Для чего нужны интегралы
Что такое Интеграл
Интеграл — это математическая концепция, которая может быть двух типов:
Определённый интеграл выражает область под кривой графика неотрицательной функции f между любыми двумя значениями a и b, как показано на этом рисунке:
Интеграл, определённый между a и b, представлен как: f(x) dx
Неопределённый интеграл функции f — это другая функция F, полученная процессом, противоположным дифференцированию.
Дифференцирование в математике — это процесс, который превращает функцию f в другую функцию f’, называемую производной от f.
Например, нужно найти производную функции f(x) = cos x:
Обозначение интеграла
Знак определённого интеграла:
Знак неопределённого интеграла: ∫
Основные свойства интегралов
Решение интегралов
Первообразная функция
Это функция, у которой производная функция равна исходной.
Функция F(x) является первообразной для производной функции f(x), если выполняется равенство F'(x) = f(x) (в диапазоне I).
Важная деталь, о которой нужно помнить: первообразные функции не являются единственными! В предыдущем примере первообразная функции 3x² равна x³, но x³ + 1 также является первообразной той же функции (3x²), потому что (x³ + 1)’= 3x².
Это означает, что неопределённый интеграл функции f является множеством всех её первообразных функций и представлен так:
где С — произвольная постоянная.
Неопределённый интеграл
Неопределённый интеграл выглядит примерно так ∫ f(x) d(x) и обозначает множество всех первообразных некоторой функции f(x).
Если F — некоторая частная первообразная, то:
где С — произвольная постоянная.
Например, нужно вычислить неопределённый интеграл:
∫ (2x – 1) dx = ∫2x dx – ∫1dx = 2 (x²/2) – x + C = x² – x + C.
Определённый интеграл
Определённый интеграл выглядит примерно так: f(x) d(x).
С помощью определённого интеграла можно вычислить площадь геометрической фигуры, которая находится под кривой. Отрезок [a;b] называется отрезком интегрирования. Вместо a и b подставляются значения X (минимального и максимального). Например, как на этом рисунке:
Решение определённого интеграла (формула Ньютона-Лейбница):
f(x) dx = F(b) – F(a)
Например, нужно вычислить определённый интеграл:
(2 – x – x²) dx
1) Вычислить первообразную функцию
∫ (2 – x – x²) dx = 2x – x²/2 – x³/3 + C
2) Рассчитать верхний и нижний пределы (разницу между максимальным и минимальным значениями):
(2 – x – x²) dx = [2x – x²/2 – x³/3 + C]
= [2(1) – 1²/2 – 1³/3 + C] – [2(-2) – (-2)²/2 – (-2)³/3 + C] = (2 – 1/2 – 1/3) – (-4 –2 + 8/3) = 2 – 1/2 – 1/3 + 4 + 2 – 8/3 = 9/2 = 4,5.
Значит, площадь того, что закрашено на рисунке (под графиком), будет равна 4,5.
Разбираемся, как решать интегралы
А для чего нужны интегралы? Попробуйте сами себе ответить на этот вопрос. Объясняя тему интегралов, учителя перечисляют малополезные школьным умам области применения.
Связать все эти процессы не всегда получается, поэтому многие ученики путаются, даже при наличии всех базовых знаний для понимания интеграла.
Почему вы не знаете, как решать интегралы
Главная причина незнания – отсутствие понимания практической значимости интегралов.
Интеграл – что это?
Предпосылки. Потребность в интегрировании возникла в Древней Греции. В то время Архимед начал применять для нахождения площади окружности методы, похожие по сути на современные интегральные исчисления. Основным подходом для определения площади неровных фигур тогда был «Метод исчерпывания», который достаточно лёгок для понимания.
Суть метода. В данную фигуру вписывается монотонная последовательность других фигур, а затем вычисляется предел последовательности их площадей. Этот предел и принимался за площадь данной фигуры.
В этом методе легко прослеживается идея интегрального исчисления, которая заключается в нахождении предела бесконечной суммы. В дальнейшем эта идея применялась учёными для решения прикладных задач астронавтики, экономики, механики и др.
Современный интеграл. Классическая теория интегрирования была сформулирована в общем виде Ньютоном и Лейбницем. Она опиралась на существовавшие тогда законы дифференциального исчисления. Для её понимания, необходимо иметь некоторые базовые знания, которые помогут математическим языком описать визуальные и интуитивные представления об интегралах.
Объясняем понятие «Интеграл»
Процесс нахождения производной называется дифференцированием, а нахождение первообразной – интегрированием. Интеграл математическим языком – это первообразная функции (то, что было до производной) + константа «C».
Интеграл простыми словами – это площадь криволинейной фигуры. Неопределенный интеграл – вся площадь. Определенный интеграл – площадь в заданном участке.
Интеграл записывается так:
Каждая подынтегральная функция умножается на компонент «dx». Он показывает, по какой переменной осуществляется интегрирование. «dx» – это приращение аргумента. Вместо X может быть любой другой аргумент, например t (время).
Неопределённый интеграл
Неопределенный интеграл не имеет границ интегрирования. Для решения неопределённых интегралов достаточно найти первообразную подынтегральной функции и прибавить к ней «C». Пример решения неопределенного интеграла.
Определённый интеграл
В определенном интеграле на знаке интегрирования пишут ограничения «a» и «b». Они указаны на оси X в графике ниже.
Для вычисления определенного интеграла необходимо найти первообразную, подставить в неё значения «a» и «b» и найти разность. В математике это называется формулой Ньютона-Лейбница:
Таблица интегралов для студентов (основные формулы)
Как вычислять интеграл правильно
Существует несколько простейших операций для преобразования интегралов. Вот основные из них:
Вынесение константы из-под знака интеграла
Разложение интеграла суммы на сумму интегралов
Если поменять местами a и b, знак изменится
Можно разбить интеграл на промежутки следующим образом
Это простейшие свойства, на основе которых потом будут формулироваться более сложные теоремы и методы исчисления.
Примеры вычисления интегралов
Решение неопределенного интеграла
Базовые понятия для понимания темы
Чтобы вы поняли суть интегрирования и не закрыли страницу от непонимания, мы объясним ряд базовых понятий. Что такое функция, производная, предел и первообразная.
Функция – правило, по которому все элементы из одного множества соотносятся со всеми элементами из другого.
Производная – функция, описывающая скорость изменения другой функции в каждой конкретной точке. Если говорить строгим языком, – это предел отношения приращения функции к приращению аргумента. Он вычисляется вручную, но проще использовать таблицу производных, в которой собрано большинство стандартных функций.
Приращение – количественное изменение функции при некотором изменении аргумента.
Предел – величина, к которой стремиться значение функции, при стремлении аргумента к определённому значению.
Пример предела: допустим при X равном 1, Y будет равно 2. Но что, если X не равен 1, а стремится к 1, то есть никогда её не достигает? В этом случае y никогда не достигнет 2, а будет только стремиться к этой величине. На математическом языке это записывается так: limY(X), при X –> 1 = 2. Читается: предел функции Y(X), при x стремящемся к 1, равен 2.
Как уже было сказано, производная – это функция, описывающая другую функцию. Изначальная функция может быть производной для какой-либо другой функции. Эта другая функция называется первообразной.
Заключение
Найти интегралы не трудно. Если вы не поняли, как это делать, прочитайте статью еще раз. Со второго раза становится понятнее. Запомните! Решение интегралов сводится к простым преобразованиям подынтегральной функции и поиска её в таблице интегралов.
Нескучные интегралы
Некоторые из вас, вероятно, видали на просторах сети эту задачку: какое число продолжает следующий ряд? Предлагался такой очевидный правильный ответ:
Для тех, кому неочевидно, как он получен, предлагалось объяснение. Пусть
(ну и 1 при x = 0, хотя неважно). Тогда каждый член ряда — это значение следующего интеграла в цепочке:
Пока всё идёт хорошо, но тут внезапно:
В принципе, этого достаточно, чтобы повеселить друзей-математиков, но мне захотелось узнать, как вообще считаются такие интегралы и почему получается такой смешной результат. Если кому-то ещё охота тряхнуть стариной и вспомнить матан с функаном, прошу читать дальше.
Начинает сказка сказываться
Для начала отдельно посмотрим на первый интеграл: Некоторое время назад я подумал: «Эй, я ещё не совсем забыл матан! Дайте-ка я возьму этот интеграл как неопределённый, а потом подставлю пределы. Наверняка пару раз по частям, и дело в шляпе.
Вот сейчас на бумажке всё решу без посторонней помощи». Хочу предостеречь вас: не повторяйте моей ошибки. Вас ждёт бессонная ночь, а потом вы заглянете в справочник и узнаете, что неопределённый интеграл не берётся в элементарных функциях. Для него даже специальную функцию ввели. Однако с данными конкретными пределами взять интеграл можно разными способами. Мы пойдём путём, который требует минимум базовых знаний (самое суровое — то же интегрирование по частям). Для начала сделаем внезапную замену: Вы спросите: откуда вообще это взялось и зачем нам ещё один интеграл, мало что ли? Спокойно, так надо (знакомые со свойствами преобразования Лапласа весело ухмыляются). Подставим замену в исходную формулу и поменяем порядок интегрирования:
Внутри получился почти классический интеграл по dx, которым всех пугали у нас в физматшколе. Его можно взять и как неопределённый, дважды использовав формулу интегрирования по частям.
Тогда справа получится какая-то муть и ещё раз тот же самый интеграл, домноженный на что-то, и в результате можно будет решить уравнение относительно этого интеграла и получить ответ, а потом подставить пределы. Кому интересно, проделайте это сами, а я лениво запишу готовый результат: Ну а теперь совсем всё просто: это табличный интеграл из средней школы, который равен арктангенсу. В бесконечности пи-пополам, в нуле — ноль, вот мы и получили ответ. Интеграл, кстати, настолько хорош, что у него есть своё имя — интеграл Дирихле. По ссылке вы можете найти другие способы взять его.
Скоро сказка сказывается, а не скоро дело делается
Для следующего путешествия нам понадобятся четыре вещи: прямоугольная функция, косинусное преобразование Фурье, свёртка и теорема Парсеваля. Сперва скажу пару слов об этих замечательных штуках. Прямоугольная функция — это у нас будет такая ступенька вокруг нуля:
Значение 1/2 в точках разрыва нужно в основном для соблюдения свойств преобразования Фурье, в целом для нашей задачи оно непринципиально.
Косинусное преобразование Фурье. Для простоты мы немного отступим от математической точности и сформулируем грубовато. Для достаточно хорошей чётной функции f(x) выполняются такие соотношения:
Функция и называется косинусным преобразованием Фурье (FCT) от f(x) (её ещё называют образом f). То есть, косинусное преобразование от косинусного преобразования даёт снова исходную функцию f(x)!
Так как прямоугольная функция за пределами промежутка [-a, a] равна нулю, то можно просто интегрировать cos(xt) dt по этому промежутку, тут простая замена переменной и табличный интеграл. Приведённое выше свойство говорит, что FCT от — это прямоугольная функция.
Свёртка — это ещё одна прекрасная штука, без которой не обходится обработка сигналов. Для двух функций f1(x) и f2(x) можно определить функцию-свёртку (обозначается звёздочкой) вот так:
Доселева Макар огороды копал, а нынече Макар в воеводы попал
Возьмём второй интеграл из нашей чудесной последовательности. Как многие уже догадались, мы воспользуемся теоремой Парсеваля и заменим множители на их FCT-образы:
Первая прямоугольная функция под интегралом равна единице для аргументов меньше единицы и нулю для аргументов больше единицы. Поэтому ничто нам не мешает убрать её из интеграла, откорректировав пределы интегрирования: Под интегралом осталась ступенька высотой 3 и шириной 1/3.
Такой интеграл возьмёт даже третьеклассник: надо всего лишь умножить 3 и 1/3. От интеграла остаётся единица, и мы имеем искомое пи-пополам! Таким образом мы почти честно взяли второй интеграл из ряда. Кто желает сделать это совсем честно, тому придётся разобраться, что же такое хорошесть функции, и доказать, что наши функции хорошие.
На первый взгляд жутковато. Но можно кое-чего повыносить, кое-чего посокращать и подставить нашу F1(x). Тогда получим: Внутренний интеграл — это просто прямоугольный фильтр, эдакий «блюр» для функции F1(x): мы просто для каждой точки усредняем все значения в окрестности плюс-минус одна пятая.
Можно опять же избавиться от прямоугольной функции, подшаманив пределы интегрирования. И со внешним интегралом сделаем такую же процедуру. Вот что получится в итоге: Слева график функции F2(x), которая на самом деле — сглаженная F1(x).
Площадь под ступенькой единица, значит, ядро нормировано. Тут тоже можно сравнить с блюром в фотошопе: после применения блюра картинка в целом не становится светлее или темнее. А раз так, то интеграл F2(x) в точности равен интегралу F1(x), то есть единице, поэтому и третий интеграл равен пи-пополам!
Теперь мы уже имеем F3(x), которая на самом деле — сглаженная F2(x) с ядром шириной 2/7. Ядро нормировано, значит, интеграл F3(x) равен интегралу F2(x), то есть единице, и мы снова имеем пи-пополам!
Интуитивное объяснение интеграла. Часть I — от умножения натуральных чисел до Ньютона и Лейбница
0. Предисловие
Математика представляет собой универсальный, мощный и элегантный раздел знания. По-сути её предмет и значение невозможно разделить с наиболее фундаментальными разделами философии — логикой, онтологией и теорией познания. Именно поэтому она касается прямо или косвенно всех аспектов любого прикладного или теоретического знания.
Отличительными особенностями её являются:
использование особой знаковой системы (цифры, буквы разных алфавитов, языковые правила и т.д.),
логическая строгость (понятия, определения, суждения, правила вывода задаются в явном и точном виде),
последовательность (не поймёшь пункт 3, если не понял пункты 1 и 2),
высокая плотность информации на единицу текста (часто смысла в тексте гораздо больше, чем в текстах иного содержания).
Легко показать, что любой интеллектуально развитый человек регулярно использует те же мыслительные конструкции, что и математика. Когда мы говорим давайте рассмотрим десять каких-либо операций (алгоритм) вроде кулинарного рецепта или простейшей программы или рассмотрим какой-либо частный случай явления, определим его свойства, отношения с другими явлениями, изучим структуру — мы прибегаем к универсальным способам мышления, которые характерны для любого знания и в том числе математического.
Эта статья никогда бы не появилась на свет, если бы учебная литература была бы настолько совершенна, что могла бы легко объяснить, что такое интеграл. Перечитав десятки книг и статей я с уверенностью могу сказать, что ни одна из них не объясняет все нюансы этого вопроса так и таким образом, чтобы среднему, неискушённому человеку было всё абсолютно ясно.
Многие источники не удовлетворительны по следующим причинам:
Говорят о какой-то площади под кривой при том, что читатель ни сном, ни духом не задумывался о площади, тем более под кривой и какой-то связи этой площади с универсальной идеей суммирования переменных величин
Без интуитивного подведения читателя через сложение и умножение чисел, основательного разъяснения связи …. сразу бросаются к определению интеграла через предел римановской суммы
Забывают рассказать об историческом процессе развития математики (зачем ввели интеграл, какие открытия этому предшествовали, что подвело к этому, как считали интегральные суммы до этого, как Ньютон и Лейбниц считали интегралы и т.д.)
Не считают нужным или не хотят привести пару тройку простых примеров интегрирования из прикладных наук
Сыпят доказательствами утверждений, которые новичку покажутся неуместными или второстепенными
Забывают напомнить выводы, обозначения и утверждения, использованные или доказанные ранее
Пропускают те или иные алгебраические преобразования, которые «очевидны» автору, но могут запутать новичка
Автору надоело чувствовать неясность и он решил взять дело в свои руки — расписать все аспекты так, чтобы было всё предельно ясно и понятно.
1. Предпосылки возникновения интегрирования
Интеграл и интегрирование являются неотъемлемыми и последовательными элементами исследования величин и функций. Интегрирование теснейшим образом связано с важнейшими способами анализа и исследования числовых функций — средними, предельными, бесконечно малыми, бесконечно большими величинами, пределами, дифференциалами, производными и т.д. А потому, без осознания и исследования этих понятий невозможно и формирование понятия интеграла.
Исторически и логически они развивались и развиваются слитно и нераздельно.
Как известно осознание самостоятельной значимости и полноценное развитие математики начались в Древней Греции. Постепенное накопление прикладных знаний о различного рода вычислительных, логических и геометрических задачах неизбежно привело к формированию теоретических начал и абстрактных представлений о существе многих математических идей.
Корпус прикладных и теоретических знаний накапливался и формировался шаг за шагом за счёт осмысления логического устройства мышления, применения арифметических операций, составления и решения алгебраических уравнений, построения и изучения свойств плоских и объёмных геометрических фигур.
2. Геометрический и аналитико-алгебраический смысл интегрирования
Согласно дошедшим до нас источникам, именно отыскание квадратуры является первой формой постановки задачи интегрирования. Задача явно сформулирована и решена в трудах Евдокса Книдского (сформулировал метод исчерпывания, позднее развитый в XVI веке в метод неделимых), Евклида и Архимеда. Древнегреческих математиков интересовали задачи отыскания площади круга, поверхности сферы, сегмента параболы, а также объёма шара, цилиндра, пирамиды, конуса, тетраэдра и ряда других геометрических фигур.
Под проведением квадратуры понималось построение с помощью циркуля и линейки квадрата, равновеликого заданной фигуре (то есть имеющего такую же площадь) или прямое вычисление соответствующей площади. Вероятно связи геометрии и анализа если и обнаруживались, то интуитивно и неявно. Во всяком случае координатный метод и понятия дифференциального исчисления точно не были известны, хотя и почти что точно были так или иначе интуитивно восприняты и неявно затронуты.
Что касается второго типа задач. Интегралы часто описываются как площадь под кривой. Это описание сбивает с толку. Точно также, как если сказать, что умножение — это нахождение площади прямоугольника. Именно понимание сущности умножения применительно к различного рода частным случаям позволяет понять аналитико-алгебраическую суть интегрирования.
Понимание и использование простейших случаев умножения, к примеру, умножения натуральных чисел, было известно с древнейших времён.
Однако, за всеми частными случаями умножения находится определённая общность. Вот как можно описать умножение чисел из различных числовых множеств:
В случае с натуральными числами. К примеру, умножим число 3 на число 4, то есть 3 × 4. Умножение — это повторяющееся сложение, то есть произведение чисел получим сложив число три четыре раза или наоборот сложив число четыре три раза [3].
В случае с вещественными числами.
Возьмём одно рациональное число — дробь, а другое целое. К примеру, умножим 3,5 на 2, то есть — 3,5 × 2. Умножение — это повторяющееся сложение, произведение получим сложив число три целых и пять десятых два раза. Также, получить произведение можно путём сложения произведений вначале целой части числа 3,5 то есть 3 на 2, а затем дробной то есть 0,5 на 2. Для целой части — сложим число три два раза, а для дробной части — возьмём единицу разделим на десять, затем возьмём пять частей от деления то есть пять десятых и сложим два раза.
Возьмём два рациональных числа — две дроби и получим произведение. К примеру, умножим 3,5 на 2,1 то есть — 3,5 × 2,1, произведение получим сложив произведение 3,5 на 2 и 3,5 на 0,1 [4]. Словесно это будет выглядеть следующим образом, для первого произведения — сложим число три целых пять десятых два раза, для второго — разделим число три целых пять десятых на десять частей и возьмём одну часть то есть одну десятую.
В случае с комплексными числами (3 × 3i), умножение выступает вращением и масштабированием.
Мы ходим вокруг да около «применения» одного числа к другому, и действия, которые мы применяем (повторное суммирование, масштабирование, зеркальное отображение или вращение), могут быть разными. Интегрирование — это всего лишь еще один шаг в этом направлении.
Когда мы умножаем числа мы повторяем сложение, где в каждом слагаемом знаем какие находятся операнды, а именно — повторяющиеся числа.
К примеру, если мы хотим вычислить пройденный путь телом, движущимся с одинаковой скоростью в каждый момент времени, то мы просто перемножим скорость на время (значение функции скорости одинаково, а геометрически грубо говоря одинаково во всем прямоугольнике).
Но изменяющаяся скорость требует совмещения скорости и времени по частям (момент за моментом, секунда за секундой). В каждый момент скорость может быть разной.
Вот как это выглядит в большой перспективе:
Обычное умножение (прямоугольник): берем расстояние, на которое мы продвинулись за секунду, предполагая, что эта величина была постоянной во все последующие секунды движения, и «масштабируем ее».
Интегрирование (по частям): рассматриваем время как ряд мгновений, в каждое из которых скорость разная. Суммируем расстояния, пройденные в каждое из мгновений (секунд, миллисекунд и т. д.).
То есть, интегральную сумму (значение интеграла, определённый интеграл) можно определить, как максимально точную сумму значений искомой переменной величины
при её изменении в промежутке от до
где
а
.
Точность достигается в пределе, то есть при всё большем уменьшении размера промежутков между значениями или, что тоже самое, при всё большом увеличении числа отрезков (числа —
обозначающего индекс-номер последнего отрезка)
Несомненно греческих и более поздних мыслителей интересовали задачи на отыскание суммарного значения переменных величин. Вероятно их устраивало простое суммирование значений переменной величины, приближённые вычисления. Если мы возьмём приращение переменной равное единице, то интеграл приближённо будет равен сумме значений функции в рассматриваемом промежутке.
В дальнейшем, начиная с XVI века (работы Галилея, Кеплера, Кавальери и других о методе неделимых) понимание интегрирования постепенно совершенствовалось и развивалось пока не достигло формализации у Бернхарда Римана в середине XIX века и дальнейшего обобщения.
3. Интуитивные способы отыскания значения интеграла
Умножить совокупное приращение переменной на значение функции и получить площадь прямоугольника, который добавит значительный излишек, либо срежет значительную часть в зависимости от того какое значение функции мы выберем. Вручную мы можем подобрать такое значение функции, что при умножении её на приращение переменной мы получим довольно точное значение площади (определённого интеграла в промежутке). Для этого нам потребуется провести линию так, чтобы площадь излишка примерно равнялась срезанной площади. Однако, это не даст нам универсального метода отыскания значения искомой величины.
2. Сложить произведения приращения переменной на значение функции в соответствующих точках, получив тем самым сумму площадей прямоугольников, внешне напоминающих лестницу (ступеньки). В самом простом случае приращение равно единице. На этом методе и основано формальное определение определённого интеграла, данное Б. Риманом. О нём мы поговорим ниже.
3. Воспользоваться иными так называемыми численными способами отыскания значения интегральной суммы (интеграла).
4. Отыскание значения интеграла через отыскание первообразной
Однако есть более изящный и универсальный способ вычисления интегральной суммы, который был открыт Исааком Ньютоном и Готфридом Лейбницом. Этот способ устанавливает фундаментальную связь дифференцирования (производной) и интегрирования (первообразной).
Чтобы рассмотреть суть открытия, необходимо последовательно прийти к ряду идей и рассуждений.
Пусть имеется некоторая функция от числовой переменной — Обозначим её
[5].
Следует отметить несколько обстоятельств относительно рассматриваемой функции:
Функция является числовой, то есть область определения и область значений являются числовыми — принимают числовые значения (более точно — вещественные значения).
Функция непрерывна и принимает значения в каждой точке с соответствующим значением переменной (к примеру, в точкесуществует значение функции
, а в точке
значение
Функция может иметь любое выражение. Мы можем иметь набор значений функции в соответствующих точках в виде таблицы (функция задана таблично). Или функция может быть явно задана в виде аналитического выражения (к примеру, в случае с функцией от одной вещественной переменной — , и т.д.).
Функция может описывать зависимость величины любой природы — физической, биологической, экономической и т.д.
Для наглядности изобразим график рассматриваемой функции в виде произвольной кривой.
Пусть мы хотим отыскать всю или часть совокупного значения (аналитико-алгебраический смысл интегрирования) или площадь под кривой (геометрический смысл). Выберем промежуток между двумя точками и
и продолжим наши рассуждения.
Искомое значение представляет собой функцию и очевидно, что оно будет зависеть от размера промежутка и того значения изначальной функции, которое она принимает в каждой точке этого промежутка. Также, очевидно, что промежуток значений переменной для изначальной функции и функции площади будет одинаковым [6].
Сказанное выше легко показать и увидеть на графике.
Заметим, что значения функции площади не равны значению изначальной функции при том же значении переменной [7]. Значения площади постоянно возрастает слева-направо, то есть при каждом шаге приращения промежутка суммирования (интегрирования).
Пусть теперь исследуемая функция является функцией скорости движения материальной точки (тела) по некоторой траектории. Тогда, очевидно, по определению производной, что скорость в конкретный момент времени — это первая производная пути (координаты) по времени
Если скорость это производная пути и мы знаем аналитическое выражение её выражающее, то мы можем найти выражение для самого пути то есть для самой функции. Мы можем это сделать через операцию, обратную нахождению производной то есть через отыскание первообразной. Это справедливо, поскольку производная и соответствующее ей семейство первообразных единственны.
Данный вывод можно обобщить на все интегрируемые функции.
Далее, легко понять из простых арифметических и геометрических соображений, что значение интегральной суммы (площади) будет равно разности значений полученной функции (первообразной), взятых в соответствующих точках [8].
То есть если требуется найти интегральную сумму в промежутке от до
, где первое и второе — некоторые произвольные значения переменной, то необходимо вычислить разность
Указанная сумма и есть определённый интеграл, который записывается, как
[2]. Имеется ввиду сумма значений переменной, которая является элементом интегрирования, интегрируемой величиной.
[3]. Не имеет значения каким образом будем вычислять произведение, так как от перестановки множителей произведение не меняется, то есть данная операция обладает свойством коммутативности.
[4]. 3,5 · 2 + 3,5 · 0,1 = 3,5 (2 + 0,1) = 3,5 · 2,1.
[5]. Вместоможет быть любое обозначение, к примеру,
— это не имеет значения. Буква
всего лишь обозначает имя для функции, а скобки отделяют имя от сущностей — обычно числовых переменных над которыми совершаются те или иные операции, дающие в результате значение функции.
[6]. Переменная-аргумент — одна и таже, то есть иными словами значения переменной-аргумента в точках
для
и
одно и тоже. Далее, мы покажем, что
производная
, то есть можно записать
или
.
[7]. То есть . К примеру, пусть функция задана выражением
. Тогда, при
,
, а значение
. Если
. Тогда, при
,
, а значение
.
[8]. Пусть имеется точка, число 7 и 10, чтобы найти величину промежутка между этими значениями надо найти разность то есть 10 — 7 = 3.