Для чего нужны численные методы
Для чего нужен предмет «Численные методы»?
Давайте, я попробую привести несколько примеров, которые сходу приходят на ум. Практически любое моделирование физических процессов заканчивается численными методами. Например моделлирование вихревых потоков в архитекруте или моделлирование воды в современных мультиках. Также в нескольки известных мне алгоритмах машинного зрения.
на этот вопрос сложно отвечать из-за его простоты. Примерно так же дети спрашивают для чего трава зеленая. Начинать им расказывать про фотосинтез?
Эти методы будут вами применяться во всех последующих дисцилинах. Например в оптимизации(неважно чего: процессов, движения или чего то еще, что можно описать уравнениями).
Примерно так же дети спрашивают для чего трава зеленая. Начинать им расказывать про фотосинтез?
думаю, полезно, когда у тебя есть какой-то дискретный сигнал и нужно его так или иначе обработать математически (не знаю как правильно выразиться)
вот однажды я пришел на собеседование и была такая задача
представим, что у нас есть некий девайс с акселерометром-гироскопами и наша задача как-нибудь примерно рассчитать изменение его координат в пространстве.
я не знаю правильного ответа, не уверен что он существует, но я думал так: у нас есть дискретные данные гироскопа/акселерометра, с каким-то шагом по времени, раз так, то мы можем проинтегрировать численно чтобы получить уравнение координаты. или можно построить полином какой-нибудь степени и проинтегрировать аналитически. вот тут как раз вступают в дело численные методы.
можно провести много параллелей с весьма полезными вещами 🙂
без вас бы я второстепенно относился бы к этому предмету.
Для чего нужны численные методы
Глава I является вводной. В § 1 рассмотрены роль математики при решении физико-технических задач и место численных методов среди других математических методов и кратко изложена история численных методов. В § 2 разобраны основные понятия приближенного анализа: корректность постановки задач, определение близости точного и приближенного решений, структура погрешности.
§ 1. Математические модели и численные методы
1. Решение задачи.
Физиков математика интересует не сама по себе, а как средство решения физических задач. Рассмотрим поэтому, как решается любая реальная задача — например, нахождение светового потока конструируемой лампы, производительности проектируемой химической установки или себестоимости продукции строящегося завода.
Одним из способов решения является эксперимент. Построим эту лампу, установку или завод и измерим интересующую нас характеристку. Если характеристика оказалась неудачной, то изменим проект и построим новый завод и т. д. Ясно, что мы получим достоверный ответ на вопрос, но слишком медленным и дорогим способом.
Другой способ — математический анализ конструкции или явления. Но такой анализ применяется не к реальным явлениям, а к некоторым математическим моделям этих явлений. Поэтому первая стадия работы — это формулировка математической модели (постановка задачи). Для физического процесса модель обычно состоит из уравнений, описывающих процесс; в эти уравнения в виде коэффициентов входят характеристики тел или веществ, участвующих в процессе. Например, скорость ракеты при вертикальном полете в вакууме определяется уравнением
где М — начальная масса ракеты, — заданный расход горючего,
— ускорение поля тяготения, а с — скорость истечения газов, зависящая от калорийности топлива и среднего молекулярного веса продуктов сгорания.
Любое изучаемое явление бесконечно сложно. Оно связано с другими явлениями природы, возможно, не представляющими интереса для рассматриваемой задачи. Математическая модель должна охватывать важнейшие для данной задачи стороны явления. Наиболее сложная и ответственная работа при постановке задачи заключается в выборе связей и характеристик явления, существенных для данной задачи и подлежащих формализации и включению в математическую модель.
Если математическая модель выбрана недостаточно тщательно, то, какие бы методы мы ни применяли для расчета, все выводы будут недостаточно надежны, а в некоторых случаях могут оказаться совершенно неправильными. Так, уравнение (1) непригодно для запуска ракеты с поверхности Земли, ибо в нем не учтено сопротивление воздуха.
Вторая стадия работы — это математическое исследование. В зависимости от сложности модели применяются различные математические подходы. Для наиболее грубых и несложных моделей зачастую удается получить аналитические решения; это излюбленный путь многих физиков-теоретиков. Например, уравнение (1) легко интегрируется при :
Из-за грубости модели физическая точность этого подхода невелика; нередко такой подход позволяет оценить лишь порядки величин.
Для более точных и сложных моделей аналитические решения удается получить сравнительно редко. Обычно теоретики пользуются приближенными математическими методами (например, разложением по малому параметру), позволяющими получить удовлетворительные качественные и количественные результаты. Наконец, для наиболее сложных и точных моделей основными методами решения являются численные; как правило, они требуют проведения расчетов на ЭВМ. Эти методы зачастую позволяют добиться хорошего количественного описания явления, не говоря уже о качественном.
Во всех случаях математическая точность решения должна быть несколько (в 2 — 4 раза) выше, чем ожидаемая физическая точность модели. Более высокой математической точности добиваться бессмысленно, ибо общую точность ответа это все равно не повысит. Но более низкая математическая точность недопустима (для облегчения решения задачи нередко в ходе работы делают дополнительные математические упрощения; это снижает ценность результатов).
Наконец, третья стадия работы — это осмысливание математического решения и сопоставление его с экспериментальными данными. Если расчеты хорошо согласуются с контрольными экспериментами, то это свидетельствует о правильном выборе модели; такую модель можно использовать для расчета процессов данного типа. Если же расчет и эксперимент не согласуются, то модель необходимо пересмотреть и уточнить.
2. Численные методы являются одним из мощных математических средств решения задачи. Простейшие численные методы мы используем всюду, например, извлекая квадратный корень на листке бумаги. Есть задачи, где без достаточно сложных численных методов не удалось бы получить ответа; классический пример — открытие Нептуна по аномалиям движения Урана.
В современной физике таких задач много. Более того, часто требуется выполнить огромное число действий за короткое время, иначе ответ будет не нужен. Например, суточный прогноз погоды должен быть вычислен за несколько часов; коррекцию траектории ракеты надо рассчитать за несколько минут (напомним, что для расчета орбиты Нептуна Леверье потребовалось полгода); режим работы прокатного стана должен исправляться за секунды. Это немыслимо без мощных ЭВМ, выполняющих тысячи или даже миллионы операций в секунду.
Современные численные методы и мощные ЭВМ дали возможность решать такие задачи, о которых полвека назад могли только мечтать. Но применять численные методы далеко не просто. Цифровые ЭВМ умеют выполнять только арифметические действия и логические операции. Поэтому помимо разработки математической модели, требуется еще разработка алгоритма, сводящего все вычисления к последовательности арифметических и логических действий. Выбирать модель и алгоритм надо с учетом скорости и объема памяти ЭВМ: чересчур сложная модель может оказаться машине не под силу, а слишком простая — не даст физической точности.
Сам алгоритм и программа для ЭВМ должны быть тщательно проверены. Даже проверка программы нелегка, о чем свидетельствует популярное утверждение: «В любой сколь угодно малой программе есть по меньшей мере одна ошибка». Проверка алгоритма еще более трудна, ибо для сложных алгоритмов не часто удается доказать сходимость классическими методами. Приходится использовать более или менее надежные «экспериментальные» проверки, проводя пробные расчеты на ЭВМ и анализируя их (смотри, например, главу IX, § 4, п. 3).
Строгое математическое обоснование алгоритма редко бывает исчерпывающим исследованием. Например, большинство доказательств сходимости итерационных процессов справедливо только при точном выполнении всех вычислений; практически же число сохраняемых десятичных знаков редко происходит 5 — 6 при «ручных» вычислениях и 10—12 при вычислениях на ЭВМ.
Плохо поддаются теоретическому исследованию «маленькие хитрости» — незначительные на первый взгляд детали алгоритма, сильно влияющие на его эффективность. Поэтому окончательную оценку метода можно дать только после опробования его в практических расчетах.
К чему приводит пренебрежение этими правилами — видно из принципа некомпетентности Питера: «ЭВМ многократно увеличивает некомпетентность вычислителя».
Для сложных задач разработка численных методов и составление программ для ЭВМ очень трудоемки и занимают от нескольки[ недель до нескольких лет. Стоимость комплекса отлаженных программ нередко сравнима со стоимостью экспериментальной физической установки. Зато проведение отдельного расчета по такому комплексу много быстрей и дешевле, чем проведение отдельного эксперимента. Такие комплексы позволяют подбирать оптимальные параметры исследуемых конструкций, что не под силу эксперименту.
Однако численные методы не всесильны. Они не отменяют все остальные математические методы. Начиная исследовать проблему, целесообразно использовать простейшие модели, аналитические методы и прикидки. И только разобравшись в основных чертах явления, надо переходить к полной модели и сложным численным методам; даже в этом случае численные методы выгодно применять в комбинации с точными и приближенными аналитическими методами.
Современный физик или инженер-конструктор для успешной работы должен одинаково хорошо владеть и «классическими» методами, и численными методами математики.
3. История прикладной математики.
Раздел математики, имеющий дело с созданием и обоснованием численных алгоритмов для решения сложных задач различных областей науки, часто называют прикладной математикой; американцы применение численных методов к физическим задачам называют вычислительной физикой. Главная задача прикладной математики — фактическое нахождение решения с требуемой точностью; этим она отличается от классической математики, которая основное внимание уделяет исследованию условий существования и свойств решения.
В истории прикладной математики можно выделить три основных периода.
Первый начался 3—4 тысячи лет назад. Он был связан с ведением конторских книг, вычислением площадей и объемов, расчетами простейших механизмов; иными словами —с несложными задачами арифметики, алгебры и геометрии. Вычислительными средствами служили сначала собственные пальцы, а затем — счеты.
Исходные данные содержали мало цифр, и большинство выкладок выполнялось точно, без округлений.
Второй период начался с Ньютона. В этот период решались задачи астрономии, геодезии и расчета механических конструкций, сводящиеся либо к обыкновеннымдифференциальным уравнениям, либо к алгебраическим системам с большим числом неизвестных. Вычисления выполнялись с округлением; нередко от результата требовалась высокая точность, так что приходилось сохранять до 8 значащих цифр.
Вычислительные средства стали разнообразнее: таблицы элементарных функций, затем — арифмометр и логарифмическая линейка; к концу этого периода появились неплохие клавишные машйны с электромотором. Но скорость всех этих средств была невелика, и вычисления занимали дни, недели и даже месяцы.
Третий период начался примерно с 1940 г. Военные задачи — например, наводка зенитных орудий на быстро движущийся самолет требовали недоступных человеку скоростей и привели к разработке электронных систем. Появились электронные вычислительные машины (ЭВМ).
Скорость даже простейших ЭВМ настолько превосходила скорость механических средств, что стало возможным проводить вычисления огромного объема. Это позволило численно решать новые классы задач; например, процессы в сплошных средах, описывающиеся уравнениями в частных производных.
Сначала для решения эти задач использовались численные методы, разработанные в «доэлектронный» период. Но применение ЭВМ быстро привело к переоценке методов. Многие старые методы оказались неподходящими для автоматизированных расчетов. Стали быстро разрабатываться новые методы, ориентированные прямо на ЭВМ (например, метод Монте-Карло).
Мощности ЭВМ быстро растут. Если в 50-е гг. в СССР вступила в строй первая «Стрела» со скоростью 2000 операций в секунду и памятью 1024 ячейки, то сейчас во многих вычислительных центрах страны работают БЭСМ-6 со скоростью в 300 раз больше и памятью в 30 раз больше. А наилучшие современные ЭВМ имеют скорость до 30 миллионов операций в секунду при практически неограниченной оперативной памяти с прямой адресацией. Становятся возможными расчеты все более сложных задач. Это служит стимулом для разработки новых численных методов.
Роль численных методов
Часто возникает необходимость, как в самой математике, так и ее приложениях в разнообразных областях получать решения математических задач в числовой форме. (Для представления решения в графическом виде также требуется предварительно вычислять его значения.) При этом для многих задач известно только о существовании решения, но не существует конечной формулы, представляющей ее решение. Даже при наличии такой формулы ее использование для получения отдельных значений решения может оказаться неэффективным. Наконец, всегда существует необходимость решать и такие математические задачи, для которых строгие доказательства существования решения на данный момент отсутствуют.
Во всех этих случаях используются методы приближенного, в первую очередь численного решения. Методы численного решения математических задач всегда составляли неотъемлемую часть математики и неизменно входили в содержание естественно-математического и инженерного образования. Как самостоятельная математическая дисциплина вычислительная математика оформилась в начала 20-го века. К этому времени в основном были разработаны разнообразные, достаточно эффективные и надежные алгоритмы приближенного решения широкого круга математических задач, включающего стандартный набор задач из алгебры, математического анализа и дифференциальных уравнений.
Прогресс в развитии численных методов способствовал постоянному расширению сферы применения математики в других научных дисциплинах и прикладных разработках, откуда в свою очередь поступали запросы на решение новых проблем, стимулируя дальнейшее развитие вычислительной математики. Метод математического моделирования, основанный на построении и исследовании математических моделей различных объектов, процессов и явлений и получении информации о них из решения связанных с этими моделями математических задач, стал одним из основных способов исследования в так называемых точных науках.
Параллельно с развитием численных методов шла разработка инструментальных средств вычислений, представлявших собой различные механические, а затем электромеханические устройства для выполнения арифметических операций. Причем прогресс в области инструментальных средств не оказывал заметного влияния на ход развития методов вычислений. Принципиальным образом ситуация изменилась со середины нашего столетия, когда было осуществлено изобретение электронных вычислительных машин. В результате появления ЭВМ скорость выполнения вычислительных операций выросла в миллионы раз, что позволило решить широкий круг бывших до этого практически не решаемыми математических задач. Широкое внедрение ЭВМ в практику научных и технических расчетов потребовало интенсивного развития методов численного решения самых разных математических задач, причем методов, рассчитанных на реализацию их именно на ЭВМ. Это связано с тем, что часть из ранее использовавшихся алгоритмов численного решения неэффективна при реализации на ЭВМ, а некоторые просто непригодны для такого использования.
Современной формой метода математического моделирования, базирующейся на мощной вычислительной базе в виде ЭВМ и программного обеспечения, реализующего алгоритмы численного решения, является вычислительный эксперимент, рассматриваемый как новый теоретический метод исследования различных явлений и процессов. Этот теоретический метод включает существенные черты методологии экспериментального исследования, но эксперименты выполняются не над реальным объектом, а над его математической моделью, и экспериментальной установкой является ЭВМ.
Технологическая цепочка вычислительного эксперимента включает в себя следующие этапы:
· построение математической модели исследуемого объекта (сюда же относится и анализ модели, выяснение корректности поставленной математической задачи;
· программирование алгоритма на ЭВМ и его тестирование;
· проведение серии расчетов с варьированием определяющих параметров исходной задачи и алгоритма;
· анализ полученных результатов;
Каждый из этих этапов допускает возврат к любому из предыдущих с целью его уточнения и корректировки.
При этом идея модели лежит в основе того, что можно назвать методом вычислительной математики. Как правило, алгоритмы приближенного решения базируются на том, что исходная математическая задача заменяется (аппроксимируется) некоторой более простой или чаще последовательностью более простых задач. Решение этих более простых задач трактуется как приближенное решение задачи исходной. Т.е. фактически используется некоторая модель исходной задачи.
Введение
Численные методы представляют собой отдельную область математики и применяются в различных прикладных направлениях. В частности, с помощью численных методов решаются и проблемы прикладной оптики. В данном пособии приводится обзор основных численных методов, чаще всего используемых при решении задач прикладной оптики. Особенностью пособия является использование в качестве заданий не просто математических функций, а реальных задач из области прикладной оптики, на примере которых рассматриваются численные методы. Это дает не только хорошее понимание сути самих численных методов, но и особенности их применения на практике.
Процесс решения любой сложной задачи, моделирования какого-то оптического процесса, можно представить как последовательность этапов.
Физическая постановка задачи. На этом этапе необходимо грамотно сформулировать и поставить задачу с точки зрения физики процесса. Для этого необходимо изучить рассматриваемую проблему и обладать знаниями в соответствующей области.
Математическая постановка задачи. На этом этапе нужно переформулировать физическую проблему на математический язык, то есть описывать в виде интегралов, систем уравнений, и т.д. Математическая модель должна корректно описывать основные законы физического процесса. В некоторых случаях на этом этапе можно остановиться, так как если задача простая, то существуют стандартные методы, которые нужно применить для решения этой задачи.
Метод непрерывной математики. На этом этапе оперируют не конечными числами, а функциями, общими величинами, то есть ищут решение проблемы в общем виде, и описывают при помощи математических формул.
Численные методы. Решение проблемы представляют в виде конечных математических операций – сложение, умножение. Численные методы позволяют свести решение задачи к выполнению конечного количества арифметических действий над числами, при этом результаты получаются в виде числовых значений. Чаще всего возможно использование известных стандартных численных методов.
Алгоритмизация. Алгоритмизация служит для упорядочения производимых действий в виде точного формального описания процесса. Алгоритм можно изобразить в виде блок-схемы или описать другим способом.
Программирование. На этом этапе алгоритм реализуется на каком-нибудь языке программирования высокого уровня.
Отладка программы. На этом этапе выполняется поиск ошибок, которые могли появиться на предыдущих этапах. Программа испытывается на решении тестовых задач для получения уверенности в достоверности результатов. Вполне вероятно, что придется вернуться в самое начало, к изменению физической постановки задачи, или какому-то другому этапу.
Проведение расчетов. На этом этапе готовятся исходные данные для расчетов, и проводятся вычисления по отлаженной программе.
Анализ результатов. Результаты расчетов анализируются, оформляется научно-техническая документация.
Все численные методы обладают некоторым набором характеристик. Наиболее важной из них является точность. На всех этапах решения задачи могут возникать погрешности, искажающие результаты вычислений, которые и определяют точность. Причины возникновения вычислительных погрешностей и способы их устранения рассматриваются в Приложении А.
При анализе точности одним из важнейших критериев является сходимость численного метода. Для дискретных методов (методы, которые заключаются в замене задачи с непрерывными функциями на задачу, в которой значения функций заданы в фиксированных точках) сходимость – это стремление значений решения метода к соответствующим значениям решения исходной задачи при стремлении к нулю параметра дискретизации (например, шага интегрирования).
Задача называется поставленной корректно, если для любых значений исходных данных из некоторого класса ее решение существует, единственно и устойчиво. Применять для решения некорректно поставленных задач численные методы, не имеет смысла, поскольку возникающие в расчетах погрешности округления будут сильно возрастать в ходе вычислений, что приведет к значительному искажению результатов.
Устойчивость – это чувствительность метода к неточностям в исходных данных. Задача называется устойчивой, если малые погрешности в исходной величине приводят к малым погрешностям в решении. Отсутствие устойчивости означает, что даже незначительные погрешности в исходных данных приводят к большим погрешностям в решении или даже к неверному результату. О неустойчивых задачах также говорят, что они чувствительны к погрешностям исходных данных.
Таким образом, для получения решения задачи с необходимой точностью ее постановка должна быть корректной, а используемый численный метод должен обладать устойчивостью (корректностью) и сходимостью.
В большинстве случаев, кроме точности (сходимости, устойчивости, корректности) необходимо следить за минимизацией трудоемкости решения. Применительно к вычислительным задачам трудоемкость определяется объёмом памяти, используемым в процессе поиска решения, и временем, необходимым для выполнения вычислений. Время обычно измеряется в количестве элементарных операций (сложения, умножения, и т.д.), которые необходимо выполнить для решения задачи. Эти характеристики желательно уменьшать построением оптимальных алгоритмов вычисления, не потеряв при этом в точности. К сожалению, часто уменьшение трудоемкости и увеличение точности являются взаимоисключающими параметрами, и главной задачей является найти баланс между ними.
Численные методы
Смотреть что такое «Численные методы» в других словарях:
численные методы — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN numerical methods … Справочник технического переводчика
Численные методы — Вычислительная математика раздел математики, включающий круг вопросов, связанных с производством вычислений и использованием компьютеров. В более узком понимании вычислительная математика теория численных методов решения типовых математических… … Википедия
Численные методы оптимизации — [numerical optimization technique] методы приближенного или точного решения математических задач оптимизации, сводящиеся к выполнению конечного числа элементарных операций над числами. (См. например, Градиентные методы). Численные методы предмет… … Экономико-математический словарь
численные методы оптимизации — Методы приближенного или точного решения математических задач оптимизации, сводящиеся к выполнению конечного числа элементарных операций над числами. (См. например, Градиентные методы). Численные методы предмет изучения вычислительной математики … Справочник технического переводчика
численные методы линейной алгебры — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN numerical linear algebra … Справочник технического переводчика
численные методы решения — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN numerical technique … Справочник технического переводчика
ГАЗОВОЙ ДИНАМИКИ ЧИСЛЕННЫЕ МЕТОДЫ — методы решения задач газовой динамики на основе вычислительных алгоритмов. Рассмотрим основные аспекты теории численных методов решения задач газовой динамики, записав газовой динамики уравнения в виде законов сохранения в инерциальной… … Математическая энциклопедия
Имитационные (численные) методы решения моделей — [numerical simulation methods] последовательное преобразование предварительно подготовленных численных значений исследуемых величин до получения искомого значения и его верификации. В частности, к ним относятся численные методы оптимизации. Ср.… … Экономико-математический словарь
имитационные (численные) методы решения моделей — Последовательное преобразование предварительно подготовленных численных значений исследуемых величин до получения искомого значения и его верификации. В частности, к ним относятся численные методы оптимизации. Ср. Аналитические методы решения… … Справочник технического переводчика