Для чего нужны индикаторы
Для чего нужны индикаторы
Индикаторы в нашей жизни
Автор работы награжден дипломом победителя II степени
Введение.
Когда у меня появился набор «В поисках энергии», я впервые увидел, как выглядит известный всем школьникам индикатор, который называется лакмус. Мне стало интересно, что представляет собой лакмусовая бумажка. Оказалось, что лакмус является индикатором, и при взаимодействии с кислотной или щелочной средой меняет свой цвет. Поэтому индикаторы используются для определения реакции среды (кислая, щелочная или нейтральная).
Индикаторы широко используют в химии, в том числе и в школе. Мне захотелось выяснить, какими бывают индикаторы? Из чего делают индикаторы? Можно ли приготовить индикаторы в домашних условиях? С преподавателем по химии мы решили исследовать эту тему и провести нужные опыты.
Актуальность темы заключается в том, в основном для определения среды жидкости используются химические индикаторы, изготовленные на производстве. Нас заинтересовал вопрос, можно ли самостоятельно изготовить индикаторы, которые могут быть применены в домашних условиях.
Гипотеза: если растворы растительных индикаторов можно приготовить самостоятельно, то их можно применять в домашних условиях для определения среды некоторых жидкостей.
Цель работы: Изучить действие химических и природных индикаторов в различных средах.
Задачи:
— изучить литературные источники по теме;
— ознакомиться с классификацией индикаторов;
— научиться изготавливать индикаторы из растительного сырья;
— исследовать действие природных индикаторов в различных средах.
Основная часть
1. История открытия индикаторов.
В лаборатории горели свечи, в ретортах что-то кипело, когда некстати зашел садовник. Он принес корзину с фиалками. Бойль очень любил цветы, но предстояло начать опыт. Он взял несколько цветков, понюхал и положил их на стол. Опыт начался, открыли колбу, из нее повалил едкий пар. Когда же опыт кончился, Бойль случайно взглянул на цветы, они дымились. Чтобы спасти цветы, он опустил их в стакан с водой. И темно-фиолетовые лепестки фиалок стали красными. Учёный велел готовить помощнику растворы, которые потом переливали в стаканы и в каждый опустили по цветку. В некоторых стаканах цветы немедленно начали краснеть. И ученый понял, что цвет фиалок зависит от того, какие вещества содержатся в растворе. Затем Бойль заинтересовался, что покажут не фиалки, а другие растения.
Он приготовил для своих опытов водный настой лакмусового лишайника. Склянка, в которой он хранил настой, понадобилась для соляной кислоты. Вылив настой, Бойль наполнил склянку кислотой и с удивлением обнаружил, что кислота покраснела. Бойль на пробу добавил несколько капель настоя лакмуса к водному раствору гидроксида натрия и обнаружил, что в щелочной среде лакмус синеет.
Эксперименты следовали один за другим, проверялись васильки и другие растения, но всё же лучшие результаты дали опыты с лакмусовым лишайником. Так, в 1663 году, был открыт первый индикатор для обнаружения кислот и оснований, названный по имени лишайника лакмусом.
В 1667 году Роберт Бойль предложил пропитывать фильтровальную бумагу отваром тропического лишайника – лакмуса, а также отварами фиалок и васильков. Высушенные и нарезанные бумажки Роберт Бойль назвал индикаторами, что в переводе с латинского означает «указатель», так как они указывают на среду раствора.
Лакмус стал самым древним кислотно-основным индикатором. Надо сказать, что само красящее вещество лакмус был известен ещё в Древнем Египте и Древнем Риме. Его добывали из некоторых видов лишайников, произраставших на скалах Шотландии, и использовали в качестве фиолетовой краски, но со временем, рецепт его приготовления был утерян.
В 1640 году ботаники описали гелиотроп 2 – душистое растение с темно-лиловыми цветками, из которого тоже было выделено красящее вещество. Этот краситель наряду с соком фиалок тоже стал широко применяться химиками в качестве индикатора, который в кислой среде был красным, а в щелочной – синим.
Позже, в середине XIX века химики научились искусственно синтезировать кислотно–основные индикаторы. Так в 1871 году немецкий химик-органик Адольф фон Байер, будущий лауреат Нобелевской премии, впервые осуществил синтез фенолфталеина.
В наши дни известны несколько сотен кислотно-основных индикаторов, искусственно синтезированных.
2. Классификация индикаторов.
Индикаторы бывают природного и химического происхождения. Химические индикаторы делят обычно на несколько групп. В школе используются самые распространенные кислотно – основные индикаторы. Примером может служить может служить общеизвестный индикатор фенолфталеин.
Помимо кислотно-основных известны и другие типы индикаторов: адсорбционные, комплексонметрические, флуоресцентные, изотопные, окислительно-восстановительные и прочие.
Кислотно-основные индикаторы – индикаторы, изменяющие цвет в зависимости от кислотности раствора.
Окислительно-восстановительные индикаторы – индикаторы, которые изменяют свой цвет в зависимости от того, что присутствует в растворе окислитель или восстановитель.
Комплексонометрические индикаторы – вещества, образующие с ионами металлов окрашенные комплексные соединения.
Флуоресцентные индикаторы – индикаторы, которые светятся (флуоресцируют) разным цветом в зависимости от рН раствора. Свечение индикатора не зависит от прозрачности и собственной окраски раствора.
Характер среды имеет большое значение в химических и биологических процессах. В зависимости от типа среды эти процессы могут протекать с различными скоростями и в разных направлениях. Среду исследуемого раствора можно приблизительно определить по окраске индикаторов.
Больше всего распространены индикаторы лакмус, фенолфталеин и метилоранж.
Самым первым появился лакмус 4 C12H7NO3. Фактически природный лакмус представляет собой сложную смесь. Это порошок черного цвета, растворим в воде, 95 % спирте, ацетоне, ледяной уксусной кислоте.
Окраска лакмуса в различных средах изменяется следующим образом:
В зависимости от кислотности среды изменяет окраску и краситель бриллиантовый зеленый 7 (его спиртовой раствор используется как дезинфицирующее средство – зеленка). В сильнокислой среде его окраска желтая, а в сильнощелочной среде раствор обесцвечивается.
Кислотно-основные индикаторы бывают не только химическими. Они находятся вокруг нас. Когда нет настоящих химических индикаторов, то для определения среды растворов можно успешно применять самодельные индикаторы из природного сырья.
Сырьем могут служить цветы герани, лепестки пиона или мальвы, ирис, темные тюльпаны или анютины глазки, а также ягоды малины, черники, черноплодной рябины, соки вишни, смородины, винограда, плоды крушины и черемухи.
Эти природные индикаторы содержат окрашенные вещества (пигменты), способные менять свой цвет в ответ на то или иное воздействие. И, попадая в кислую или щелочную среду, они наглядным образом сигнализируют об этом.
Антоцианами называют группу растительных пигментов (красителей), которые окрашивают лепестки цветов, листья, плоды в различные цвета – от красного до тёмно-синего и фиолетового. В большом количестве антоцианы содержатся в чернике, чёрной смородине, клюкве, вишне, черешне, малине, диком чёрном рисе, красном винограде, красной капусте, красных яблоках.
Почти все фрукты и ягоды, имеющие красную, оранжевую, коричневую, фиолетовую и синюю окраску, содержат антоцианы. Эта окраска может меняться при созревании плодов, отцветания цветков и увядании листьев.
Обычный чай – тоже индикатор. Если в стакан с крепким чаем капнуть лимонный сок или растворить несколько кристалликов лимонной кислоты, то чай сразу станет светлее. Если же растворить в чае питьевую соду, раствор потемнеет (пить такой чай, конечно, не следует). Чай же из цветков каркаде дает намного более яркие цвета.
Индикатором являются и обычные чернила, которые под влиянием кислоты изменяют окраску с фиолетовой на зеленую, и вновь приобретают фиолетовую окраску при нейтрализации кислоты
3. Роль природных индикаторов в нашей жизни.
Индикаторы позволяют быстро и достаточно точно контролировать состав жидких сред, следить за изменением их состава или за протеканием химической реакции.
В растениях много природных пигментов, природных индикаторов, большая часть которых относится к антоцианам. Так как антоцианы обладают хорошими индикаторными свойствами, то их можно применять как индикаторы для идентификации кислотной, щелочной или нейтральной среды, как в химии, так и в быту.
Природные индикаторы находят применение во многих областях человеческой деятельности: в медицине и экологии, в сельском и народном хозяйстве, в пищевой промышленности и в быту. Антоцианы применяются в косметике, в производстве пищевых продуктов. Красящие вещества растений обладают многообразными лечебными эффектами и благотворно влияют на организм человека. Антоцианы являются мощными антиоксидантами, которые сильнее в 50 раз витамина С. Они способствуют быстрому выведению радиоактивных элементов из организма, оказывают защитное действие на сосуды, помогают снизить уровень сахара в крови, улучшают память. Поэтому овощи и фрукты ярких цветов считаются полезными для организма.
В сельском хозяйстве антоцианы применяются для определения кислотности почвы, ведь от неё зависит урожайность.
Индикаторы помогают определять среду растворов различных средств бытовой химии и косметических средств, удалять пятна растительного происхождения. Даже дома на кухне мы применяем свойства растительных индикаторов – добавляем кислоту для цвета борща. А йодом можно проверить натуральность сметаны.
Практическая часть.
В качестве природных индикаторов были отобраны ягоды клюквы, чёрной смородины, малины, моркови, свеклы, клубники, раствор приправы карри, черный чай (приложение 1).
Определение наличия антоцианов в исследуемых объектах.
Исследуемый материал порезать или потереть, затем прокипятить, так как это приводит к разрушению мембран клеток, и антоцианы свободно выходят из клеток, окрашивая воду.
Растворы наливают в прозрачную посуду и добавляют в одну порцию раствор соды, а в другую наливают уксус. Если окраска изменится под их воздействием, значит, продукты содержат антоцианы и они особенно полезны.
Результаты определения занесены в таблицу (приложение 2).
Опыт 1. Методика изготовления индикаторов из природного сырья
Цель: приготовление вытяжки антоцианов.
Чтобы изучить свойства природных индикаторов мы выбрали несколько известных растений, которые содержат антоцианы. Для проведения опытов сделали отвары из клюквы, чёрной смородины, малины, моркови, свеклы, клубники, раствор приправы карри, заварили пакетик чая.
Ход опыта: Для приготовления отваров брали 200 грамм растительного сырья, морковь и свеклу нужно было натереть на тёрке, наливали в кастрюльку воды, закладывали растительное сырьё и кипятили в течении одной минуты.
Наблюдение: происходит окрашивание раствора.
Вывод: Цвет раствора убеждает в том, что антоцианы – водорастворимые пигменты.
Получив растворы индикаторов, мы проверили, какую окраску они имеют в разных средах.
Опыт 2 Исследование чувствительности растворов растительных индикаторов на изменение рН среды.
Цель: выяснить, какие природные индикаторы обладают высокой чувствительностью.
Оборудование: образцы природных индикаторов используемых в предыдущих опытах, щелочной раствор соды, уксусная кислота; пробирки.
Ход опыта: Во все образцы добавляем кислоту и раствор соды.
Наблюдение: Из растительных индикаторов наиболее контрастные изменения получены у клюквы, чёрной смородины, краснокочанной капусты.
Выводы: при анализе полученных результатов мы увидели, что все полученные отвары растений, кроме отвара моркови изменяли цвет, реагируют на ту или иную среду.
Лучшие результаты показали отвары чёрной смородины, малины, клюквы, чай и сок листка орхидеи.
Опыт 3. Определение рН среды пищевых продуктов.
Цель: с помощью полученных индикаторов исследовать кисло-молочные продукты.
Оборудование: образцы молока, сметаны, отвары чёрной смородины, малины, клюквы, чая, сок листка орхидеи, универсальная индикаторная бумагу, пробирки.
Ход опыта: В образцы молока и сметаны добавляем растительные индикаторы.
Наблюдение: Результаты наблюдений занесены в таблицу (приложение 3). Вывод: После проведения опыта было выявлено, что среда сметаны является кислотной, а среда молока – нейтральной.
Опыт 4. Вода и сок в одной бутылке (химические индикаторы).
Цель: использование индикаторов для проведения занимательных опытов
Оборудование: химические стаканы, фенолфталеин, растворы пищевой соды и уксусной кислоты.
Фенолфталеин краснеет в щелочах и солях с преобладающими щелочными свойствами. Сода (двууглекислый натрий) как раз и есть такая соль. Она образована очень слабой угольной кислотой и сильной щелочью – едким натром. Кислоты разрушают эту окраску, поэтому при переливании окрасившегося от соды раствора в стакан с уксусной кислотой он снова обесцветился.
Вывод: фенолфталеин применяется в химических лабораториях, служа для указания появления и исчезновения щелочной реакции растворов. Как и лакмус, он, следовательно, является химическим индикатором.
Выводы:
Изучив литературу по теме, мы самостоятельно изготовили индикаторы из растительного сырья в домашних условиях. Оказалось, что чаще всего используемые индикаторы относятся к кислотно-основной группе индикаторов. И они необходимы для определения среды растворов. Так как, попадая в кислую или щелочную среду, индикаторы меняют свой цвет.
В растениях существуют особые вещества – пигменты, которые отвечают за окраску растений. К ним относятся антоцианы. Растения с этими веществами могут проявлять свойства кислотно-основных индикаторов. Приготовив природные индикаторы, мы убедился в этих свойствах некоторых растений. В результате эксперимента мы узнали, что почти все вещества, из приготовленных нами в домашних условиях (клюква, чёрная смородина, малина, свекла, клубника, приправа карри, чай), можно использовать как индикаторы. Но отвар из моркови нежелательно использовать как индикатор, потому что его изменения незначительны.
Природные индикаторы также точны, как и химические. Самые лучшие результаты были получены при помощи чёрной смородины, малины, клюквы, чая и сок листка орхидеи.
Природные индикаторы имеют короткий срок хранения, но зато они безопасны и могут быть изготовлены в домашних условиях.
Индикаторы имеют большое значение. Ведь при помощи их можно определить кислотность продуктов, что я и сделал во втором опыте, определяя кислотность сметаны и молока, а значит можно проверить натуральность продукта, и тем самым обезопасить себя от подделок. Можно определить кислотность почвы для повышения её урожайности.
Заключение
Проведя исследовательскую работу, мы пришли к следующим выводам:
— многие природные растения обладают свойствами кислотно-основных индикаторов, способных изменять свою окраску в зависимости от среды, в которую они попадают;
— растворы растительных индикаторов можно использовать, например, в качестве кислотно-основных индикаторов для определения среды растворов пищевых продуктов в домашних условиях;
По результатам моего исследования были доказаны индикаторные свойства исследуемых объектов. Наблюдается следующая закономерность – все данные природные объекты в кислотной среде преимущественно окрашиваются в красный цвет, а в щелочной среде – в зелено-желтый. И это доказывает, что они действительно содержат антоцианы. Данное исследование нам показало, что в природе существуют такие растительные объекты, которые меняют свою окраску в зависимости от кислотности среды. Поэтому мы можем назвать их природными индикаторами. Изучая данную тему, я узнал много новой и полезной информации для себя. Мне было интересно и познавательно заниматься данным исследованием. Я буду продолжать изучать различные темы и проводить опыты, ведь химия – очень интересная наука!
Для чего нужны индикаторы
ПРИРОДНЫЕ ИНДИКАТОРЫ И ИХ ИСПОЛЬЗОВАНИЕ
Автор работы награжден дипломом победителя III степени
Введение
Я решила выяснить как можно больше об этих удивительных веществах, и можно ли в качестве индикаторов использовать те природные материалы, которые есть дома.
Актуальность темы: сегодня большой интерес вызывают свойства растений и возможности применения их в химии, биологии и медицине.
Цель работы: изучить природные индикаторы и как их мы можем использовать в повседневной жизни.
Для достижения цели были поставлены следующие задачи:
Изучить материал об индикаторах как химических веществах.
Изучить природные индикаторы.
Выяснить, как можно применять знания о природных индикаторах в повседневной жизни.
Для достижения поставленных задач я изучила литературу в библиотеке и кабинете химии, использовала материалы с сайтов Интернета, а так же использовала методы наблюдения, эксперимента, сравнения, анализа.
1.Химические индикаторы
1.1 История открытия индикаторов
Индикаторы (от лат.Indicator –указатель) – вещества, позволяющие следить за составом среды или за протеканием химической реакции[2]. На сегодняшний день в химии известно большое количество различных индикаторов как химических, так и природных. К химическим индикаторам относятся кислотно-основные, универсальные, окислительно-восстановительные, адсорбционные, флуоресцентные, комплексонометрические и другие [6].
Пигменты многих растений способны менять цвет в зависимости от кислотности клеточного сока. Следовательно, пигменты являются индикаторами, которые можно применить для исследования кислотности других растворов. Общее название таких растительных пигментов флавоноиды. В эту группу входят так называемые антоцианы, которые обладают хорошими индикаторными свойствами.
Самый используемый в химии растительный кислотно-основной индикатор – лакмус. Он был известен уже в Древнем Египте и в Древнем Риме, где его использовали в качестве фиолетовой краски-заменителя дорогостоящего пурпура. Использование пигментов для определения среды раствора впервые научно применено Робертом Бойлем (1627 – 1691)[3]. 1663 год, в лаборатории, как обычно, кипела напряженная работа: горели свечи, в ретортах нагревались разнообразные вещества. В кабинет к Бойлю вошел садовник и поставил в углу корзину с великолепными темно–фиолетовыми фиалками. В это время Бойль собирался проводить опыт по получению серной кислоты. Восхищенный красотой и ароматом фиалок, ученый, захватив с собой букетик, направился в лабораторию. Его лаборант Уильям сообщил Бойлю, что вчера доставили две бутылки соляной кислоты из Амстердама. Бойлю захотелось взглянуть на эту кислоту, и, чтобы помочь Уильяму налить кислоту, он положил фиалки на стол. Затем он взял со стола букетик и отправился в кабинет. Здесь Бойль заметил, что фиалки слегка дымятся от попавших на них брызг кислоты. Чтобы промыть цветы, Бойль опустил их в стакан с водой. Через некоторое время он бросил взгляд на стакан с фиалками, и случилось чудо: темно-фиолетовые фиалки стали красными. Естественно, Бойль, как истинный ученый, не мог пройти мимо такого случая и начал исследования. Он обнаружил, что и другие кислоты окрашивают лепестки фиалок в красный цвет. Ученый подумал, что если приготовить из лепестков настой и добавить немного к исследуемому раствору, то можно будет узнать, кислый он или нет[6.2]. Бойль начал готовить настои из целебных трав, древесной коры, корней растений. Однако самым интересным оказался фиолетовый настой, полученный из определенного лишайника. Кислоты изменяли его цвет на красный, а щелочи – на синий. Бойль распорядился пропитать этим настоем бумагу и затем высушить ее[3]. Так была создана первая лакмусовая бумажка, которая теперь имеется в любой химической лаборатории. Таким образом, было открыто одно из первых веществ, которые Бойль уже тогда назвал индикаторами.
1.2. Разновидности индикаторов
Химический энциклопедический словарь среди индикаторов выделяет: адсорбционные, изотопные, кислотно-основные, окислительно-восстановительные, комплексонометрические, люминесцентные индикаторы.
Моя работа посвящена кислотно-основным индикаторам. С развитием химии росло число кислотно-щелочных индикаторов. Индикаторы, полученные в результате химического синтеза: фенолфталеин, введенный в науку в 1871 году немецким химиком А.Байером, и метилоранж, открытый в 1877году [7.3].
ИНДИКАТОРЫ в химии
ИНДИКАТОРЫ в химии (лат. indicator указатель) — вещества, изменяющие свой цвет в присутствии тех или иных химических соединений в исследуемой среде (в растворе, в воздухе, в клетках, в тканях), а также при изменении pH или окислительно-восстановительного потенциала среды; широко применяются в биохимических, клинических и санитарно-гигиенических лабораториях.
И. применяют для определения конца реакции (точки эквивалентности) при титровании, для колориметрического определения величин pH или окислительно-восстановительных потенциалов, для обнаружения различного рода веществ в тех или иных исследуемых объектах. Для всех этих целей И. применяют в виде водных или спиртовых р-ров или в виде индикаторных бумажек, представляющих собой полоски фильтровальной бумаги, пропитанные И.
В зависимости от назначения и механизма действия И. подразделяют на ряд групп.
Кислотно-основные индикаторы представляют собой сложные органические соединения, изменяющие окраску (двухцветные И.) или ее интенсивность (одноцветные И.) в зависимости от pH среды. Двухцветным И. является, напр., лакмоид: в щелочной среде он имеет синюю окраску, а в кислой — красную. Примером одноцветных И. может служить фенолфталеин, бесцветный в кислой среде и малиновый в щелочной.
По теории Оствальда (W. Ostwald) кислотно-основные И. представляют собой слабые органические к-ты или основания, недиссоциированные молекулы которых имеют в р-ре иную окраску, чем образуемые ими анионы и катионы. Фенолфталеин, напр., является слабой к-той, не диссоциированные молекулы к-рой бесцветны, а анионы окрашивают р-ры в малиновый цвет. В р-рах И., представляющие собой слабые к-ты, диссоциируют по уравнению
Константа ионизации таких И. равна
(квадратными скобками обозначены молярные концентрации соответствующих частиц).
И., представляющие собой слабые основания, диссоциируют по уравнению
где ВОН — не диссоциированные молекулы И., В+ — катионы И., а OH- — гидроксильные ионы.
Константа диссоциации этих И. равна
Кислотно-основные И. широко применяют при титровании к-т и щелочей, а также для колориметрического измерения величины pH биол, жидкостей, клеток, тканей и др.
Титрование к-т и щелочей должно быть закончено в момент достижения точки эквивалентности, т. е. в момент, когда к титруемому р-ру к-ты (щелочи) добавлен такой объем титранта, в к-ром содержится эквивалентное количество к-ты (щелочи). Для этого необходимо применять такой И., точка перехода к-рого равна величине pH титруемого р-ра в точке эквивалентности (см. Нейтрализации метод). В табл. перечислены И., наиболее употребляемые при титровании к-т и оснований.
Качественное определение кислотности и щелочности производят с помощью так наз. нейтральных И., точка перехода которых находится практически при pH 7,0. К ним относятся, напр., лакмус, имеющий в кислой среде (pH меньше 7,0) красный, а в щелочной среде (pH больше 7,0) синий цвет; нейтральный красный, окрашивающийся в кислой среде в красный цвет, а в щелочной — в желтый цвет.
Приближенное измерение величины pH среды (с точностью до 0,5— 1,0 ед. pH) обычно производят с помощью универсального (комбинированного) И., представляющего собой смесь нескольких И., интервалы перехода которых близки друг к другу и охватывают широкую область значений pH.
К 0,5 мл испытуемой жидкости добавляют 1—2 капли р-ра универсального И. и появляющуюся при этом окраску сравнивают с прилагаемой цветовой шкалой, на к-рой указаны значения pH, отвечающие различным окраскам И. Применяют также полоски фильтровальной бумаги, пропитанные универсальным И.
Для более точного (0,1—0,5 ед. pH) колориметрического определения величины pH обычно пользуются одноцветными И. ряда динитро- и нитрофенолов, предложенными Михаэлисом (L. Michaelis) и представляющими собой слабые к-ты, изменяющие окраску от бесцветной (в кислой среде) до желтой (в щелочной). С этой же целью пользуются рядом двухцветных И., предложенных Кларком (W. М. Clark) и Лабсом (H. A. Lubs), представляющих собой сульфофталеины. Кислотная и щелочная формы этих И. резко различаются по цвету, в этом состоит их преимущество по сравнению с индикаторами Михаэлиса.
Окислительно-восстановительные, или редоксиндикаторы, представляют собой органические красители, цвет которых в окисленном и восстановленном состоянии различен. Такие И. применяют при оксидиметрическом титровании (см. Оксидиметрия), а также для колориметрического определения величин окислительно-восстановительных потенциалов жидкостей (см. Окислительно-восстановительный потенциал), отдельных клеток и тканей в цитохим, и цитол, лабораториях. Большинство редокс-индикаторов при восстановлении превращается в бесцветные соединения, а при окислении окрашивается. Окисленная и восстановленная формы И. находятся в р-рах в состоянии динамического равновесия:
окисленная форма + ne восстановленная форма, где n — число электронов.
Соотношение между равновесными концентрациями двух форм данного И., а следовательно, и цвет р-ра, в к-ром находится И., зависят от величины окислительно-восстановительного потенциала р-ра. Если величина потенциала р-ра больше нормального окислительно-восстановительного потенциала (Е0) данного редокс-индикатора, то большая часть И. в этом р-ре переходит в окисленную форму (обычно окрашенную), если же окислительно-восстановительный потенциал исследуемой среды меньше Е0, то И. превращается в восстановленную форму (обычно бесцветную). При равенстве значений окислительно-восстановительного потенциала среды и Е0 индикатора концентрации окисленной и восстановленной форм И. равны друг другу. Имея ряд И. с различными значениями Е0, можно по их окраске в данной среде судить о величине окислительно-восстановительного потенциала данной среды. Редокс-индикаторы, предложенные Михаэлисом, имеющие общее название «виологены» и представляющие собой производные гамма- и гамма’-дипиридилов, обладают малой токсичностью и широко применяются для измерения окислительно-восстановительных потенциалов в биол, системах; у этих И. окрашена восстановленная форма.
Нормальный окислительно-восстановительный потенциал виологенов не зависит от величины pH р-ра. Этим они отличаются от других редокс-индикаторов.
Комплексонометрические индикаторы (металлоиндикаторы) представляют собой хорошо растворимые в воде органические красители, способные образовывать с ионами металлов окрашенные комплексные соединения. Эти И. применяются для установления точки эквивалентности при комплексонометрическом титровании (см. Комплексонометрия).
Адсорбционные индикаторы — это органические красители, адсорбирующиеся на поверхности осадков, образующихся при титровании по методу осаждения, и изменяющие свой цвет при достижении точки эквивалентности. Напр., тропеолин 00 при титровании хлоридов р-ром азотнокислого серебра меняет окраску в точке эквивалентности с желтой на розовую.
Хемилюминесцентныe (флюоресцентные) индикаторы — органические соединения (например, люменол, люцегинин, силаксен и др.), обладающие способностью люминесцировать при естественном освещении или при облучении ультрафиолетовым светом. Интенсивность и цвет люминесценции зависят как от величины pH среды, так и от величины ее окислительно-восстановительного потенциала; эти И. применяются при титровании (при нейтрализации и оксидиметрии) сильно окрашенных или мутных жидкостей, когда изменение окраски обычных И. незаметно.
И. используются во многих биохим. методах, применяемых в клин.-биохим. лабораториях. Наиболее употребимыми из них являются бромтимоловый синий (при определении активности фруктозодифосфатальдолазы в сыворотке крови, активности ацетилхолинэстеразы и холинэстеразы в сыворотке крови по А. А. Покровскому, а также активности карбоксилэстеразы в крови по А. А. Покровскому и Л. Г. Пономаревой), бромфеноловый синий (при электрофоретическом разделении различных белков для окраски электрофореграмм наряду с амидочерным и кислотным сине-черным), универсальный И., феноловый красный (при определении активности аспартат- и аланин-аминотрансфераз в сыворотке крови, активности холинэстеразы в сыворотке крови и т. д.), фенолфталеин, нитросиний тетразолий, используемый для качественной и количественной оценки активности различных дегидрогеназ (см. Дегидрогеназы), и др.
Таблица. Краткая характеристика индикаторов, наиболее часто используемых при титровании кислот и оснований
Интервал перехода индикатора, в единицах pH