Для чего нужно ядро

Особенности строения и функции ядра клетки

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами. Хромосомы несут в себе основную генетическую информацию каждого человека. Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается. Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк. Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Источник

Особенности и строение ядра

Ядро как центр управления клетки

Упорядоченное строение и поведение — важные характеристики всех живых организмов. Информация, находящаяся по большей части в ядре эукариот и в ядерном участке (нуклеоиде) прокариот, контролирует все эти процессы.

В клетках генетическая информация кодируется как определенная последовательность нуклеотидов в молекулах ДНК и РНК. Именно генетическая информация и формирует информационную систему клетки.

Что такое ядро клетки?

Местонахождение ДНК — ядро клеток эукариот. Ядро в биологии — это информационный центр ДНК, место сохранения и воспроизведения наследственной информации, определяющей признаки отдельной клетки и всего организма.

Также ядро по строению и функциям является центром управления обмена веществ в клетке. Все потому, что РНК, образующаяся в ядре, определяет время и виды белка, синтез которых должен происходить на рибосомах в цитоплазме. По этой причине, если удалить ядро из клетки, то она вскоре погибнет.

Форма и размеры ядер клеток склонны к изменчивости. Они зависят от вида организма, типа ткани, общего функционального состояния клетки и возраста. Ядро может иметь шарообразную форму (от 15 до 20 мкм в диаметре), линзы и веретена.

В клетках паутинных желез пауков и отдельных насекомых ядра клетки по строению являются многолопастными. Такая форма способствует увеличению площади контакта цитоплазмы и ядерной оболочки одновременно с увеличением скорости биохимических реакций.

Все клетки имеют общий план строения.

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро​​​​​​​

Строение ядерной оболочки

От цитоплазмы ядро отсоединено при помощи двойной мембраны или ядерной оболочки. У оболочки есть внутренняя мембрана и внешняя.

Внешняя мембрана граничит с гиалоплазмой. Она отличается складчатой структурой, а в некоторых местах соединена с каналами эндоплазматической сети — на ней расположены рибосомы.

Внутренняя мембрана вступает в контакт с нуклеоплазмой и не содержит рибосом.

Перинуклеарное пространство — это пространство, находящееся между мембранами ядерной оболочки.

Ядерная оболочка пронизана многочисленными порами — их диаметр варьируется от 30 до 100 нм. Тип и физиологическое состояние клетки определяют количество этих пор: на 1 мкм ядерной оболочки их может быть от 10 до 30.

Цистерны эндоплазматической сети, а в некоторых случаях фрагменты предыдущей ядерной оболочки, распавшейся в результате деления ядра — основа формирования новой ядерной оболочки.

Хромосомы и внутреннее строение ядра

Нуклеоплазма заполняет собой пространство между ядерными структурами и содержит ядрышка (одно или несколько), множество ДНК и РНК, разнообразные белки, множество ядерных ферментов, аминокислоты, свободные нуклеотиды, продукты обмена веществ. Именно нуклеоплазма обеспечивает взаимосвязь всех ядерных структур.

Хроматин имеет вид сетки тонких фибрилл и мелких гранул на окрашенных препаратах клетки в состоянии покоя. Основа хроматина — нуклеопротеиды или длинные нитеобразные молекулы ДНК. Они связаны со специфическими белками — гистонами.

Нуклеосома — это комплекс, который включает 8 молекул гистонов и обмотанный вокруг них участок молекулы ДНК.

Вокруг сердцевины нуклеосомы участок молекулы ДНК образует 1,75 оборота. Нуклеосомы представляют собой эллипсоиды, длина которых 10 нм, а ширина — 5-6 нм.

Отличительный признак хроматин эукариот —нуклеосомы.

Нуклеосомы образуют нуклеосомную нить — это спираль первого порядка. За счет того, что нуклеосомная нить образует спираль высшего порядка, обеспечивается плотная упаковка ДНК. Эта спираль высшего порядка называется соленоид.

Соленоид компактируется и образует еще более сложную суперспираль. Все это способствует уплотнению ДНК и укорачиванию хромосом в несколько тысяч раз в сравнении с интерфазными.

Самой длинной хромосомой человека является первая. Ее длина — 6,8 — 1,4 мкм. Каждая хроматида этой хромосомы включает двойную сплошную спираль ДНК, длина которой — 7,3 см. Из этого следует, что в компактизованном состоянии длина спирали становится меньше в 19 тысяч раз.

Метафаза митоза лучше всего демонстрирует морфологию хромосом.

Если объект является цитологически благоприятным, то при помощи светового микроскопа можно увидеть хромосому, состоящую из двух морфологически одинаковых палочкообразных частей — хроматид. Между хроматидами имеется щель.

Хроматиды — это дочерние хромосомы, содержащие непрерывно компактизованную молекулу ДНК.

В хромосомах содержатся такие компоненты как РНК, кислые белки, липиды, минеральные вещества вроде ионов кальция и магния. А еще — нужный для репликации ДНК фермент: ДНК-полимеразу.

В каждой хромосоме также есть первичная перетяжка — центромера. Она представляет собой истонченный участок, не склонный к спирализации и делящий хромосому на два плеча.

Центромера выполняет функцию регулирования движения хромосом в процессе клеточного деления. К ней прикрепляются нити веретена деления, растягивающие хромосомы или хроматиды к полюсам.

Типы центромер хромосом определяются расположением и бывают:

У отдельных хромосом не одна, а несколько вторичных перетяжек. Эти перетяжки не связаны с присоединением к веретену деления. Так осуществляется контроль синтеза ядрышка — ядрышковый организатор.

Ядрышка

Форма, размеры и количество ядрышек меняются в зависимости от функционального состояния ядра. Большее количество ядрышек обеспечивает большую активность ядра.

Количество ядрышек в ядре варьируется от 1 до 10. В некоторых случаях в ядре вообще нет ядрышек — как в ядрах клеток дрожжей.

Ядрышки на 80% состоят из белка, на 10-15% из РНК, определенного количества ДНК и других химических компонентов.

Когда ядро делится, то ядрышка разрушаются. На последнем этапе деления происходит формирования новых ядрышек вокруг определенных хромосомных участков — генов, получивших название ядрышковых организаторов.

Они контролируют синтез рибосомальной РНК и прочих структурных компонентов ядрышек.

В ядрышке происходит объединение РНК и белка, в результате чего образуются рибонуклеопротеиды, являющиеся предшественниками рибосом, которые через поры ядерной оболочки проникают в цитоплазму — здесь их формирование заканчивается.

Ядрышко — это место синтеза РНК и самособирания хромосом.

Во взрослом состоянии отдельные клетки могут вообще не иметь ядер. К ним относятся эритроциты млекопитающих и клетки ситовидных трубок цветковых растений.

Источник

Клеточное ядро

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Ядро (лат. nucleus ) — это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК), осуществляющий основные функции: хранение, передача и реализация наследственной информации с обеспечением синтеза белка. Ядро состоит из хромати́на, я́дрышка, кариопла́змы (или нуклеоплазмы) и ядерной оболочки. В клеточном ядре происходит репликация (или редуплика́ция) — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Синтезированные в ядре молекулы РНК модифицируются, после чего выходят в цитоплазму. Образование обеих субъединиц рибосом происходит в специальных образованиях клеточного ядра — ядрышках. Таким образом, ядро клетки является не только вместилищем генетической информации, но и местом, где этот материал функционирует и воспроизводится.

Содержание

Тонкая структура клеточного ядра

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Хроматин

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине, не транскрибируется, обычно это состояние характерно для незначимых или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием.

Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению, вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.

От цитоплазмы ядро отделено ядерной оболочкой, образованной за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Пора не является дыркой в ядре, а имеет сложную структуру, организованную несколькими десятками специализированных белков — нуклеопоринов. Под электронным микроскопом она видна как восемь связанных между собой белковых гранул с внешней и столько же с внутренней стороны ядерной оболочки.

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Ядрышко

Ядрышко находится внутри ядра, и не имеет собственной мембранной оболочки, однако хорошо различимо под световым и электронным микроскопом. Основной функцией ядрышка является синтез рибосом. В геноме клетки имеются специальные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность — сигнал ядрышковой локализации (NoLS, от англ. Nucleolus Localization Signal). Следует отметить, самая высокая концентрация белка в клетке наблюдается именно в ядрышке. В этих структурах было локализовано около 600 видов различных белков, причем считается, что лишь небольшая их часть действительно необходима для осуществления ядрышковых функций, а остальные попадают туда неспецифически.

Под электронным микроскопом в ядрышке выделяют несколько субкомпартментов. Так называемые Фибриллярные центры окружены участками плотного фибриллярного компонента, где и происходит синтез рРНК. Снаружи от плотного фибриллярного компонента расположен гранулярный компонент, представляющий собой скопление созревающих рибосомных субчастиц.

Ядерный матрикс

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Для чего нужно ядро. Смотреть фото Для чего нужно ядро. Смотреть картинку Для чего нужно ядро. Картинка про Для чего нужно ядро. Фото Для чего нужно ядро

Эволюционное значение клеточного ядра

Основное функциональное отличие клеток эукариот от клеток прокариот заключается в пространственном разграничении процессов транскрипции (синтеза матричной РНК) и трансляции (синтеза белка рибосомой), что дает в распоряжение эукариотической клетки новые инструменты регуляции биосинтеза и контроля качества мРНК.

В то время, как у прокариот мРНК начинает транслироваться еще до завершения ее синтеза РНК-полимеразой, мРНК эукариот претерпевает значительные модификации (так называемый процессинг), после чего экспортируется через ядерные поры в цитоплазму, и только после этого может вступить в трансляцию. Процессинг мРНК включает несколько элементов.

Из предшественника мРНК (пре-мРНК) в ходе процесса, называемого сплайсингом вырезаются интроны — незначащие участки, а значащие участки — экзоны соединяются друг с другом. Причем экзоны одной и той же пре-мРНК могут быть соединены несколькими разными способами (альтернативный сплайсинг), так что один предшественник может превращаться в зрелые мРНК нескольких разных видов. Таким образом, один ген может кодировать сразу несколько белков.

Кроме того, интрон-экзонная структура генома, практически невозможная у прокариот (так как рибосомы смогут транслировать незрелые мРНК), дает эукариотам определенную эволюционную мобильность. Учитывая протяженность интронных участков, рекомбинация между двумя генами зачастую сводится к обмену экзонами. Благодаря тому, что экзоны часто соответствуют функциональным доменам белка, участки получившегося в результате рекомбинации «гибрида», зачастую сохраняют свои функции. В то же время у прокариот рекомбинация между генами невозможна без разрыва в значащей части, что безусловно уменьшает шансы на то, что получившийся белок будет функционален.

Процессинг мРНК тесно сопряжен с синтезом этих молекул и необходим для контроля качества. Непроцессированная или не полностью процессированная мРНК не сможет выйти из ядра в цитоплазму или будет нестабильна и быстро деградирует. У прокариот нет таких механизмов контроля качества, и из-за этого прокариотические мРНК имеют меньший срок жизни — нельзя допустить, чтобы неправильно синтезированная молекула мРНК, если такая появится, транслировалась в течение долгого времени.

Происхождение ядра

Клеточное ядро является важнейшей чертой эукариотических организмов, отличающей их от прокариот и архей. Несмотря на значительный прогресс в цитологии и молекулярной биологии, происхождение ядра не выяснено и является предметом научных споров. Выдвинуто 4 основных гипотезы происхождения клеточного ядра, но ни одна из них не получила широкой поддержки. [1]

Гипотеза, известная как «синтропная модель», предполагает что ядро возникло в результате симбиотических взаимоотношений между археей и бактерией (ни археи, ни бактерии не имеют оформленных клеточных ядер). По этой гипотезе, симбиоз возник, когда древняя архея (сходная с современными метаногенными археями), проникла в бактерию (сходную с современными Миксобактериями). Впоследствии архея редуцировалась до клеточного ядра современных эукариот. Эта гипотеза аналогична практически доказанным теориям происхождения митохондрий и хлоропластов, которые возникли в результате эндосимбиоза прото-эукариот и аэробных бактерий. [2] Доказательством гипотезы является наличие одинаковых генов у эукариот и архей, в частности генов гистонов. Также миксобактерии быстро передвигаются, могут образовывать многоклеточные структуры и имеют киназы и G-белки, близкие к эукариотическим. [3]

Согласно второй гипотезе, прото-эукариотическая клетка эволюционировала из бактерии без стадии эндосимбиоза. Доказательством модели является существование современных бактерий из отряда Planctomycetes, которые имеют ядерные структуры с примитивными порами и другие клеточные компартменты, ограниченные мембранами (ничего похожего у других прокариот не обнаружено). [4]

Согласно гипотезе вирусного эукариогенеза, окруженное мембраной ядро, как и другие эукариотические элементы, произошли вследствие инфекции прокариотической клетки вирусом. Это предположение основывается на наличии общих черт у эукариот и некоторых вирусов, а именно геноме из линейных цепей ДНК, кэпировании мРНК и тесном связывании генома с белками (гистоны эукариот принимаются аналогами вирусных ДНК-связывающих белков). По одной версии, ядро возникло при фагоцитировании (поглощении) клеткой большого ДНК-содержащего вируса. [5] По другой версии, эукариоты произошли от древних архей, инфицированных поксвирусами. Это гипотеза основана на сходстве ДНК-полимеразы современных поксвирусов и эукариот. [6] [7] Также предполагается, что нерешенный вопрос о происхождении пола и полового размножения может быть связан с вирусным эукариогенезом. [8]

Наиболее новая гипотеза, названная экзомембранной гипотезой, утверждает, что ядро произошло от одиночной клетки, которая в процессе эволюции выработала вторую внешнюю клеточную мембрану; первичная клеточная мембрана после этого превратилась в ядерную мембрану, и в ней образовалась сложная система поровых структур (ядерных пор) для транспорта клеточных компонентов, синтезированных внутри ядра. [9]

Источник

Ядро животной клетки: строение и функции

Содержание:

Это основополагающая клетки, ведь ДНК несёт информацию по созданию белков, которые и помогают организму правильно функционировать. ДНК в ядре защищено гистонами, которые образуются благодаря белкам. Во время этого процесса появляются структуры, которые называются хромосомами.

Количество ядер в клетке

ДНК образуется в органеллах, которые называются центросомами. После деления животной клетки, у каждой остаётся по одному ядру. Но так происходит не всегда. Иногда случается так, что у эукариотической клетки образуется два ядра. Двуядерные клетки также именуют инфузориями. А когда у клетки больше двух ядер, то это уже опалина. Но также есть клетки, которые вторично утрачивают ядро. Это обычно эритроциты млекопитающих.

Строение ядра

Форма ядра — сферическая, эллипсовидная, реже лопастная, бобовидная и др. Диаметр ядра — обычно от 3 до 10 мкм.

Таким образом ядро состоит из :

Функции ядра

Наиболее важная функция ядра

Ядро выполняет большое количество функций. Одна из них заключается в том, что ядро способствует регулированию генов, которые экспрессируются в клетке. Эти гены бывают разные в зависимости от типа клетки. С помощью этих генов клетки нормально функционируют. Сама дезоксирибонуклеиновая кислота расположена возле ядрышка, где присутствуют рибосомы. От остальной части клетки ядро отделяется благодаря ядерной оболочки.

Не менее важная функция клетки – регулирование роста и деления клетки

Хранение, передача информации и синтез белка

Типы ядра

Ядра клеток обычно яйцевидные и шаровидные.

Ядро – регулятор активности клетки

Ядро является важным регулятором активности клетки. В нём находятся нитевидные комплексы молекул ДНК с белками гистонами, которые называются хроматиды. Особенностью хроматидов является содержание в них большого количества аминокислот лизина и аргинина.

Компонент ядра

Выполняемая функция

1. Разграничивает ядро от остальных органоидов и цитоплазмы.

2. Обеспечивает взаимодействие ядра с цитоплазмой.

Содержат ДНК – носитель наследственной информации, которая передается от поколения к поколению.

Участвуют в процессе синтеза РНК, входящей в состав рибосомы.

Вещество, в котором содержатся ядрышки и хромосомы.

Хромосомы

В ДНК хранится практически вся информация о наследственных признаках клетки и всего организма. Также существуют такие хроматиды, которых именуют хромосомами. Когда происходит клеточное деление, эти самые хроматиды спирализуются и, если в этот момент посмотреть в световой микроскоп, то можно увидеть именно хромосомы.

Гетерохроматин

Экспрессия генов

На эухроматине происходит экспрессия генов. Это процесс считывания генетической информации, то есть синтез РНК.

Репликация ДНК

Ядро – двумембранный органоид

Всё, что содержится в клетке, отделяется от её остальной части благодаря двум мембранам ядерной оболочки (внешней и внутренней).

Эндоплазматическая сеть

ЭПС бывает двух видов. Гладкая и шероховатая. Шероховатая она, когда на ЭПС располагаются рибосомы. Когда они располагаются не на самой ЭПС, а на наружной мембране, то её называют гладкой. Также мембраны могут образовывать ядерные поры, которые получаются после сливания внешней и внутренней мембраны.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *