Для чего нужны нуклеиновые кислоты
Синтетические нуклеиновые кислоты в лечении психоневрологических заболеваний
Концепция использования нуклеиновых кислот в качестве лекарств сложилась в 70-х годах прошлого века ондовременно с разработкой методов синтеза ДНК и РНК-олигонуклеотидов. Синтетические нуклеиновые кислоты обладают способностью специфически связываться с последовательностью РНК-мессенджера (мРНК) и контролировать экспрессию любого гена. Поскольку эти олигонуклеотиды были комплементарны мРНК смысловой цепи, они стали известны как ASO.
Синтетические олигонуклеотиды химически модифицируют в целях улучшения биораспределения, фармакокинетики и эффективности своего эффекта внутри клеток. Как правило, ASO имеют фосфоротиоатные связи между нуклеотидами. Эти связи повышают устойчивость к расщеплению нуклеазой и увеличивают биодоступность за счет улучшения связывания с сывороточными белками. Чтобы увеличить сродство связывания с РНК-мишенями, большинство ASO модифицированы в 2 ‘положении рибозы. Блокированная нуклеиновая кислота и аналогичные нуклеотиды нуклеиновой кислоты с мостиковыми связями содержат связи между положениями 2 ‘и 4’ рибозы, которые служат для «блокировки» кольца в конформации, которая идеально подходит для связывания. Лучшая аффинность связывания может быть преобразована в более эффективное распознавание последовательностей-мишеней внутри клеток.
В некоторых случаях разрушение РНК и ингибирование экспрессии генов являются желаемыми результатами. В этих случаях используются «гамперы» ASO. Гапмеры представляют собой синтетические ASO, которые содержат фланкирующие области, содержащие 2′-нуклеотидные модификации и центральную часть ДНК. Фланкирующие области усиливают сродство к комплементарным последовательностям. При связывании разрыв ДНК образует гибрид ДНК-РНК, который может рекрутировать РНКазу Н и вызывать расщепление целевой мРНК.
Успешное развитие ASO выиграет от анализа потенциала конкурирующих технологий. Например, ASO могут не быть предпочтительными, если есть ожидание, что конкурирующая малая молекула или антитело могут быть успешно разработаны. Эти более устоявшиеся технологии, вероятно, будут иметь преимущества, по крайней мере, в ближайшей и среднесрочной перспективе. Были проведены исследования, что ASO могут быть перорально биодоступными, но эффективность здесь оказалось низкой. Отсюда следует, что пероральная биодоступность, вероятно, не совсем подходит для текущего состояния технологии ASO. По крайней мере, в ближайшей перспективе ASO незнакомы пациентам, врачам и регулирующим органам. В качестве альтернативы, показания, при которых возможно местное применение, могут потребовать меньшего количества ASO, снижения его стоимости и отделения ASO от воздействия на органы всего организма, то есть снижения вероятности появления системных токсических эффектов и непредвиденных отрицательных результатов. Для неврологии было показано, что интратекальное введение обеспечивает широкое распространение по всей центральной нервной системе. Исследования эффективности ASO, при которых изменения в белковой мишени или биомаркере может быть определено посредством биопсии или взятия крови, обеспечат раннее доказательство того, что ASO взаимодействует с мишенью и вызывает желаемые молекулярные изменения.
Атаксия Фридрейха
Атаксия Фридрейха вызвана расширенным тринуклеотидным повторением AAG в гене фратаксина ( FXN ). Примечательно, что этот расширенный повтор AAG находится в интроне и вызывает снижение экспрессии белка FXN, даже если он не находится в кодирующей области. Нормальный белок FXN производится, но уровень не является достаточным. Следовательно, методы лечения, которые восстанавливают уровни FXN, предлагают подход к лечению, который нейтрализует основную причину заболевания.
Напрашивается вывод, что олигонуклеотиды, которые блокируют расширенный повтор, могут предотвратить образование R-петли и освободить разрыв при транскрипции. Исследователями предлагаются дуплексные РНК или ASO, дополняющие повтор AAG. Оба подхода привели к увеличению экспрессии РНК и белка. Уровни белка FXN были аналогичны уровням, наблюдаемым в клетках дикого типа. Исследование показало, что синтетические нуклеиновые кислоты могут быть использованы для восстановления уровней FXN, обеспечивая отправную точку для терапевтического эффекта. Эти данные предполагают, что механизм действия ASO или дуплексных РНК включает в себя связывание с расширенным повтором и физическое предотвращение его ассоциирования хромосомной ДНК с образованием критической структуры R-петли.
«Антисмысловые олигонуклеотиды» ( ASO) эффективно ингибируют экспрессию генов в печени и центральной нервной системе. Использование их для лечения широкого спектра тканей, необходимых для полного лечения атаксии Фридрейха, потребует более сильнодействующих соединений и более эффективных стратегий доставки олигонуклеотидов во все пораженные ткани.
Спинальная мышечная атрофия
Научная электронная библиотека
§ 2.1.11. Аминокислоты. Белки. Нуклеиновые кислоты
Аминокислотами называются органические соединения, содержащие аминогруппу и карбоксильную группу. Например:
Аминокислоты относятся к веществам со смешанными функциями. Кроме того, они являются азотсодержащими и кислородсодержащими одновременно. Некоторые природные аминокислоты содержат также серу, как, например, цистеин:
Наиболее характерным химическим свойством аминокислот является способность аминогруппы одной молекулы вступать в реакцию замещения с карбоксильной группой другой молекулы:
В результате образуется новая аминокислота, но уже с пептидной связью, способная взаимодействовать со следующей молекулой аминокислоты и образовать ещё одну пептидную связь. Последовательное увеличение количества пептидных связей в одной молекуле приводит к образованию полимеров, которые называются полипептидами, важнейшими представителями которых являются белки.
Белки – важнейшая составная часть клеток живых организмов – представляют собой полипептиды, составленные взаимодействием различных α-аминокислот. Таким образом, белки можно рассматривать как полимеры, мономером которых являются α-аминокислоты. Молекулярные массы природных белков колеблются от нескольких десятков тысяч до нескольких сот тысяч а.е.м. Аминокислотные остатки, являющиеся звеньями полипептида называют аминокислотными звеньями. Последовательность аминокислотных звеньев в линейной полипептидной цепи называется первичной структурой белковой молекулы (рис. 2.6).
Рис. 2.6. Первичная структура белков.
R1, R2, R3, R4 – радикалы остатков аминокислот
Благодаря многочисленным водородным связям между группами –СО– и –NH– первичная структура белков свёртывается в спираль, которая называется вторичной структурой белковой молекулы (рис. 2.7).
Рис. 2.7. Вторичная структура белков
В свою очередь, вторичная структура также способна свернуться, образовав третичную структуру (рис. 2.8).
Рис. 2.8. Третичная структура белков
Третичная структура поддерживается уже не только водородными связями, но также и ковалентными. В частности между атомами серы различных участков полипептида часто образуется дисульфидный мостик
Некоторые белковые макромолекулы могут соединяться друг с другом, образуя относительно крупные агрегаты. Подобные полимерные образования белков называются четвертичными структурами. Примером такого белка является гемоглобин, который представляет комплекс из четырёх макромолекул (рис. 2.9). Оказывается, что только при такой структуре гемоглобин способен присоединять и транспортировать кислород в организме.
Рис. 2.9. Четвертичная структура белков
Нуклеиновыми кислотами (полинуклеотидами) называют высокомолекулярные органические соединения, повторяющимся звеном которых являются нуклеотиды состоящие из
1. Остатка фосфорной кислоты – НРО3 –
2. Остатка рибозы или дезоксирибозы
3. Радикалов азотистых оснований, а именно таких как: аденин, тимин, гуанин, цитозин, урацил.
Например, если радикал урацила обозначить У, то молекулярную формулу одного из нуклеотидов можно представить следующим образом:
К нуклеиновым кислотам относятся рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК). Рибонуклеиновые кислоты – это полинуклеотиды, включающие в себя остаток рибозы, радикалы аденина, гуанина, цитозина и урацила. Поскольку различные нуклеотиды РНК отличаются только радикалами азотистых оснований, то нередко каждый нуклеотид обозначают прописной первой буквой названия этого нуклеотида. Поэтому фрагмент какой либо РНК можно представить так
Первичная структура молекулы белка, синтезируемого на информационной (матричной) рибонуклеиновой кислоте (м-РНК) с помощью ферментов[31], определяется именно последовательностью нуклеотидов на этой РНК. Набору из трёх азотистых оснований, который называется триплет нуклеотидов или кодон, соответствует одна и только одна α-аминокислота. В настоящее время насчитывается 20 таких аминокислот (табл. х). Но одной аминокислоте может соответствовать несколько триплетов нуклеотида. Соответствие аминокислоты кодонам называется генетическим кодом. Реакции синтеза белка, у которого последовательность аминокислотных звеньев определяется последовательностью нуклеотидов м-РНК, называются реакциями матричного синтеза.
Последовательность нуклеотидов и-РНК в свою очередь определяется последовательностью азотистых оснований в дезоксирибонуклеиновой кислоте (ДНК), на которой и происходит синтез м-РНК
Дезоксирибонуклеиновые кислоты – это кислоты, состоящие из двух полинуклеотидных цепей, включающих в себя остаток дезоксирибозы, радикалы аденина, гуанина, цитозина, тимина и соединённых между собой по принципу комплементарности (совместимости) водородными связями. То есть, вместо радикала урацила, нуклеотиды ДНК содержат тимил, вместо остатка рибозы, остаток дезоксирибозы,
образующей замкнутый цикл соединением альдегидной группы с гидроксогруппой четвёртого атома углерода.
При этом А комплементарен Т, Г комплементарен Ц. То есть, фрагмент первичной структуры ДНК можно представить следующим образом:
Действительно, аденил в ДНК образует водородную связь только с тимилом, а тимил, только с аденилом. Гуанил только с цитозилом, а цитозил только с гуанилом:
Молекулярную формулу одного из нуклеотидов ДНК можно представить так
Вторичная структура ДНК представляет собой двойную спираль – две нити ДНК закручены одна вокруг другой (рис. 2.10).
Рис. 2.10. Вторичная структура ДНК
Ферментативный синтез м-РНК осуществляется на одной из цепей ДНК в соответствии с принципом комплементарности. При этом аденин ДНК комплементарен урацилу РНК, тимил ДНК коиплементарен аденину РНК, гуанил ДНК комплементарен цитозилу РНК, цитозил ДНК комплементарен гуанилу РНК. Затем с м-РНК осуществляется матричный синтез белка. К каждому кодону информационной РНК доставляется соответствующая аминокислота с помощью транспортной РНК (т-РНК).
Таким образом, основным хранителем информации о структуре всех белков, вырабатываемых организмом является ДНК.
Отрезок ДНК, содержащий информацию о первичной структуре одного определённого белка, называется геном.
Процесс переписывания информации, содержащейся в гене ДНК на м-РНК называется транскрипцией.
1. Приведите структурные формулы аминокислот, которые Вы знаете. Дайте им названия.
2. Дайте определения понятиям: полипептиды и белки.
3. Что представляют собой первичная, вторичная, третичная и четвертичная структуры белка?
4. В чём сходство и различия химического состава, строения ДНК и РНК? Что такое ген?
5. Каким образом в клетках живых организмов синтезируется м-РНК? Что такое транскрипция?
6. Что такое матричный синтез? Почему в качестве отдельной структурной единицы РНК рассматривают три соседних нуклеотида, а не два или, например, четыре?
Нуклеиновые кислоты
Что такое жизнь? – вопрос, который неоднократно задает себе каждый человек. На это можно ответить по-разному и один из ответов может звучать так: жизнь — это способ существования белковых тел. А главные составляющие последних – нуклеиновые кислоты. Нуклеиновые кислоты – важнейшие биополимеры, которые содержатся во всех без исключения живых организмах и являются не только хранителем и источником генетической информации, но и выполняют ряд других жизненно важных функций — активно поддерживают и стимулируют процессы синтеза белковых веществ в организме, что необходимо для обновления клеточных структур, составляющих основу всех тканей и органов. Актуальность данного процесса нельзя переоценить при терапии для людей, страдающих хроническими заболеваниями, а также при реабилитации больных после хирургических операций, особенно на мягких тканях. Используют нуклеиновые кислоты и для снижения скорости старения клеток и тканей, что улучшает общеоздоравливающее воздействие при комплексной терапии, особенно в возрасте после 45-50 лет.
Существует два типа нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. Основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах.
Что же касается РНК, то по выполняемым ими функциям различают информационные РНК, в которых записана информация о первичной структуре белка; рибосомные РНК — входят в состав рибосом; транспортные РНК — обеспечивают доставку аминокислот к месту синтеза белка.
Минимальные информационные фрагменты нуклеиновых кислот — нуклеотиды, состоящие из остатков азотистого основания, пентозы и фосфорной кислоты. Нуклеиновые кислоты играют важную структурную роль в клетке, являются компонентами рибосом, митохондрий и других внутриклеточных структур.
Интерес к нуклеиновым кислотам, как средству, используемому при различных патологических состояниях, появился более ста лет назад. И.Горбачевский (1883) и М. Морек (1894) использовали нуклеиновые кислоты с лечебной целью при волчанке. Позднее А. Косеель сообщил, что нуклеиновые кислоты обладают выраженным бактерицидным действием. Начиная с конца 19 века некоторые российские и зарубежные исследователи, еще задолго до открытия антибиотиков, используют нуклеиновые кислоты для борьбы с такими возбудителями инфекционных заболеваний, как холерный вибрион, кишечная и бугорчатая палочки, стафилококк, стрептококк, диплококк и др.
Полученные данные в 70-х годах прошлого столетия показывают эффективность введения нуклеиновых кислот в организм человека: их доставка к клетке происходила без разрушения. Активно размножающиеся ткани (костный мозг, эпителий тонкого кишечника, селезенка) интенсивно поглощали ДНК, а при стрессовом воздействии клетки и ткани органов активно захватывали ДНК.
Достаточно долгое время считалось, что организм способен самостоятельно синтезировать необходимое количество нуклеиновые кислоты. Новые научные данные свидетельствуют о том, что это не совсем корректно. В ряде случаев, при интенсивном росте, стрессе, ограниченном питании потребности организма могут значительно превосходить возможности синтеза нуклеиновых кислот. В этом случае иммунитет человека снижается. Расстройства нуклеинового обмена являются одной из причин индукции патологических процессов вообще и иммунопатологических в частности.
Борьба за иммунитет стала первым, но не единственным направлением по использованию нуклеиновых кислот в клинической практике. Было установлено, что они являются важным компонентом интегрального иммунологического гомеостаза организма. Расстройства нуклеинового обмена являются одной из причин индукции патологических процессов вообще и иммунопатологических в частности. То есть, можно сказать, что нуклеиновые кислоты обладают «многозадачностью».
Наиболее чувствительны к дефициту нуклеиновых кислот быстро делящиеся клетки — эпителий, клетки кишечника, печени и лимфоидная ткань, отвечающая за иммунитет и детоксикацию. Процессы деления клетки со временем сопровождаются постепенным укорачиванием ее ДНК, что приводит к разрушению клетки и возникновению патологических процессов во всем организме. Именно укорачивание ДНК лежит в основе теории старения. А поступающие в организм фрагменты нуклеиновых кислот (ДНК) способствуют замедлению уменьшения структуры ДНК. Это позволяет предотвратить либо замедлить патологические процессы. Происходит обновление старых и восстановление поврежденных клеток, качественно повышаются регенеративные способности тканей. Результат сказывается на состоянии внутренних органов и систем, их функционирование.
Существует несколько типов препаратов на основе нуклеиновых кислот: препараты микробного происхождения, препараты животного происхождения, синтетические препараты.
Натуральный комплекс « Артемия Голд » — это источник нуклеиновых кислот (ДНК, РНК) и дополнительный источник йода из икры (яиц) рачка артемия (Artemia sp.).
Бесспорно, что организм является саморегулирующей системой. Однако в каждой системе может произойти сбой. Именно в этот момент важно, чтобы организм получил именно те вещества, которые смогут компенсировать потери и наладить работу системы. По мнению исследователей из НИИ эпидемиологии и микробиологии СО РАМН э тими веществами могут быть препараты нуклеиновых кислот различного происхождения, которые являются перспективными терапевтическими и иммуномодулирующими агентами.
— Агаджанян Н. А., Баевский Р. М., Берсенева А. П. Проблемы адаптации и учение о здоровье. — М.: Изд-во РУДН, 2006. — 284 с.
— Аппель Б., Бенеке Б.И. Бененсон Я. Нуклеиновые кислоты. От А до Я. – Москва: Изд-во: Бином. Лаборатория знаний, 2013
— Бенджамин С. Фрэнк. Лечения старения и дегенеративных заболеваний нуклеиновой кислотой. — Нью-Йорк, Психологическая библиотека, 1974 г.
— Коровина Н.А., Захарова И.Н., Малова Н.Е., Лыкина Е.В. Роль нуклеотидов в питании ребенка первого года жизни. Педиатрия. 2004, — Т.83. — № 5, С.65-68.
— Мамонова Л.Г. Значение нуклеотидов в питании детей раннего возраста. Вопросы современной педиатрии. 2007, 6 (6), С.113-116.
— Тутельян В.А., Суханов Б.Н., Австриевских А.Н., Позняковский В.М. Биологически активные добавки в питании человека (оценка качества и безопасности, эффективность, характеристика, применение в профилактической и клинической медицине). – Томск: Изд-во НТЛ, 1999. – 296 с.
— Федянина Л.Н., Беседнова Н.Н., Эпштейн Л.М., Каленик Т.К., Блинов Ю.Г. Лекарственные препараты и биологически активные добавки к пище на основе нуклеиновых кислот различного происхождения. – Владивосток: Тихоокеанский медицинский журнал, 2007, №4. – С. 9-12.
Нуклеиновые кислоты.
Нуклеиновые кислоты – природные высокомолекулярные соединения (полинуклеотиды), которые являются важнейшими компонентами биохимических процессов, протекающих в организме человека, играют роль в хранении и передачи наследственной информации.
Строение нуклеиновых кислот.
Строение нуклеиновых кислот может объяснить гидролиз. При полном гидролизе образуется смесь пиримидиновых и пуриновых оснований, моносахарид и фосфорная кислота.
В качестве моносахарида выступает одно из этих соединений:
При частичном гидролизе продуктом реакции является смесь нуклеотидов, молекулы которых построены из остатков фосфорной кислоты, моносахарида и азотистого основания. Остаток фосфорной кислоты связан с 3-м или 5-ым атомом углерода, а остаток основания – с 1ым атомом углерода моносахарида. Общая формула нуклеотидов:
Где Х = ОН для рибонуклеотидов, построенных на основе рибозы или Х = Н – для дезаксирибонуклеотидов, построенных на основе дезоксирибозы. В зависимости от типа азотистого основания различают пуриновые и пиримидиновые нуклеотиды.
Нуклеотид – основная структурная единица нуклеиновых кислот – мономер.
Если в состав входят рибонуклеотиды, то такую кислоту называют рибонуклеиновой (РНК), а если из дезоксирибонуклеотидов, то – дезоксирибонуклеиновой кислотой (ДНК).
В РНК входят: аденин, гуанин, цитозин и урацил.
В ДНК входят основания, содержащие аденин, гуанин, цитозин и тимин.
Свойства ДНК и РНК зависят от последовательности оснований в полинуклеотидной цепи и пространственным строением цепи. Именно последовательность несет в себе уникальный генетический код, а остатки моносахаридов и фосфорной кислоты играют структурную роль.
При частичном гидролизе отщепляется остаток фосфорной кислоты и образуются нуклеозиды, которые состоят из остатков пуринового или пиримидинового основания, связанного с остатком миносахарида:
В молекуле РНК и ДНК нуклеотиды связаны в единую полимерную цепь:
Пространственная структура полинуклеотидных цепей была определена рентгеноструктурным анализом. В 1953 года Дж. Уотсон и Ф. Крик предложили модель трехмерной структуры ДНК, принципы которой заключались в следующем:
1. Молекула ДНК представляет собой двойную спираль с состоит из двух полинуклеотидных цепей, закрученных в противоположные стороны.
2. Пуриновые и пиримидиновые основания расположены внутри спирали, а остатки фосфора и дезоксирибозы – снаружи.
3. На полный виток спираль приходится 10 нуклеотидов.
4. Две спирали связаны друг с другом водородными связями. Важное свойство ДНК – избирательность в образовании связей – комплементарность. Причем размеры оснований подобраны так, что тимин связывается только с аденином, а цитозин – с гуанином.
Две спирали в ДНК комплементарны друг другу. Последовательность оснований в одной цепи определяет последовательность в соседней.
В каждой паре оснований, связанных друг с другом водородными связями, одно основания является пуриновым, в другом – пиримидиновым.
Двухспиральная молекула ДНК с комплементарными полинуклеотидными цепями обеспечивает возможность самоудвоения (репликация).
Перед удвоением водородные связи разрываются, и 2 цепи расходятся и раскручиваются. И после этого каждая цепь становится матрицей для образованием новой комплементарной цепи. Синтез новых цепей происходит при участии ДНК-полимеразы.
Молекула РНК состоит из одной полинуклеотидной цепи, которая не имеет строго определенной последовательности. Она может «складываться» сама на себя и образовывать отдельные двухцепочечные участки с водородными связями между пуриновыми и пиримидиновыми основаниями:
Биологическая роль нуклеиновых кислот.
ДНК – главная молекула в живом организме. Она хранит генетическую информацию, которая передается из поколения в поколение. В ДНК закодирован состав всех белков организма.
В качестве посредника между ДНК и местом синтеза белка выступает РНК, где происходит 2 процесса:
Клетки содержат 3 типа РНК, которые выполняют различные функции:
1. Информационная или матричная РНК (мРНК) считывает и переносит генетическую информацию от ДРК к рибосомам, где происходит синтез определенной структуры белка. Молекула мРНК под действием РНК-полимеразы синтезируется на отдельном участке одной из 2х цепей ДНК, причем последовательность в РНК строго комплементарная последовательности в ДНК:
2. Транспортная РНК (тРНК) переносит аминокислоты к рибосомам, где они соединяются пептидными связями в определенной последовательности.
3. Рибосомальная РНК (рРНК) участвует в синтезе белков в рибосомах.