каким-то иным способом. Если мы нападем на след этого нового взаимодействия, то не исключено, что мы научимся его использовать на практике: подобно тому, как открытие ядерного взаимодействия привело к появлению ядерных технологий.

Григорий Рубцов, заместитель директора Института ядерных исследований.

Изучение испускаемых Землей нейтрино может помочь нам хотя бы понять, сколько в земном веществе радиоактивных элементов и где они в основном находятся. По части последнего существуют разные версии, начиная от того, что уран с торием — атрибут нижней части земной коры, и кончая тем, что источники радиации в ходе формирования планеты «утонули» к ее центру, и там существует нечто вроде ядерного реактора, причем периодически действующего.

Накопившиеся продукты распада, когда их становится достаточно много, останавливают цепную реакцию. Потом в раскаленной среде они потихоньку диффундируют наверх (они легче), освобождая место для новых порций делящегося материала, после чего процесс запускается снова. Если это так, то подобная цикличность могла бы помочь в объяснении перемен магнитной полярности Земли и, надо думать, во многом другом.

Интересен также вопрос о доле ядерных реакций в общем тепловыделении Земли. Напомним, что земные недра суммарно выдают порядка 47 ТВт тепла в год, но ученые до сих пор смутно представляют себе, какая часть этой энергии приходится на радиогенное тепло, а какая — на остаточное тепло, выделившееся когда-то при гравитационной дифференциации земного вещества.

Чем это интересно для обычного человека?

Технологии, которые разрабатываются для создания современных экспериментов по физике нейтрино, широко используются в промышленности уже сейчас, так что любое вложение в эту сферу окупается. Сейчас в мире ставятся несколько экспериментов, масштаб которых сравним с масштабом Большого адронного коллайдера.

Эти эксперименты направлены исключительно на исследование свойств нейтрино. В каком из них удастся открыть новую страницу в физике, неизвестно, но открыта она будет совершенно точно.

Как мы продвинулись в изучении нейтрино?

Накануне стало известно, что Японские ученые из Университета Цукубы и Токийского университета разработали космологическую модель, которая точно отражает роль нейтрино в эволюции Вселенной.

В результате выяснилось, что в областях, где много нейтрино, обычно присутствуют массивные скопления галактик. Еще один важный вывод: нейтрино подавляет кластеризацию темной материи и галактик, а также изменяет температуру в зависимости от собственной массы.

Также стало известно, что Borexino, огромный подземный детектор частиц в Италии, уловил невиданный ранее тип нейтрино, исходящий от Солнца. Эти нейтрино подтверждают гипотезу 90-летней давности и дополняют наше представление о циклах синтеза Солнца и других звезд. В 1930-х годах было предсказано, что Солнце должно также производить нейтрино другого типа посредством реакций с участием углерода, азота и кислорода — так называемые нейтрино CNO. И лишь почти век спустя детектор Borexino впервые обнаружил эти частицы.

Реакция CNO выделяет лишь крошечную часть от общего количества солнечной энергии, но у более массивных звезд она считается основной движущей силой термоядерного синтеза. Экспериментальное обнаружение нейтрино CNO означает, что ученые наконец получили связь между последними частями головоломки и могут расшифровать весь цикл солнечного термоядерного синтеза.

Подтверждение того, что CNO осуществляется в процессе термоядерной активности нашей звезды, где подобные реакции занимают не более 1%, укрепляет нашу уверенность в том, что мы точно понимаем, как работают звезды.

Франк Калаприс, главный исследователь Borexinо

Детекторы нейтрино предназначены для отслеживания тех редких случаев, когда эти «призрачные частицы» случайно сталкиваются с другими атомами. Обычно в таких устройствах используются огромные объемы детекторной жидкости или газа, которые испускают вспышку света при «ударе» нейтрино. Подобные эксперименты обычно проводятся внутри камеры глубоко под землей, вдали от помех и воздействия других космических лучей.

Команда потратила годы, регулируя температуру инструмента, чтобы замедлить движение жидкости внутри детектора, и сосредоточилась на сигналах, исходящих из центральной области контейнера. В феврале 2020 года команда наконец-то уловила искомый сигнал и потратила почти год на его расшифровку и на то, чтобы удостовериться в отсутствии ошибок.

Эти данные могут не только улучшить наше понимание цикла слияния звезд, но и помочь ученым выяснить, насколько «металлическими» являются Солнце и другие звезды.

Источник

Что такое частицы нейтрино и почему человечество не может их изучить?

Знаете ли вы, что самым дорогим веществом на свете является антиматерия? Согласно официальным данным NASA, один миллиграмм позитронов этого редкого вещества стоит приблизительно 25 миллионов долларов! Вместе с тем, получить антиматерию в лабораторных условиях едва ли представляется возможным по причине того, что все предпринятые ранее попытки создать уникальный источник энергии потерпели поражение. Почему? Кажется, ответ на этот вопрос может скрываться в очень распространенных и при этом загадочных частицах — нейтрино.

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Нейтрино может стать ключом к получению чистой антиматерии

Что такое антиматерия?

В физике антиматерия — это просто «противоположность» материи. Дело в том, что частицы антивещества всегда имеют ту же массу, что и их аналоги, при этом обладая несколько иными “перевернутыми” свойствами. Так, протоны в веществе имеют положительный заряд, а антипротоны-отрицательный. Антиматерия теоретически может быть создана в лабораторных условиях при столкновении частиц высокой энергии, однако эти события почти всегда создают равные части как антиматерии, так и материи, и, когда две противоположные частицы вступают в контакт друг с другом, обе разрушаются в мощной волне чистой энергии.

Что озадачивает физиков, так это то, что почти все во Вселенной, включая людей, состоит из материи, а не из равных частей материи и антиматерии. В поисках идей, которые могли бы объяснить, что удерживает нашу Вселенную от создания отдельных галактик, состоящих из антиматерии, исследователи обнаружили некоторые доказательства того, что ответ может скрываться в очень распространенных, но плохо изученных частицах, известных человечеству как нейтрино.

Может ли нейтрино взаимодействовать в антиматерией?

Для того, чтобы суметь ответить на вопросы о природе антиматерии, команда исследователей во главе с Кристофером Можером не так давно опубликовала результаты первого набора экспериментов, направленных на изучение свойств нейтрино. Так, согласно планам ученых, уже в самое ближайшее время человеком может быть проведен особый глубоководный нейтринный эксперимента (DUNE), который представляет из себя создание экспериментальной установки для исследований нейтринной науки и физики частиц.

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Для того, чтобы понять природу взаимодействия нейтрино и антиматерии, ученые планируют создать уникальный подземный инструмент под названием DUNE

В настоящее время всем известные коллайдеры частиц, такие как Большой адронный коллайдер в ЦЕРНе, проводят эксперименты на кварках — частицах, которые “конструируют” протоны и нейтроны атомного ядра. Благодаря проведенным экспериментам, были найдены определенные доказательства того, что материя и антиматерия действительно симметричны. Вместе с тем, эксперименты на лептонах — легких, слабовзаимодействующих с материей частицах, намекают на то, что эти частицы могли бы более полно объяснить универсальную асимметрию стандартного вещества и антиматерии.

Проблема с изучением нейтрино заключается в том, что подобные мельчайшие частицы крайне редко взаимодействуют с другими частицами. Обнаружение этих редких взаимодействий означает, что исследователям необходимо изучать большое количество нейтрино в течение длительных периодов времени. Кроме того, постоянный поток мюонов, образующихся в результате взаимодействия космических лучей в верхних слоях атмосферы, может затруднить обнаружение и без того нечастых взаимодействий.

Исследователи считают, что для того, чтобы решить такую проблему, ставящую под угрозу исследование частиц нейтрино, нам необходимо спуститься приблизительно на полтора километра вглубь Земли, построив несколько 10-тонных детекторов и заполнив их изнутри жидким аргоном. Сразу после этого, учеными предлагается запустить в сторону установки пучок нейтрино, который должен быть предварительно сделан в близлежащем ускорителе частиц. По словам авторов программы DUNE, данная установка будет размещена к 2022 году в подземном исследовательском центре Сэнфорда недалеко от Чикаго, и, возможно, именно она сможет помочь в исследовании свойств взаимодействия нейтрино и антиматерии.

Если вам нравится данная статья, приглашаю вас присоединиться к нашему официальному Telegram-чату, где вы сможете обсудить с единомышленниками последние новости из мира популярной науки и техники.

Несмотря на то, что исследование частиц нейтрино может занять не один десяток лет, авторы считают, что проект DUNE может не просто ответить на многие кажущиеся неразрешимыми вопросы из области астрофизики, математики и физики частиц, но и даже вполне может содержать в себе ключ к пониманию того, как и почему мы с вами смогли появиться в нашей Вселенной. А вот это уже захватывает.

Источник

Частица-призрак: нейтрино

Пока вы читали короткий заголовок этой статьи, через ваше тело беспрепятственно пролетело 10 14 нейтрино.

Примерно сто лет назад физиков стало беспокоить странное поведение электронов, вылетающих из нестабильных ядер при бета-распаде. Экспериментальные данные показывали, что кинетическая энергия этих частиц изменяется в довольно широких пределах. В то же время появлялось все больше и больше оснований считать, что такие ядра теряют энергию дискретно и одними и теми же порциями. Но в этом случае каждый конкретный вид бета-распада вроде бы должен генерировать электроны одинаковой энергии, а этого не происходило. Аналогично выглядело и сравнение угловых моментов, которые, по всей видимости, тоже не сохранялись.

В принципе, эту аномалию можно объяснить несоблюдением фундаментальных законов сохранения, но почти все физики считали это чрезмерной жертвой. Ситуацию спас Вольфганг Паули, тридцатилетний, но уже знаменитый профессор теоретической физики швейцарского Федерального технологического института (ETH) в Цюрихе. В качестве «крайнего средства» (его собственные слова) спасения законов сохранения энергии и углового момента Паули допустил, что внутри ядра скрываются электрически нейтральные легкие частицы с половинным спином. Эти гипотетические лептоны он предложил называть нейтронами. Согласно его гипотезе, именно они уносят с собой остаток потерянной ядром энергии, поэтому в каждом акте бета-распада сумма энергий этой частицы и электрона должна быть постоянной.

Паули понимал, что его идея очень уязвима для критики. Впервые он сообщил о ней в письме от 4 декабря 1930 года, адресованном специалистам по радиоактивности, собравшимся в Тюбингене, особо подчеркнув, что не счел возможным публиковать свою гипотезу в научном журнале. Неформальный характер этого послания выражен даже в обращении «Дорогие радиоактивные дамы и господа!». Признавая, что его предположение выглядит «почти невероятным», Паули все же попросил коллег подумать, как обнаружить гипотетическую частицу в эксперименте.

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Лингвистическое нововведение Паули скоро поменяло адресата — нейтроном назвали нейтральный аналог протона, открытый в 1932 году Джеймсом Чедвиком. А вот сама идея оказалась исключительно плодотворной. В 1933–1934 годах итальянец Энрико Ферми разработал математическую теорию бета-распада с участием частицы, предложенной Паули, которую Ферми окрестил нейтрино. При этом он совершенно по-новому объяснил ее появление. Если Паули считал, что его гипотетическая частица присутствует в ядре в готовом виде, то Ферми предположил, что нейтрино рождается одновременно с превращением одного из внутриядерных нейтронов в протон и электрон. Протон остается в составе дочернего ядра с возросшим на единицу атомным номером, а электрон и нейтрино вылетают в окружающее пространство. Ферми постулировал, что масса нейтрино равна нулю (откуда следует, что оно обладает световой скоростью) и что для его возникновения не нужны посредники в виде каких-либо вспомогательных частиц.

Теория Ферми описывает еще один тип бета-распада, при котором возникают ядра с уменьшенным на единицу атомным номером. Она объясняет этот распад превращением протона в нейтрон, сопровождающимся выбросом позитрона и нейтрино. Об антинейтрино в его статье прямо не говорится, но вся ее логика предписывает его существование. Поскольку позитрон — античастица электрона, естественно предположить, что нейтрино тоже обладает античастицей. Принято считать, что при электронном бета-распаде возникают антинейтрино, а при позитронном — нейтрино (в соответствии с положением теории Дирака, согласно которому частицы и античастицы всегда рождаются парами). В начале 1950-х была сформулирована концепция, которая приписывает каждому лептону число 1, а антилептону число –1. При обоих типах бета-распада эти числа (их называют также лептонными зарядами) сохраняются: сначала лептонов нет вовсе, а затем рождаются лептон и антилептон (электрон и антинейтрино или позитрон и нейтрино), и поэтому лептонное число и до, и после распада остается нулевым.

Нейтрино обладают феноменальной проникающей способностью. Ганс Бете и Рудольф Пайерлс в том же 1934 году с помощью теории Ферми вычислили, что нейтрино с энергиями порядка нескольких МэВ взаимодействуют с веществом настолько слабо, что могут беспрепятственно преодолеть слой жидкого водорода толщиной в тысячу световых лет! Узнав об этом, Паули во время визита в Калифорнийский технологический заявил, что совершил ужасную вещь — предсказал существование частицы, которую вообще невозможно обнаружить!

Пессимистический прогноз Паули опровергли в 1955–1956 годах, после того как американские физики под руководством Клайда Коуэна и Фредерика Рейнеса экспериментально подтвердили существование нейтрино (за что в 1995 году Рейнес получил Нобелевскую премию, до которой не дожил Коуэн).

Источником нейтрино для их эксперимента стал один из реакторов ядерного комплекса Savannah River в штате Южная Каролина. Мощные потоки антинейтрино (10 трлн частиц на 1 см 2 в секунду!) генерировались бета-распадами ядер урана и плутония. Согласно теории Ферми, антинейтрино при столкновении с протоном порождает позитрон и нейтрон (это так называемый обратный бета-распад). Эти превращения регистрировали с помощью обвешанного датчиками контейнера, заполненного водным раствором хлорида кадмия. Практически все антинейтрино проходили сквозь него беспрепятственно, но в отдельных случаях все же взаимодействовали с ядрами водорода. Возникающие позитроны аннигилировали с электронами, порождая пару гамма-квантов с энергиями порядка 0,5 МэВ. Новорожденные нейтроны поглощались ядрами кадмия, которые испускали гамма-кванты другой частоты. Длительная регистрация такого гамма-излучения позволила надежно доказать реальность нейтрино, о чем в июне 1956 года экспериментаторы известили Паули специальной телеграммой.

Когда группа Коуэна и Рейнеса завершила свой эксперимент, физики полагали, что все нейтрино одинаковы. Однако в конце 1950-х годов теоретики из Советского Союза, Соединенных Штатов Америки и Японии предположили, что нейтрино, сопровождающие рождение мюонов, отличаются от тех, что сопутствуют электронам и позитронам (эта идея впервые была высказана десятилетием раньше, но потом о ней забыли). Так возникла гипотеза нового, мюонного нейтрино (естественно, и антинейтрино). В 1961–1962 годах ее подтвердили в Брукхейвенской национальной лаборатории, и в 1988 году Леон Ледерман, Мелвин Шварц и Джек Штейнбергер получили за это Нобелевскую премию. Позднее теоретики поняли, а экспериментаторы удостоверили, что третий и самый массивный заряженный лептон, тау-частица, тоже обладает собственным нейтрино. Так что ныне физика имеет дело с нейтральными лептонами трех видов — это электронные, мюонные и тау-нейтрино. Каждой лептонной паре соответствует пара кварков (в этом же порядке перечисления) — u-кварк и d-кварк, c-кварк и s-кварк, t-кварк и b-кварк.

Чувствительные глаза

Нейтринные обсерватории стремятся упрятать глубоко под землю, под воду или под лед. Километровые стены и крыша хорошо отсеивают различные помехи, но для всепроникающих нейтрино даже тысячи километров породы не создают значительного препятствия. Японская обсерватория Super kamiokande расположена на глубине 1000 м в старой цинковой шахте моцуми в 180 км от Токио. Детектор обсерватории — стальной «стакан» с 50 000 т сверхчистой воды и набором из почти 13 000 вот таких сверхчувствительных фотоэлектронных умножителей, отслеживающих черенковское излучение от торможения порожденных нейтрино мюонов в воде.

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Существованием трех видов нейтрино объясняются парадоксальные результаты определения плотности потока достигших Земли нейтрино, рожденных в термоядерных реакциях в центре Солнца. Первый детектор солнечных нейтрино Рэй Дэвис и его коллеги установили в золотодобывающей шахте в штате Южная Дакота на глубине полутора километров во второй половине 1960-х годов. Результаты их работы оказались неожиданными — плотность потока солнечных нейтрино была как минимум вдвое меньше величины, соответствующей модели внутрисолнечных процессов (уже хорошо разработанной и считавшейся вполне надежной). Со временем нейтринные обсерватории в Италии, СССР и Японии подтвердили данные американцев и с разной степенью убедительности показали, что плотность потока солнечных нейтрино примерно втрое меньше расчетной. Следует отметить, что использованный группой Дэвиса метод детектирования, основанный на нейтринном превращении хлора-37 в аргон-37, первым предложил эмигрировавший в СССР коллега Ферми, итальянский физик Бруно Понтекорво.

Полученные результаты пытались интерпретировать самыми разными путями, но в конце концов восторжествовало объяснение, предложенное более 40 лет назад Понтекорво и Владимиром Грибовым. Согласно их гипотезе, рождающиеся в недрах Солнца электронные нейтрино по пути к Земле частично изменяют свою природу и превращаются в нейтрино мюонного типа. Детекторы, о которых шла речь, их не регистрировали (или почти не регистрировали), поэтому результаты и оказались заниженными. Когда выяснилось, что существуют три разных нейтрино, стало понятным, почему измеренные показатели оказались втрое меньше ожидаемых.

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Непростой характер нейтрино надежней всего доказали сотрудники канадской нейтринной обсерватории Сэд-бери (Sudbury Neutrino Observatory). Детектором у них служил установленный в действующей шахте (на глубине 2 км) контейнер из оргстекла, заполненный тысячей тонн тяжелой воды. Этот нейтринный телескоп производил детектирование двумя различными методами — один регистрировал лишь электронные нейтрино, другой — любые. Весной 2002 года экспериментаторы объявили, что второй показатель втрое больше первого. Это означало, что на Солнце рождается нужное количество электронных нейтрино, но по пути к Земле треть из них превращается в мюонные, а еще треть — в тау-нейтрино (этот процесс называется нейтринной осцилляцией).

Наличие осцилляций имеет поистине фундаментальное значение. Они возможны лишь в том случае, если нейтрино во всех своих ипостасях обладают не нулевой массой. Ее величина еще точно не измерена; скорее всего, она составляет доли электрон-вольта, что как минимум в миллион раз меньше массы электрона. Однако сам факт, что она все-таки существует, позволяет объяснить асимметрию между материей и антиматерией.

Земное происхождение

Осцилляции ищут не только в потоках нейтрино внеземного происхождения, но и в искусственно создаваемых нейтринных пучках. Такой эксперимент, Booster neutrino experiment (boone), идет с 2002 года в Fermilab, где нейтрино получают с помощью ускорителя протонов с энергией 8 гэв. Нейтрино генерируется импульсами длительностью в 1,5 мс пять раз в секунду. Пучок направляется в детектор — сферическую емкость со сверхчистым минеральным маслом, содержащую 15 20 сверхчувствительных электронных фотоумножителей, которые и засекают взаимодействие нейтрино с веществом по характерному следу — конусу черенковского излучения. Такие события происходят примерно раз в 20 с (1 млн событий в год). Анализируя положение фотоумножителей, на которые попадает свет, физики могут определить образовавшуюся частицу — лептон (электрон, мюон или тау), а значит, и тип породившего ее нейтрино. Сравнивая изначальное количество нейтрино одного типа с количеством, оставшимся после прохождения определенной трассы, можно сделать выводы о наличии или отсутствии нейтринных осцилляций.

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Рассказ о космических нейтрино окажется неполным, если не упомянуть, что помимо нейтрино высоких энергий, рожденных в недрах звезд и при взрывах сверхновых, в космосе имеются очень низкоэнергетические нейтрино, сохранившиеся от эпохи Большого взрыва. Расчетная плотность этих реликтовых частиц совпадает с плотностью реликтовых фотонов, но обнаружить их пока невозможно (не существует приборов).

В 1937 году рано ушедший из жизни феноменально одаренный итальянский физик-теоретик Этторе Майорана опубликовал статью «Симметричная теория электрона и позитрона». В соответствии с его теорией электрически нейтральные частицы и античастицы полностью одинаковы и потому неотличимы друг от друга. Нейтрино с этими свойствами выполняют ключевую роль в теории, объясняющей космическую асимметрию между материей и антиматерией.

«Если нейтрино обладает нулевой массой, вопрос о том, отличается оно от своей античастицы или совпадает с ней, не имеет смысла. А вот наличие массы означает, что возможны оба варианта. В первом случае нейтрино называется дираковским, во втором — майорановским. И как на этот счет распорядилась природа, пока не известно, — рассказал «Популярной механике» профессор теоретической физики Северо-западного университета Андре де Гувеа. — До сих пор эксперименты показывали, что лептонные числа строго сохраняются во всех ядерных реакциях. Если нейтрино является дираковской частицей, этот закон вообще никогда не должен нарушаться. А вот для майорановских нейтрино он может соблюдаться лишь приближенно и, следовательно, допускать нарушения. Экспериментаторы знают даже, где их искать. Есть такой внутриядерный процесс, двойной бета-распад: сразу два нейтрона превращаются в протоны, испуская пару электронов и пару антинейтрино. Эти превращения происходят чрезвычайно редко, но все же случаются. Сейчас много где пытаются обнаружить двойной безнейтринный бета-распад — перескок ядра на две позиции правее по таблице Менделеева с испусканием лишь одних электронов. И если его найдут, придется согласиться, что лептонное число может не сохраняться и что нейтрино следует считать майорановской частицей».

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Во всех экспериментах наблюдаются нейтрино, у которых спин противоположен импульсу, — такие частицы называют левовинтовыми. У антинейтрино спин смотрит в ту же сторону, что и импульс, — это правовинтовые частицы. Но если нейтрино подчиняется уравнению Майорана, оно может проявить себя в слабых взаимодействиях и как частица с правой ориентацией. Правда, в эксперименте подобные нейтринные разновидности не обнаружены, но это не фатально. Можно предположить, что из-за гигантской массы порядка 10 14 –10 16 ГэВ они рождались лишь в составе сверхгорячей материи, существовавшей впервые мгновения после космологической инфляции. Будучи крайне нестабильными, они почти мгновенно распадались и из-за прогрессирующего охлаждения Вселенной больше не возникали.

И вот тут-то начинается самое интересное. Сверхмассивные майорановские нейтрино, или просто майораны, превращаются в бозоны Хиггса и лептоны. Коль скоро в этих распадах не сохраняются лептонные числа, они могут порождать больше электронов, нежели позитронов. Аналогично, количество новорожденных легких нейтрино не обязано совпадать с количеством антинейтрино. В результате у Вселенной появляется ненулевое лептонное число, которое после полного распада всех майоранов практически не изменяется. Этот процесс называется лептогенезом.

Великая Аннигиляция

Согласно общепринятым космологическим теориям, после выхода из фазы инфляционного расширения Вселенная (ее возраст составлял тогда 10 –34 с) содержала совершенно одинаковые количества материи и антиматерии. Затем имели место процессы, которые полностью освободили ее от антиматерии, но сохранили часть материи. Таким образом образовалась популяция протонов, нейтронов и электронов, которая в дальнейшем стала сырьем для изготовления всех атомов нашего мира.

В настоящее время на каждые 5 м 3 космического пространства приходится в среднем по миллиарду квантов реликтового электромагнитного излучения, одному электрону и одному протону, состоящему из трех кварков. Число нейтронов всемеро меньше, и в свободном состоянии они не встречаются. А вот позитроны, антипротоны и антинейтроны хоть кое-где и рождаются, но в таком малом количестве, что в космологических масштабах ими можно пренебречь. Но так было отнюдь не всегда. Когда возраст Вселенной приблизился к миллионной доле секунды, на каждый миллиард квантов приходилось примерно 3 млрд антикварков и 3 млрд и 3 кварка. Они вступили в аннигиляцию, «съевшую» все антикварки, но оставившую в живых ничтожную часть кварков, которые не нашли антипартнеров. Уцелевшие кварки объединились в протоны и нейтроны, на что потребовалось не больше четырех-пяти микросекунд. Когда возраст мироздания достиг одной секунды, аннигилировали и исчезли позитроны, пребывавшие в таком же ничтожном дисбалансе с электронами. Вот так и возникла Вселенная, в которой плотность антиматерии практически не отличается от нуля.

Но если дисбаланса по частицам и античастицам сначала не было, то как же он возник? Физики и космологи спорят об этом вот уже несколько десятков лет, но до сих пор не пришли к единому мнению. Однако в последние годы была предложена теория, которая вроде бы более убедительна, чем конкурирующие модели. В качестве объяснения она привлекает квантовые превращения, происходящие с участием нейтрино очень высоких энергий.

Этим дело не кончается. Взаимодействие между оставшимися после распада майоранов лептонами сверхвысоких энергий может привести к появлению кварков и антикварков, ранее просто не существовавших. Это уже бариогенез — возникновение барионов, частиц, принимающих участие в сильном взаимодействии. Существуют правдоподобные сценарии, в которых дисбаланс лептонов и антилептонов оборачивается избытком кварков над антикварками, барионов над антибарионами. А потом случилась Великая Аннигиляция со всеми ее последствиями. Сейчас бариогенез через лептогенез — наиболее популярная интерпретация дефицита антиматерии в нашей Вселенной.

«Конечно, это всего лишь теория, — поясняет профессор де Гувеа. — Мы не знаем даже, можно ли считать нейтрино майорановской частицей. Если эта гипотеза получит экспериментальное подтверждение, то позиции модели лептогенеза значительно укрепятся».

На сегодня модель с участием майорановских нейтрино лучше всего объясняет тайну абсолютного преобладания материи над антиматерией в нашей вселенной, считает экс-президент Американского физического общества, физик-теоретик Xелен Квигг из Стэнфордского университета. Она отмечает, что рождение нейтрино при распаде майоранов позволяет объяснить их ничтожную массу — для этого придумана очень красивая теория, так называемый механизм see-saw. Впрочем, доктор Квигг подчеркнула, что эта идея не может быть проверена экспериментом в обозримом будущем. По ее словам, не исключено даже, что эта модель так и останется красивой гипотезой.

Глубинная связь

Попытки запрячь в работу неуловимую (или почти неуловимую) частицу — нейтрино — начались вскоре после ее экспериментального обнаружения. Эту возможность обсуждают и писатели-фантасты, и ученые.

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Для передачи информации на борт субмарины в подводном положении используются диапазоны ОНЧ (очень низкие частоты, единицы кГц, у поверхности, до 50 бит/с) и КНЧ (крайне низкие частоты, десятки Гц, на глубине, 1 бит в минуту). По оценке Патрика Хьюбера из Виргинского политехнического института (Virginia Tech), использование нейтрино позволит повысить скорость передачи информации до 1–100 бит/с даже на больших глубинах. Для приема информации нужно будет оснастить подлодку детекторами мюонов или сверхчувствительными фотодетекторами.

Впервые возможность передачи информации с помощью нейтрино высказал в1967 году физик Мечислав Суботович в польском научном журнале Postepy Techniki Jadrowej («Шаги ядерной техники»). В том же году вышел роман Станислава Лема «Голос неба», в основе сюжета которого лежит возможность нейтринной связи.

Группа исследователей из Военно-морской исследовательской лаборатории, опубликовавших в 1977 году в журнале Science статью «Связь с помощью нейтринных лучей» (Telecommunication with Neutrino Beams), преследовала более приземленные цели. Точнее, подводные, аименно — обеспечить связь с атомными подводными лодками на боевом дежурстве. Правда, уровень технологий того времени не позволял реализовать подобную систему на практике. Но с тех пор эта идея регулярно всплывает на страницах научных журналов, хотя возможности современных мюонных накопительных колец для генерации нейтринных пучков по-прежнему недостаточны для уверенной коммуникации. Возможно, что в будущем таким способом можно будет достичь скорости передачи информации от 1 до 100 бит в секунду.

Физик-теоретик из Fermilab Стивен Парк по просьбе «ПМ» рассказал о нескольких совсем уж фантастических нейтринных технологиях: «Если мы захотим связаться с цивилизациями по другую сторону нашей Галактики, то эту возможность нам могут предоставить только нейтринные пучки. Есть применения и на Земле: с помощью нейтринного телефона можно было бы передавать сообщения из США и Европы в Китай, Японию и Австралию на 15–20 миллисекунд быстрее, чем по обычным каналам, — напрямую через толщу Земли, а не по кабелям или спутниковой связи. Финансовые брокеры, имей они в своем эксклюзивном распоряжении подобную связь, могли бы делать огромные деньги!»

Хотя еще недавно казалось невероятным, что нейтрино могут найти практическое применение, сейчас эта идея уже не выглядит столь фантастически. В конце ХХ века появились детекторы, измеряющие с точностью до 1,5% плотность мощных нейтринных потоков с энергий частиц порядка нескольких МэВ. Сердечники тепловыделяющих элементов обычно изготовляют из смеси урана-235 и урана-238, которые в ходе цепных реакций деления испускают нейтроны и антинейтрино. Ядра урана-238 поглощают нейтроны и превращаются в ядра плутония-239, которые в свою очередь тоже вступают в цепную реакцию и опять-таки становятся источниками антинейтрино. Поскольку интенсивность выработки антинейтрино различными изотопами неодинакова, темпы генерации этих частиц изменяются с течением времени. Непрерывный мониторинг плотности нейтринного потока дает возможность судить о режиме работы реактора и концентрации различных изотопов в его активном ядре.

Для чего нужно нейтрино. Смотреть фото Для чего нужно нейтрино. Смотреть картинку Для чего нужно нейтрино. Картинка про Для чего нужно нейтрино. Фото Для чего нужно нейтрино

Физики из Ливерморской национальной лаборатории и лаборатории «Сандиа» разработали три опытных образца компактных детекторов антинейтрино. Их испытали на южнокалифорнийской ядерной электростанции San Onofre Nuclear Generating Station (SONGS). Эти счетчики регистрировали реакцию обратного бета-распада, с помощью которой группа Коуэна и Рейнеса впервые экспериментально подтвердила гипотезу Паули.

Первый детектор SONGS1 вступил в действие в конце 2003 года. Он был заполнен веществом с высокой концентрацией водорода, к которому был добавлен гадолиний, выполняющий ту же роль, что и кадмий в эксперименте Коуэна и Рейнеса. Рожденные обратным бета-распадом позитроны аннигилировали с электронами, а сопутствующие нейтроны поглощал гадолиний. Эти реакции влекли за собой парные вспышки гамма-лучей. Эти вспышки генерировались с интервалом в 30 микросекунд и регистрировались с помощью фотоумножителей. Из 10 17 антинейтрино, ежедневно пронизывавших детектор, с протонами сцинтиллирующей жидкости сталкивалось всего 4000, и лишь 400 из них оставляли надежные «подписи». Установленные в 2007 году детекторы SONGS2 и SONGS3 тоже содержали гадолиний, однако в первом работал сцинтиллятор из твердого полимера, а во втором в этом качестве использовалась сверхчистая вода. Летом 2008 года детекторы демонтировали, и ученые взялись за анализ полученных результатов. В настоящее время создатели этих установок вместе с сотрудниками Чикагского университета разрабатывают нейтринные счетчики следующего поколения на аргоне и германии. Два таких детектора планируется установить уже в нынешнем году.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *